
Citation: Mekontso Dessap, A.;

Hanrott, K.; Powley, W.M.; Fowler, A.;

Bayliffe, A.; Bagate, F.; Hall, D.A.;

Lazaar, A.L.; Budd, D.C.;

Vieillard-Baron, A. Study to Explore

the Association of the Renin-

Angiotensin System and Right

Ventricular Function in Mechanically

Ventilated Patients. J. Clin. Med. 2022,

11, 4362. https://doi.org/10.3390/

jcm11154362

Academic Editors: Davide Chiumello

and Sukhwinder Singh Sohal

Received: 11 May 2022

Accepted: 14 July 2022

Published: 27 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Clinical Medicine

Article

Study to Explore the Association of the Renin-Angiotensin
System and Right Ventricular Function in Mechanically
Ventilated Patients
Armand Mekontso Dessap 1,2,3 , Kate Hanrott 4, William M. Powley 4, Andrew Fowler 5, Andrew Bayliffe 4,
François Bagate 1,2 , David A. Hall 4 , Aili L. Lazaar 6 , David C. Budd 4 and Antoine Vieillard-Baron 7,8,*

1 Medical Intensive Care Unit, Henri Mondor Hospital, AP-HP, 94010 Creteil, France;
armand.dessap@aphp.fr (A.M.D.); francois.bagate@aphp.fr (F.B.)

2 CARMAS Research Group, UPEC, 94010 Creteil, France
3 IMRB, INSERM U 955, 94010 Creteil, France
4 Medicines Research Centre, GlaxoSmithKline plc., Stevenage SG1 2NY, UK; kate_hanrott@hotmail.com (K.H.);

william.m.powley@gsk.com (W.M.P.); andrew.bayliffe@gmail.com (A.B.); david.a.hall@gsk.com (D.A.H.);
david.c.budd@gsk.com (D.C.B.)

5 GlaxoSmithKline plc., Middlesex TW8 9GS, UK; andrew.x.fowler@gsk.com
6 Discovery Medicine, Clinical Pharmacology and Experimental Medicine, GlaxoSmithKline plc.,

Collegeville, PA 19426, USA; aili.l.lazaar@gsk.com
7 Intensive Care Medicine Unit, Assistance Publique-Hôpitaux de Paris, University Hospital Ambroise Paré,

92100 Boulogne-Billancourt, France
8 INSERM UMR-1018, CESP, Team Kidney and Heart, University of Versailles Saint-Quentin en Yvelines,

78280 Villejuif, France
* Correspondence: antoine.vieillard-baron@aphp.fr; Tel.: +33-149095603; Fax: +33-149095892

Abstract: Background: Right ventricular (RV) dysfunction is associated with pulmonary vasoconstric-
tion in mechanically ventilated patients. Enhancing the activity of angiotensin-converting enzyme
2 (ACE2), a key enzyme of the renin-angiotensin system (RAS), using recombinant human ACE2
(rhACE2) could alleviate RAS-mediated vasoconstriction and vascular remodeling. Methods: This
prospective observational study investigated the association between concentrations of RAS peptides
(Ang II or Ang(1–7)) and markers of RV function, as assessed by echocardiography (ratio of RV to
left ventricular end-diastolic area, interventricular septal motion, and pulmonary arterial systolic
pressure (PASP)). Results: Fifty-seven mechanically ventilated patients were enrolled. Incidence
rates of acute cor pulmonale (ACP) and pulmonary circulatory dysfunction (PCD) were consistent
with previous studies. In the 45 evaluable participants, no notable or consistent changes in RAS
peptides concentration were observed over the observation period, and there was no correlation
between Ang II concentration and either PASP or RV size. The model of the predicted posterior
distributions for the pre- and post-dose values of Ang II demonstrated no change in the likelihood of
PCD after hypothetical dosing with rhACE2, thus meeting the futility criteria. Similar results were
observed with the other RAS peptides evaluated. Conclusions: Pre-defined success criteria for an
association between PCD and the plasma RAS peptides were not met in the mechanically ventilated
unselected patients.

