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ABSTRACT Predicting phenotypes based on genotypes and understanding the effects of complex multi-
locus traits on plant performance requires a description of the underlying developmental processes, growth
trajectories, and their genomic architecture. Using data from Brassica rapa genotypes grown in multiple
density settings and seasons, we applied a hierarchical Bayesian Function-Valued Trait (FVT) approach to fit
logistic growth curves to leaf phenotypic data (length and width) and characterize leaf development. We
found evidence of genetic variation in phenotypic plasticity of rate and duration of leaf growth to growing
season. In contrast, the magnitude of the plastic response for maximum leaf size was relatively small,
suggesting that growth dynamics vs. final leaf sizes have distinct patterns of environmental sensitivity.
Consistent with patterns of phenotypic plasticity, several QTL-by-year interactions were significant for
parameters describing leaf growth rates and durations but not leaf size. In comparison to frequentist
approaches for estimating leaf FVT, Bayesian trait estimation resulted in more mapped QTL that tended
to have greater average LOD scores and to explain a greater proportion of trait variance. We then con-
structed QTL-based predictive models for leaf growth rate and final size using data from one treatment
(uncrowded plants in one growing season). Models successfully predicted non-linear developmental phe-
notypes for genotypes not used in model construction and, due to a lack of QTL-by-treatment interactions,
predicted phenotypes across sites differing in plant density.
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Expressed phenotypes reflect the independent and combined effects of
genetic and environmental inputs over time. However, understanding
the relationshipbetweengenotype, the environment, andphenotypecan
be complicated. For example, phenotypic plasticity generated via geno-
type-by-environment interactions can alter the course of development,

allowing a single genotype to exhibit multiple distinct phenotypes
(BRADSHAW 1965; SCHLICHTING AND PIGLIUCCI 1998; DIGGLE 2002). Alter-
natively, phenotypic traits may be buffered against environmental ef-
fects, a phenomenon referred to as canalization (WADDINGTON 1954;
RICE 1998; DEBAT AND DAVID 2001; HALL et al. 2007). Predicting phe-
notypes based on genotypes across multiple environments is therefore
complicated by differential environmental sensitivity, yet is critical for
understanding and predicting crop yields and evolutionary outcomes
(YANG AND ZHU 2005; VAN EEUWIJK et al. 2010; OBER et al. 2012; CROSSA

et al. 2013; ZHANG et al. 2015).
Understanding the agronomic and evolutionary performance of

complex traits requires a description of the developmental processes
and growth trajectories that generate these phenotypes (KELL 2002;
ONOGI et al. 2016). An ontogenetic description is necessary, in part
because selection does not act only on final phenotypes. Instead, selec-
tion acts continuously on phenotypes throughout organismal ontogeny
as well as directly on growth rates themselves (PRUSINKIEWICZ et al. 2007;
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BAKER et al. 2015). Furthermore, in comparison to single time point
measurements when growth has ceased, characterizing the processes
that produce a final phenotype leads to a more complete description of
the genomic architecture underlying a given trait (BAKER et al. 2015).
Analysis of developmental traits is, however, complicated by the fact
that these processes are continuous while the data collected are typically
discrete. Characterizing a developmental process necessitates a large
number of measurements, which, among other statistical effects, re-
duces the power of significance testing under multivariate analyses
(GRISWOLD et al. 2008). Function-Valued Trait (FVT) estimation fits
mathematical functions to measurements collected over time, and
thereby reduces the number of independent traits. Under one variant
of FVTmodeling, parameters that characterize the function are estimated
and then analyzed as phenotypic trait data (JAFFRÉZIC AND PLETCHER 2000;
KINGSOLVER et al. 2001; STINCHCOMBE AND KIRKPATRICK 2012; BAKER et al.
2018). While there are advantages and limitations to each of several
approaches, one advantage to the “parameters as traits” approach is that
different parameters have ontogenetically interpretable features. For
functions characterizing leaf growth, for example, one can distinguish
between the slope (rate of growth), growth duration, and asymptote (final
size), and examine the potentially unique genetic architectures, inter-
relationships, and environmental sensitivities of these traits.

In additional to the external environment, developmental pheno-
types and growth processes can be influenced by a plant’s internal
physiological status (HAMMER et al. 2005). For example, manipulating
photosynthetic efficiency and carbon availability via transgenesis dra-
matically affects leaf morphology (RAINES AND PAUL 2006; SCHNEIDEREIT
et al. 2006). Recent advances in FVT modeling use hierarchical
Bayesian approaches to incorporate genotype-specific cofactors such
as maximum photosynthetic capacity (Amax) and thereby factor out
genotypic variation in carbon pools available during development
and growth (BAKER et al. 2018). Residual genetic variation that re-
mains after statistically factoring out Amax should reflect factors that
more directly affect leaf expansion independent of genotypic-specific
carbon resources (BAKER et al. 2018). Further, FVT modeling in a
Bayesian framework leads to increased estimates of trait heritability
compared to frequentist approaches, because the former takes into
account the underlying structure of the data and provides for im-
proved error handling (BAKER et al. 2018). Whether Bayesian ap-
proaches to FVT estimation also afford concomitant improvements
in QTL mapping remains an open question.

Quantitative-genetic analyses of both FVT and other complex traits
require high genotypic replication. The challenge of phenotyping
throughput of numerous genotypes can be addressed for some traits
by remote sensing approaches (WEBER et al. 2012). In Brassica rapa,
spectroradiometric indices are genetically correlated with leaf-level
physiological measurements and aspects of final leaf morphology, such
that genotypes with high values of, for instance, the MERIS Terrestrial
Chlorophyll Index (DASH AND CURRAN 2004) have high values of Amax

and large leaf sizes (BAKER et al. 2018). Whether QTL can be identified
that jointly affect spectroradiometric indices as well as physiological
traits or leaf FVT remains unexplored. Such QTL could allow high-
throughput remote sensing to be used as a proxy for more time-
consuming direct measurements of leaf gas-exchange andmorphological
development, and these QTL could be used in molecular plant breed-
ing programs (YIN et al. 2000). Notably, simulation studies demon-
strate that accounting for genotypic variation in gas-exchange can
accelerate plant breeding (HAMMER et al. 2005).

Data collected over ontogeny and in multiple environments may
contribute to realistic models of population dynamics and of crop
performance (CHENU et al. 2009). More generally, predicting phenotypes

based on genotypes is a focal area of current genomics research, in
part because it forms the basis of highly efficient genomic selection
strategies for crop improvement (JANNINK et al. 2010; BUSTOS-KORTS

et al. 2016). However, few studies have predicted ontogenetic growth
trajectories based on genotypic information (for an exception, see
REYMOND et al. 2003). Here, we report on improved characterization
of developmental and growth processes and their environmental de-
pendencies, which are relevant for both evolutionary ecologists and
agronomists. Specifically, we expand upon the data and analyses pre-
sented in Baker et al. (2015) by applying new Bayesian FVT estima-
tion routines (developed in BAKER et al. 2018) to existing leaf data, leaf
phenotypic data collected in a separate season, and high-throughput
spectroradiometric data. We combine ontogenetic and physiological
data in hierarchical Bayesian models to estimate leaf FVT in the
annual species, Brassica rapa. Using these FVT estimates, we test
for phenotypic plasticity expressed in response to season and crowd-
ing and ask whether the magnitude of plasticity differs among FVT
parameters (e.g., growth rates vs. durations). We then map QTL to
assess FVT genomic architecture including QTL-by-environment in-
teractions that underlie plastic responses. We test if Bayesian FVT
estimation approaches improve QTL identification compared to fre-
quentist approaches. Finally, we test whether QTL-based (genotypic)
models can predict complex, multi-locus, non-linear patterns of leaf
developmental phenotypes in B. rapa.