Keywords: renin-angiotensin system; angiotensin-converting enzyme 2; right ventricular function;
acute respiratory distress syndrome; echocardiography; angiotensin II; angiotensin (1–7); pulmonary
circulatory dysfunction; acute cor pulmonale

1. Introduction

The role of the renin-angiotensin system (RAS) has been well-described in left ven-
tricular (LV) function, but its role in pulmonary circulatory dysfunction (PCD) and right
ventricular (RV) function is not well-known. RV dysfunction may result from excessive
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increases in RV preload or afterload or decreased contractility, as a result of injury [1]. RV
afterload, secondary to increased pulmonary vascular resistance in patients with acute res-
piratory distress syndrome (ARDS) [2], may result in PCD [3]. PCD, particularly its severe
form acute cor pulmonale (ACP), has been associated with poor outcomes in critically ill
patients, including those with ARDS [4,5]. Patients with ACP exhibit a higher incidence
of shock, increased heart rate, lower arterial pressures, and higher hospital mortality than
patients with moderate, or no PCD [4].

Angiotensin (Ang) II is a key effector peptide of the RAS that drives acute vasoconstric-
tion and vascular remodeling in human diseases, such as pulmonary hypertension [6–9].
Angiotensin-converting enzyme 2 (ACE2) compensates the vasoconstrictive axis of the RAS
by cleaving Ang II to form Ang(1–7) [10]. Ang(1–7) has demonstrated vasodilatory [11],
anti-inflammatory [10,12], anti-fibrotic [10,13], and anti-proliferative effects [12,14,15] in
experimental models. Failure of the RV is associated with increased activation of the RAS
in experimental studies [16,17], and increased circulating Ang II concentrations have been
observed in humans with ARDS [18], thus implicating Ang II in disease pathogenesis.

Current management approaches for acute RV failure include efforts to reduce RV
afterload [1], which is achieved by decreasing pulmonary vascular resistance and increasing
pulmonary vasodilation [19]. RAS-mediated vasoconstriction and vascular remodeling
may be improved through the dual action of ACE2 by simultaneously degrading Ang II
and forming Ang(1–7). Increasing ACE2 activity/concentrations may, therefore, represent
a therapeutic strategy for reducing the likelihood of PCD.

This study was planned to investigate the association of RAS peptides and markers of
RV function in participants requiring mechanical ventilation, in order to predict whether
the manipulation of the RAS by administration of recombinant human ACE2 (rhACE2)
protein would benefit this population. To evaluate the estimated effect of administering
rhACE2 on RV outcomes via its effect on RAS peptides, a model was generated, using data
from two studies [20,21] to predict the probability of RV dysfunction for pre-determined
concentrations of RAS peptides.

2. Methods
2.1. Objectives

The primary objective of this study was to evaluate the association between plasma
Ang II concentration and RV function in mechanically ventilated participants. Secondary
objectives were to: (1) define the incidence of PCD in this cohort and (2) evaluate the associ-
ation between plasma Ang(1–7) concentration, Ang II/Ang(1–7) ratio, and RV function.

2.2. Study Design

This was a prospective, observational, low-interventional study conducted at two cen-
ters in France from June 2018 to July 2019 (GlaxoSmithKline plc. study 205821). Participants
were enrolled in the study following intubation and mechanical ventilation. Participants
were evaluated over a three-day period using standard of care investigations, includ-
ing transthoracic echocardiography (TTE), and/or transesophageal echocardiography
(TOE). Additional investigations were limited to blood samples for RAS peptide analysis
(Figure 1). No investigational product was administered. Clinical interventions were based
on local standard of care and international guidelines, including fluid resuscitation, use of
vasopressor drugs and renal support, and other biomarkers that were not part of standard
of care.
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was conducted using a multiplane esophageal probe, when adequate windows could not 
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performed offline by at least two trained senior investigators. The following parameters 
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2.3. Participants