MATERIALS AND METHODS

Species description
Brassica rapa (Brassicaceae) is an annual to biennial herbaceous crop.
We utilize Recombinant Inbred Lines (RILs) generated by crossing the
R500 · IMB211 genotypes. R500 is a late-flowering yellow sarson oil
seed with relatively large, broad leaves, while IMB211 is derived from a
Wisconsin Fast Plant (WFP) and selected for rapid cycling, flowers
early, and has relatively small, lanceolate leaves (BAKER et al. 2015).
All RILs are expected to be .99% homozygous (as described in
HINATA AND PRAKASH 1984; BROCK AND WEINIG 2007; INIGUEZ-LUY
et al. 2009). This experiment includes 119 RILs and genotypes repre-
sentative of the R500 and IMB211 parents.

Experimental Design and Data Collection

Plant growth: To test for plastic responses to inter-annual microcli-
matic variation (year) and crowding, we grew plants during three
growing seasons and in two density treatments. Plant growth and
experimental design follow protocols described in Baker et al. (2015).
Briefly, in 2010, 2011, and 2012, the IMB211 · R500 RILs were germi-
nated in the greenhouse in pots filled with fertilized field soil, and then
transplanted into the field at the University of Wyoming Agricultural
Experiment Station. The crowded (CR) treatment consisted of 5 plants
of the same genotype per 4” peat pot with the central plant designated
as a focal individual on which measurements were collected. The un-
crowded (UN) treatment consisted of a single plant per pot. Each block
consisted of one replicate of each RIL and each parental genotype.
Locations of replicates within each block were randomized, and each
block was randomly assigned to a treatment (CR or UN). Plants were
transplanted into the field with 25 cmbetween each focal plant. In 2010,
12UN and 12CR blocks were transplanted into the field. In 2011, 6 UN
and 6 CR blocks were transplanted into the field and in 2012 8 CR and
8 UN blocks were transplanted. All plants were watered to field capac-
ity, and pesticides were applied as needed. Temperature data from
2011 and 2012 were collected (File S1) and used to generate degree
days (DD, hereafter) assuming genotypes share the sameB. rapa-specific
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base value of 0.96� as described in Baker et al. (2015) and Vigil et al.
(1997).

Physiological data: Photosynthetic capacity (Amax; mmol m22 sec21)
was collected from UN and CR plants in 2010 as described in Edwards
et al. (2012) genotypic means were calculated as described in and Baker
et al. (2015) and below.

Spectroradiometric data: Spectral reflectance measurements were
collected in 2010 and 2011 as described in Baker et al. (2018). The
spectroradiometer collected wavelengths from 350 to 2500 nm with a
1.4 nm sampling interval for the visible/NIR spectral region (350 nm –
1000 nm) and 2 nm for the short-wave infrared spectral region
(1000 nm – 2500 nm) (AN et al. 2015); when interpolated, there is
one spectral data point per nanometer, for a total of 2151 spectral data
points per measurement. For each replicate plant, 10 measurements
were collected and averaged to produce a single measurement (AN et al.
2015).

Raw spectroradiometric datawere used to calculate common remote
sensing vegetation indices. These include:mcari1 andmcari2 (Modified
Chlorophyll Absorption Ratio Index), mtci (Transformed Chlorophyll
Absorption Ratio Index) (HABOUDANE et al. 2004), sipi2 (Structure In-
sensitive Pigment Index) (HABOUDANE et al. 2002), tcari (Transformed
Chlorophyll Absorption Ratio Index) (PEÑUELAS et al. 1995), ari1 and
ari2 (Anthocyanin Reflectance Index) (HABOUDANE et al. 2002), cri
(Carotenoid Reflectance Index) (GITELSON et al. 2001), npci (Normal-
ized Pigment Chlorophyll Index)(GITELSON et al. 2002), pri2 (photo-
chemical reflectance) (PEÑUELAS et al. 1994), psri (Plant Senescence
Reflectance Index) (GARBULSKY et al. 2011) and wi (water index)
(MERZLYAK et al. 1999). We binned raw spectroradiometric data and
calculated the reflected red to far red (R:FR) ratio for each plant as
(655nm-665nm)/(725nm-735nm) (PENUELAS et al. 1997).