The study population comprised adults aged 18–80 years with a body mass index (BMI)
of 18.0 to 38.0 kg/m2 receiving invasive mechanical ventilation (duration of ventilation ≤48 h)
and capable of giving signed informed consent. If participants were not capable of giving
signed informed consent, an emergency consent procedure was followed. Participants were
excluded from the study if they were moribund, their clinical condition was deteriorating
rapidly, or the investigator did not consider there to be a reasonable expectation that the
participant would be able to complete the three days of observation in the study. Patients
with any of the following were excluded: chronic obstructive pulmonary disease requiring
long-term oxygen treatment or home mechanical ventilation, undergoing elective surgery,
pre-existing chronic pulmonary hypertension, massive pulmonary embolism or shock,
pulmonary vasculitis or pulmonary hemorrhage, lung transplantation in the previous
six months, or cardiopulmonary arrest during concurrent illness. Self-reported use of
RAS modulators, including angiotensin-converting enzyme (ACE) type 1 inhibitors, renin
inhibitors, and angiotensin receptor blockers, within 4 days or 5.5 half-lives, whichever
was longer, and a do-not-resuscitate status, also excluded patients from the study.

2.4. Endpoints and Assessments

The primary endpoint was the association between plasma Ang II concentration and
PCD, as assessed by echocardiography (VIVID E9 and S70 ultrasound system (GEMS,
Buc, France)) by measuring ratio of RV to LV end-diastolic area, interventricular septal
motion, and PASP [22]). PCD was defined as increased pulmonary arterial systolic pressure
(PASP) > 40 mmHg, increased RV/LV area ratio >0.6, and/or intraventricular septum
dyskinesia. Secondary endpoints were: (1) the presence of PCD and its subtypes: moderate
PCD (PASP > 40 mmHg or end-diastolic RV/LV area ratio ≥0.6 without septal dyskinesia),
severe PCD, i.e., ACP (end-diastolic RV/LV area ratio 0.6 with septal dyskinesia) [5], and
severe ACP (end-diastolic RV/LV area ratio ≥1 with septal dyskinesia) [5]; (2) the associa-
tion between plasma Ang(1–7) concentration, Ang II/Ang(1–7) ratio, and RV function, as
assessed by echocardiography. The presence of ARDS, per the Berlin definition [23], was
also assessed as a secondary objective (see Table S1 in Supplementary Materials).

Endpoints were assessed up to and including Day 3 of observation. Participants were
assessed by echocardiography within 48 h of mechanical ventilation (Day 1) and every
24 h for a further two days (Days 2 and 3). TTE was conducted on all participants, while
TOE was conducted using a multiplane esophageal probe, when adequate windows could
not be obtained using TTE (in 17/57 patients). All echocardiographies were performed by
trained operators (competent in advanced critical care echocardiography). Images were
stored in a digital format on-site, and a computer-assisted consensual interpretation was
performed offline by at least two trained senior investigators. The following parameters
were used to assess RV function: RV size (measurement of the end-diastolic RV/LV area
ratio on a 4 chamber-view), interventricular septal motion in the short-axis view of the
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heart (presence or absence of dyskinesia), and systolic eccentricity index (the ratio of the LV
short-axis diameter parallel to the septum to the LV short-axis diameter perpendicular to
the septum) [24]. PASP was estimated using tricuspid regurgitation velocity and application
of the modified Bernoulli equation [25].

Blood samples for RAS peptides were collected at the time of the echocardiogram on
each day. Additional parameters (including ventilator settings and arterial blood gases)
were collected at the time of intubation and daily, as per standard of care. Daily assessment
of mechanical ventilation and mortality continued until hospital discharge or Day 28,
whichever was sooner. Safety assessments included serious adverse event collection, safety
laboratory assessments, and recording of vital signs. A participant was considered to have
completed the study if he/she completed Day 3 assessments.

The evaluable population, defined as all participants for whom PCD, Ang II, and
Ang(1–7) data were recorded for at least one study time point, was the population used for
the primary analyses and majority of the statistical modeling. A population of participants
‘at risk’ of classification for PCD and ARDS, defined as participants who had a recorded PCD
and/or ARDS assessment during the study period, was used for the secondary analysis of
the incidences of PCD (and its subtypes) and ARDS. The safety population, defined as all
participants for whom at least one echocardiograph and/or blood sample was taken, was
the population used for all safety analyses.