Morphological data: Leaf lengths andwidths (LLandLW,respectively)
were recorded on the second epicotylar leaf for all plants in 2011 and
2012. Data collection started at leaf emergence and was conducted 2-3
times per week as described in Baker et al. (2015).

Data analysis

Function-Valued Trait (FVT) Modeling: FVT modeling for trait
estimation used Bayesian approaches that fit logistic growth curves to
longitudinal LL and LW data (Equations 1 & 2, respectively) as de-
scribed in Baker et al. (2018). LW and LL for each individual replicate
plant is represented by a minimum of 5 and maximum of 16 sequential
measurements. Briefly, we utilized a three-level hierarchical Bayesian
model that retains the measurement data structure to account for in-
formation across all plants and genetic lines within the population,
(including replicate plants within each line) and a global mean
parameter.

Equation 1:
d
dt

LL ¼ rLL

�
LLLmax 2 LL

LLLmax

�

Equation 2:
d
dt

LW ¼ rLW

�
LWLmax 2 LW

LWLmax

�

Leaf length and width were modeled independently across treatments
and growing seasons. The Function-Valued Trait (FVT) parameters
Lmax and r estimate the Leaf maximum size (in mm) and rate of
growth, (mm/DD) respectively. Two parameters estimated the duration

of growth. The first, d, was calculated as the duration (in Degree Days,
DD) of time between germination and 95% of leaf growth. The second,
iD, was algebraically extracted from the growth curve and describes when
the growth curves reached their inflection point in Degree Days and
transitioned from exponentially accelerating to decelerating growth rates.

The hierarchical Bayesian model was implemented using the
Bayesian Statistical Modeling Python module PyMC and the model
parameters were estimated viaMCMC using theMetropolis-Hastings
algorithm (Chib and Greenberg 1995; Patil et al. 2010). The MCMC
estimations were performed using a single chain to sample 500,000
iterations, which includes the first discarded 440,000 burn-in itera-
tions; the remaining 60,000 iterations were retained. By thinning to
1 iteration in 20, the retained iterations were reduced to 3,000 samples
for every FVT parameter from which the posterior distributions were
tabulated. All parameters’ trace and auto-correlation plots were ex-
amined to ensure that theMCMC chain had adequate mixing and had
reached convergence (BAKER et al. 2018). All observed data for each
genotype were plotted with two 95% credible interval envelopes. The
inner, yellow envelope represents the credible intervals for the model
based on the observed data. The outer, green envelopes are computed
from the posterior distributions of the model parameter values. The
green envelopes in effect correspond to the 95% credible intervals
within which one expects any future observations to fall if a new
experiment were performed using the same genotype and environ-
ment (KRUSCHKE 2015; SAS INSTITUTE 2017).

Inclusion of Photosynthetic Capacity as a co-factor: To account for
potential carbon limitation caused by differences in photosynthetic
capacity, we included the genotype-specific genotypic means for pho-
tosynthetic capacity (Amax) as a co-factor in the prior distributions of
the individual plant effects (BAKER et al. 2018).

Phenotypic plasticity: Prior to all analyses, phenotypic data were
subjected tooutlier analyses.Anyobservationsmore than three standard
deviations from themeanwere omitted.Visual inspectionof histograms
and quantile-quantile plots indicated that outlier exclusion yielded
distributions closer to the normal distribution and never resulted in
increased departure from the normal distribution (BAKER et al. 2017;
BAKER et al. 2018). To detect environmental factors that might affect the
correspondence between genotype and phenotype, we analyzed phe-
notypic datasets (File S2) from all years and both density treatments
and tested for the main effects of genotype, treatment, and year and all
possible interactions using the lme4 and lmerTest packages in the R
statistical environment (Bates et al. 2014; KUZNETSOVA et al. 2015; R core
Team 2015). In these tests, all effects were considered random and
blockwas nestedwithin a year · treatment interaction. Significantmain
effects of environment (either year or treatment) were considered ev-
idence of phenotypic plasticity, and interactions of treatment · geno-
type, year · genotype, or the three-way interaction of treatment ·
year · genotype were considered evidence for genetic variation in
phenotypic plasticity.

Best Linear Unbiased Predictions (BLUPs): Genotypic means were
estimated by calculating BLUPs for all leaf FVT and spectral reflectance
traits. BLUPs were calculated independently for each year and for UN
and CR treatments in R using the lmer function in the lme4 package
while controlling for block effects (Bates et al. 2014; KUZNETSOVA et al.
2015). The random effects of block (nested within a year · treatment
interaction) and genotype, treatment and year (and their two- and
three-way interactions) were assessed using a series of chi-square tests
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that compare models with and without the given random effect (rand
function in lmerTest).

QTLmapping:QTLanalyseswereperformed inR/qtl (BROMANANDSEN
2009) based on an updated and highly resolved RNA-seq based SNP
map with an average distance of 0.7 cM between informative markers
(BAKER et al. 2015; MARKELZ et al. 2017). The scanone function was used
to perform an initial round of interval mapping (1cM resolution with
estimated genotyping errors of 0.001 using Haley Knott regression) to
identify additiveQTL. QTLmodel space was searched using an iterative
process (fitqtl, refineqtl, and addqtl) to identify additional QTL while
taking into account the effects of QTL identified by scanone and addqtl.
All significance thresholds (0.95) were obtained using 10,000 scanone
permutations (BROMAN et al. 2003; BROMAN AND SEN 2009). QTL and
their 1.5LOD confidence intervals are displayed using MapChart2.0
(VOORRIPS 2002).

We hypothesized that Bayesian methods might better estimate trait
values in comparison to frequentist trait estimation, thereby improving
phenotype-genotype associations estimated under QTL mapping.
To compare QTL identified for Bayesian FVT model parameters with
previous frequentist (least squares, LS) FVTmodel parameters (Baker
et al., 2015), we remapped the previously published LS parameters
using the updated B. rapa genetic map and the same protocol
as described above for the Bayesian parameters. Percent variance
explained (PVE) is calculated as PVE = 100 · (1 - 10^(-2 LOD/ n)),
where n is the number of genotypes.

QTL-by-environment interactions: The effects of environment and
year onQTLwere assessed using a series of linear regressionmodels and
two-way ANOVAs in the car package for R (FOX AND WEISBERG 2011).
P-values,0.05 for type III F-values of treatment · QTL maker, year ·
QTL maker, or the three-way interaction of treatment · year · QTL
marker interactions were considered evidence of QTL by environment
interactions. To avoid testing the same QTL multiple times, when QTL
for the same trait across different treatments and years colocalized
(as defined by overlapping 1.5 LOD confidence intervals) and expressed
the same direction of effect, only one QTL · environment interaction is
reported.

Predictive analyses: For the purposes of predictivemodeling, we chose
uncrowded leaf widths (UNLW) from 2012 because we detected
the most QTL for this trait. To predict growth phenotypes based
on genotypes, we used a resampling approach. For each sample, we
randomlyexcluded5genotypes (without replacement).Were-evaluated
our Bayesian FVT models, extracted trait parameters, and calculated
trait BLUPs as described above. We re-mapped QTL using the same
methods as above, except we set the significance threshold for QTL
detection to 0.90. Including QTL of marginal statistical significance
but with potentially biologically meaningful effects increased the
precision with which we could perform phenotypic predictions.
We extracted the effect size and direction of each QTL identified
for Lmax and r using the effectplot function in R/qtl and constructed
predictive models for Lmax and r (Equation 3 and 4, respectively)
where i indicates the genotype in question, �Lmax and �r are the
population means for Lmax and r, respectively, which are added to
the sum of the products of each QTL direction and effect size. We
estimated values for r and Lmax parameter for each of the 5 randomly
excluded genotypes based strictly on genotypic information and in-
dependent of any phenotypic information. We repeated this process
20 times, each time randomly selecting a different set of RILs to predict