2.5. Statistical Methods

Instead of modeling the association of Ang II concentrations with the dichotomized
RV dysfunction response variable and losing the information from the continuous variables,
a Bayesian repeated measures mixed-effects linear regression model was used to model
the association of Ang II concentration with PCD. PASP and RV size ratios were fitted
as bivariate outcome variables, with Ang II as the explanatory variable (see additional
statistical methods in Supplementary Materials).

The model was used to make a prediction of PASP and RV size ratio for two reference
values of Ang II, i.e., 30 pg/mL and 8 pg/mL. These values were selected as concentrations
that could hypothetically occur before and after dosing with rhACE2 in this patient popula-
tion, based on RAS peptide analysis by Hemnes et al. [20] and Khan et al. [21]. An estimate
for the probability of PCD was derived for each of the given Ang II concentrations. The dif-
ference in predicted probabilities was used to assess whether there was sufficient evidence
for an association between PCD and Ang II using a priori decision criteria. A percentage
point difference >30 between the probabilities was considered successful, percentage point dif-
ferences between 15 and 30 were considered uncertain, and a percentage point difference <15
was deemed futile. It was proposed that a PCD risk reduction of at least 30%, due to
therapeutic intervention with rhACE2, is a large enough effect size to have a reasonable
chance of translating to a detectable mortality improvement in future pivotal studies.

The secondary analyses of the association of Ang(1–7) concentration with PCD and of
Ang II/Ang(1–7) concentrations with PCD were both modelled per the primary analysis.
Hypothetical ‘pre-dose’ and ‘post-dose’ reference values for Ang(1–7) concentrations were
2 and 30 pg/mL, respectively, and based on the RAS peptide analysis from the same
studies [20,21] as for the Ang II concentrations.

The planned overall sample size of 150 participants was chosen to provide a precision
of ±5% points (defined as the half-width of the 95% Wald confidence interval [CI] [26])
around a point estimate for ACP incidence (based on an estimated incidence rate of 10%).
However, it was possible to conduct the primary analysis (association between Ang II
and PCD, measured by PASP and RV size ratio) without reaching the target precision of
±5% points, when ~50 participants had evaluable data. Further information on statistical
methods can be found in the Supplementary Materials.
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3. Results
3.1. Study Population

During study progression, rhACE2 development was terminated, leading to early
study close. A total of 57 participants were enrolled; there were no screen failures (Figure 2).
One participant was withdrawn, due to a protocol deviation (violation of the inclu-
sion criteria for BMI and age). Demographics and clinical characteristics of the partic-
ipants were similar between patients with and without PCD (Table 1). Most participants
(n = 40/57; 70%) were managed with vasopressors, inotropes, and other vasoactive agents
at baseline. The most common reasons for intubation were acute respiratory failure
(n = 25/57; 44%), followed by sepsis (n = 10/57; 18%) and impaired neurological status
or post-surgical management (n = 16/57; 28%). Baseline echocardiography did not reveal
significant chronic RV dysfunction. Respiratory variables and catecholamine support at each
visit are reported in Supplemental Tables S2 and S3, respectively, in Supplemental Material.
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Table 1. Participant demographics and clinical characteristics at inclusion. 

Demographics Total (N = 57) No PCD (n = 28) Any PCD (n = 29) 
Age, years (mean (SD)) * 63.7 (12.8) 64.3 (13.3) 63.2 (12.5) 

Male (n (%)) 33 (58) 15 (54) 18 (62) 
BMI, kg/m2 (mean (SD)) 24.8 (5.2) 24.3 (5.2) 25.2 (5.1) 
Height, cm (mean (SD)) 169 (10) 170 (10) 168 (9) 
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Clinical characteristics    

Figure 2. Participant flow. * Patients were pre-screened for eligibility; however, the number of
pre-screened patients is unavailable. a Screened population: all participants who were screened.
Safety population: all participants for whom at least one echocardiograph and/or blood sample
was taken. At-risk population: participants for whom PASP and RV size ratio were recorded for all
three study days and/or had a databased PCD and/or ARDS assessment during the study period.
b Evaluable population: all participants for whom PASP, RV size ratio, Ang II, and Ang(1–7) data
were recorded for at least one study time point. c Completed population: all participants for whom
PASP, RV size ratio, Ang II, and Ang(1–7) data were recorded for all three study days. ACP, acute cor
pulmonale; Ang, angiotensin; ARDS, acute respiratory distress syndrome; PASP, pulmonary arterial
systolic pressure; PCD, pulmonary circulatory dysfunction; RV, right ventricle.
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Table 1. Participant demographics and clinical characteristics at inclusion.

Demographics Total (n = 57) No PCD (n = 28) Any PCD (n = 29)

Age, years (mean (SD)) * 63.7 (12.8) 64.3 (13.3) 63.2 (12.5)

Male (n (%)) 33 (58) 15 (54) 18 (62)

BMI, kg/m2 (mean (SD)) 24.8 (5.2) 24.3 (5.2) 25.2 (5.1)

Height, cm (mean (SD)) 169 (10) 170 (10) 168 (9)

Weight, kg (mean (SD)) 71 (16) 71 (18) 71 (15)

Clinical characteristics

Total SOFA component score
(excluding CNS) (mean (SD)) 7.8 (3.7) 7.5 (3.6) 8.1 (3.9)

Managed with vasopressors, inotropes
and other vasoactive agents (n (%))

Yes 40 (70) 19 (68) 21 (72)

No 17 (30) 9 (32) 8 (28)

PaO2/FiO2 (mean (SD)) 208 (103) 223 (113) 193 (92)

SAPS II at screening 53 (21) 59 (19) 48 (21)

Reason for intubation (n (%))

Acute respiratory failure 25 (44) 11 (39) 14 (48)

Sepsis 10 (18) 7 (25) 3 (10)

Impaired neurological status or
post-surgery management 16 (28) 6 (21) 10 (34)

Low GCS 2 (4) 0 2 (7)

No reason for intubation supplied 4 (7) 4 (14) 0

Tidal volume, mL (mean (SD)) 434 (112) 441 (141) 427 (79)

PEEP, cm H2O (mean (SD)) 6 (4) 6 (4) 7 (4)

Plateau pressure, cm H2O (mean (SD)) 18 (5) 16 (3) 19 (5)
* Age was imputed when full date of birth was not provided. BMI, body mass index; cm H2O, centimeters of
water; CNS, central nervous system; FiO2, fraction of inspired oxygen; GCS, Glasgow coma scale; PaO2, partial
pressure of oxygen; PCD, pulmonary circulatory dysfunction; PEEP, positive end-expiratory pressure; SAPS,
simplified acute physiology score; SOFA, sequential organ failure assessment; SD, standard deviation.

3.2. Association between Plasma Ang II Concentration and PCD

A total of 45 participants were included in the evaluable population for the primary
analysis. Although the individual time-profile plots of Ang II demonstrated that most
participants had Ang II concentrations above those seen in healthy participants (physio-
logical concentrations of 8 pg/mL [27]), there were no notable or consistent changes in
Ang II concentration over time (Figure 3). Individual PASP and RV model predictions were
similar at the hypothetical Ang II concentrations before and after ‘dosing’ with rhACE2
(30 pg/mL and 8 pg/mL, respectively) (Figure 4). The probability of PCD, given an Ang
II concentration of 30 pg/mL (hypothetical ‘pre-dose’ value), was estimated to be 93.1%;
the probability of PCD, given an Ang II concentration of 8 pg/mL (hypothetical ‘post-dose’
value), was estimated to be 95.4% (Figure 5A). As regression gradients were flat, the dif-
ference (−2.4%) in predicted probability was likely an artefact of noise. The difference
was compared with the pre-defined criteria. It did not exceed 15% and, therefore, met the
futility criterion. The observed patient-level data of PASP versus RV size ratio, marked by
interventricular septal motion status, are shown in Figure 5B. The statistical model was
used to predict the probability of PCD for a given concentration of Ang II (Figure 5C).
Subsequently, the model-predicted posterior distributions for the hypothetical ‘pre-dose’
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and ‘post-dose’ concentrations of Ang II were generated, in which a large overlap between
the distributions was observed (Figure 5D).
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Figure 4. Scatterplots of PASP (A) and RV size ratio (B) versus Ang II concentrations, with posterior
prediction regions for RV function. Data are median PASP and RV size and 95% equal-tailed cred-
ibility intervals for the corresponding ‘pre-dose’ 30 pg/mL and ‘post-dose’ 8 pg/mL Ang II. One
measurement was databased per day, per participant. The horizontal reference line corresponds
to the defined threshold value associated with PCD. Ang, angiotensin; CrI, credible interval; PASP,
pulmonary arterial systolic pressure; RV, right ventricular.
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scatterplot of PASP versus RV size ratio, marked by interventricular septal motion status (B) and
colored by Ang II concentration (C), with posterior prediction regions (D). Data are for ‘pre-dose’
30 pg/mL and ‘post-dose’ 8 pg/mL Ang II concentrations. The horizontal reference lines correspond
to the defined threshold value for PCD. Figure 4A contains additional sampling points that did
not have an associated Ang II concentration value. Ang, angiotensin; N, no; ND, not done; PASP,
pulmonary arterial systolic pressure; PCD, pulmonary circulatory dysfunction; Pr, probability; Y, yes.
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3.3. Association between Plasma Ang(1–7) Concentration, Ang II/Ang(1–7) Ratio, and PCD

Data from the 45 participants in the evaluable population were used for this analysis.
Consistent with the Ang II results, the time profile of the Ang(1–7) and Ang II/Ang(1–7) ra-
tio showed no notable or consistent changes in Ang(1–7) concentration or Ang II/Ang(1–7)
ratio over the study period (Figure 3 and Figure S1 in Supplementary Materials). The model
predicted that increasing Ang(1–7) from 2 to 30 pg/mL would reduce the probability of
PCD by ~5.7 percentage points (Figure 6). Although there was a supportive trend towards a
decreased likelihood of dysfunction with increased Ang(1–7) concentration, the difference
in predicted probabilities between pre- and post-dose did not exceed 15% and, thus, met
the futility criterion.
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Figure 6. Scatterplot of PASP versus RV size ratio, marked by interventricular septal motion status
and colored by Ang(1–7) concentration, with posterior prediction regions for PCD measurements
for hypothetical ‘pre-‘ and ‘post-‘dose Ang(1–7) concentrations. Data are for ‘pre-dose’ 2 pg/mL
and ‘post-dose’ 30 pg/mL Ang II concentrations. The horizontal reference lines correspond to the
defined threshold value for PCD. Ang, angiotensin; PASP, pulmonary arterial systolic pressure; Pr,
probability; RV, right ventricular.

3.4. Incidence of PCD

The incidence rates of PCD and its subtypes (including ACP and severe ACP) were
measurable in 57 participants; therefore, data from all 57 participants were used in this
secondary analysis. A summary of PCD subtypes and ARDS incidence rates is presented
in Table 2.
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Table 2. Summary of PCD and ARDS incidence rates.

Disease Status Frequency, n (N = 57) Rate, % (95% CI)

No PCD or ACP 28 49 (36, 63)

Any PCD or ACP 29 51 (37, 64)

PCD 14 25 (15, 38)

ACP 12 21 (12, 34)

Severe ACP 3 5 (1, 16)

ARDS 15 26 (16, 40)

ARDS and no PCD or ACP 5 9 (3, 20)

ARDS and PCD 4 7 (2, 18)

ARDS and ACP 6 11 (4, 22)
N: number of participants with ≥1 completed disease status assessment (ARDS or PCD). Frequency: number of
participants with ≥1 disease status answer of ‘yes’, where, for the combined disease status, categories of each
of the relevant disease assessments need to be positive ≥ once across visits. Rate: (Frequency/N) ∗ 100, 95% CI
method: Wilson score interval with continuity correction. ACP, acute cor pulmonale; ARDS, acute respiratory
distress syndrome; CI, confidence interval; PCD, pulmonary circulatory dysfunction.

Overall, 51% of patients had PCD (n = 29/57 (95% CI 37, 64)). A total of 21% of
patients had ACP (n = 12/57 (95% CI 12, 34)), and few patients had severe ACP (n = 3/57;
5% (95% CI 1, 16)). Approximately one-quarter of the participants had a diagnosis of ARDS
(n = 15/57; 26% (95% CI 16, 40)).

Safety data are summarized in the Supplementary Materials.

4. Discussion

Few studies have evaluated the association between the RAS and PCD in humans.
The objective of this study was to investigate the association of RAS peptides and markers
of PCD in participants requiring mechanical ventilation, as well as to further characterize
this patient population. The PCD incidence rates seen in this study were in line with those
observed previously in a similar population [5]. Overall, we observed no consistent changes
in Ang II or Ang(1–7) concentration over the observation period. Despite a significant
range of Ang II concentrations, indicating the RAS was activated in many patients, the
results did not demonstrate a relationship between Ang II concentrations and either PASP
or RV size. The same conclusions applied to Ang(1–7).

It is interesting to compare our results to the ones published by Khan et al. in patients
with moderate ARDS [21]. While our population of 45 mechanically ventilated patients is
quite different and more heterogeneous, with only 26% of ARDS, we finally found results
similar to the 20 patients randomized in their control group. AngII was indeed significantly
elevated, had a large distribution of values, and little change over the first days following
the inclusion, as was also reported by Reddy et al. [18]. This could suggest that more
than the ARDS, per se, it is the need for mechanical ventilation that mainly induces RAS
peptides alterations.

Most participants had Ang II concentrations above those seen in healthy participants,
and no substantial changes in Ang II concentration over time were observed. A previous
study of patients with heart failure demonstrated that, despite ACE inhibitor therapy,
Ang II concentrations remained persistently higher than those seen in healthy individuals
in half of the study population [28]. Experimental studies suggest that Ang II plays an
important role in ventricular remodeling [28]. Ang II may provide a positive feedback loop
in vascular remodeling by upregulating the expression of pro-fibrotic factors, thus resulting
in further production of Ang II, therefore perpetuating vascular remodeling [29].

A Bayesian repeated measures mixed-effects regression model was used to explore
the association of Ang II with PCD, based on prediction of PASP and RV size ratio, accord-
ing to hypothetical Ang-II concentrations pre- (30 pg/mL) and post- (8 pg/mL) dosing
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with rhACE2. If high Ang II concentrations were associated with PCD and/or low Ang II
concentrations were associated with no PCD, this would provide a supportive rationale
for the use of rhACE2 as a potential treatment in this patient population, as lowering
Ang II concentrations with rhACE2 could reduce the likelihood of PCD. The model of
predicted posterior distributions for the pre- and post-dose values showed a large overlap
between the distributions, thus indicating no change in the likelihood of PCD as Ang II
concentrations decreased from 30 to 8 pg/mL. These data suggest that a reduction in Ang II
concentrations after treatment with rhACE2 would not have a clinically significant impact
on PCD in this population. The probability of PCD, given an Ang II concentration at the
hypothetical ‘pre-dose’ value, was high and similar to the ‘post-dose’ value. The difference
between the predicted probabilities met the futility criterion, indicating that a future study
to evaluate rhACE2 as a treatment in patients with severe respiratory failure would likely
be unsuccessful. The high probability of PCD at the post-dose Ang II concentration was
surprising. These results could suggest that the association of RAS peptide levels with PCD
may have been confounded by the impact of mechanical ventilation, in particular the use
of high positive end-expiratory pressure on RAS peptide concentrations. In fact, transpul-
monary pressure may have a direct effect on the compression of pulmonary vessels [30].
Other factors may also be involved in PCD during ARDS, including hypercapnia [31,32].
Therapeutic dosing of Ang II has recently been evaluated as a vasopressor treatment for
distributive shock, with evidence of efficacy [33] that led to approval by the US Food and
Drug Administration [34], further highlighting the complex interaction between the RAS
and both systemic and pulmonary vascular function. Most mechanically ventilated patients
were ventilated for acute respiratory failure, and mechanical ventilation itself may have
induced PCD in the study population, especially when associated with low partial pressure
of oxygen (PaO2). Similar results were observed with the other RAS peptides evaluated;
no association between the PCD and Ang (1-7) concentrations or Ang II/Ang (1-7) ratio
was observed.

Consistent with our study, a systematic review on the effects of ACE inhibitors, Ang II
receptor blockers, and aldosterone antagonists in adults with congenital heart disease
and RV dysfunction found that RAS inhibition did not have a beneficial effect in these
patients, suggesting a lack of association between RAS peptides and RV function. However,
the studies included in the review generally had low patient numbers, short follow-up
periods, and evaluated surrogate endpoints [16]. Clinical studies of rhACE2 in patients with
pulmonary arterial hypertension have demonstrated rapid modulation of RAS peptides
but inconsistent changes in clinical outcomes, including pulmonary hemodynamics [35].
Similarly, in a meta-analysis investigating the role of RAS inhibition on RV function, the
treatment arm (in which patients were treated with ACE inhibitors and/or angiotensin re-
ceptor blockers) showed a trend towards increased RV ejection fraction, compared with the
control arm, suggesting a potential role of the RAS pathway in RV dysfunction. However,
as with our present study, the results were not significant, indicating that further, larger
prospective studies are needed to further elucidate the role of the RAS in RV function [13].

Strengths and Limitations

We conducted this prospective, observational study with low patient intervention to
determine whether an investigational product could benefit a patient population. Without
exposing patients to a potentially non-beneficial investigational drug, we conceptually
determined that an interventional study would not be successful. A broad population of
mechanically ventilated participants in critical care were enrolled, increasing the potential
generalizability of the study results. However, the number of pre-screened patients was
unavailable, and investigating particular patient subgroups may have yielded more specific
results on the role of RAS peptides in the pathophysiology of severe respiratory failure
based on specific diagnoses. It is possible the heterogeneity of the patient population
confounded the ability to observe a detectable relationship between the RAS peptide
levels and PCD, as RAS is known to be influenced by physiological characteristics, such
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as BMI, vascular tone, renal function, and by co-medications. COVID-19-related ARDS
may be a relevant target population, given the burden of lung vascular dysfunction in this
subgroup [36,37]. This was a small double-centre study, which may limit the generalizability
of the findings. The study was limited in its feasibility; obtaining all data from each patient
was challenging. As 21 patients were excluded for missing data (because PCD, Ang II, and
Ang(1–7) data were not available for at least one study time point), this may have induced
selection bias in the results and precludes any definite conclusion. A further limitation was
that PASP was estimated by echocardiography as a surrogate measure, rather than as a
direct measurement using invasive measures, which is more robust than echocardiography.

5. Conclusions

The results of this study did not produce sufficient evidence to meet pre-defined suc-
cess criteria regarding evidence for an association between PCD in mechanically ventilated
patients and plasma RAS peptides Ang II, Ang(1–7), or Ang II/Ang(1–7) ratio. Further
studies of specific patient subgroups (such as patients with ARDS and patients with a
high-risk score for developing ACP) could help further elucidate the role of RAS peptides
in these patients.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jcm11154362/s1, Supplementary materials: Table S1. Disease
diagnoses; Additional statistical methods; Tables S2. Patient respiratory profile at different time
points; Table S3. Catecholamine support at different time points; Supplemental Figure S1. Individual
time profile of Ang II/Ang(1–7) ratio by time point.
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