phenotypes based on genotypes (and to exclude from Bayesian mod-
eling, BLUP estimation, and QTL mapping procedures). This ap-
proach allowed us to predict phenotypes based on genotypes for
�100 different genotypes. Analyses departed slightly from n = 100 be-
cause we dropped genotypes when, for example, randomly selected
genotypes represented parents of the RIL population and could not be
used for mapping or had no genotypic information.

Equation 3: Lmaxi ¼ Lmaxþ
Xn
j¼1

�
DirectionQTL

��
EffectQTLj

�

Equation 4: ri ¼ �r þ
Xn
j¼1

�
DirectionQTLj

��
EffectQTLj

�

We evaluated the success of our predictive models across environ-
ments in two ways. First, we examined the correlations between
predicted (based on 2012 UN data) and observed r and Lmax (in
2012 UN and in 2012 CR). Second, we used predicted values for r
and Lmax (along with a constant, L0, which estimated the initial value
for leaf width) to predict logistic growth curves describing the in-
crease in leaf width over time for each genotype. We plotted predicted
growth curves (red line) in conjunction with measured phenotypic
data (colored circles) for all replicate plants per genotype. We applied
our Bayesian models to the observed phenotypic data (excluding the
5 predicted genotypes) and estimated growth curves (black lines) and
credible intervals. We visually compared predicted growth curves to
credible intervals surrounding observed phenotypes. When compar-
ing predicted to observed growth curves for 2012 uncrowded data, we
considered predictions successful if they fell within the 95% Bayesian
credible regions for the model (yellow envelopes, Figure 2) and mar-
ginally successful if they fell within the 95% credible limits for future
observation (green envelopes, Figure 2). When projecting across
treatments (from uncrowded to crowded environments), we consid-
ered predictions successful if they fell within the green envelopes. We
scored the proportion of successful or unsuccessful predictions for r
and Lmax within each sample and assessed whether the proportion of
successful predictions was greater than that expected by chance (0.50)
using a Z-statistic. Replicate level phenotypic FVT data used in all
analyses are available in File S2 and upon request.

Data Availability
Data andcodeused in these analyses arepreviously publishedandcanbe
found in the relevant citationsorare included in the supplementalfiles of
this publication including environmental data from the experimental
field in 2010, 2011, and 2012 (Online Resource File S1) and replicate
level phenotypic data used for analyses (Online Resource File S2).

RESULTS

Phenotypic plasticity
We partitioned variation among genetic and environmental sources.
There were significantmain effects of block (nestedwithin the treatment-
by-year interaction) for all model parameters, indicating plasticity to
unmeasured microenvironmental variation. The main effect of geno-
type was significant for all leaf parameters other than LL_r and LW_r,
for which genetic variance was subsumed into environmental inter-
action terms. We found no evidence of phenotypic plasticity to the
crowding treatment for any leaf trait (Table 1). By contrast, there were
significant main effects of year on all leaf FVT parameters except leaf
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Figure 1 RNA-seq based linkage map of Brassica rapawith QTL and their 1.5 LOD confidence intervals. The 1482 SNP-basedmarkers are relatively evenly
dispersed across each of the ten chromosomes. Gaps in markers are indications of low expression associated with centromeres (or ancient centromeres).
Positive QTL (with respect to IMB211) are red and negative QTL are blue. Overlapping 1.5 LOD confidence intervals are interpreted as evidence for
colocalization of QTL. UN, uncrowded and CR, crowded treatments; LW, leaf width; LL, leaf length; Lmax, maximum estimated leaf size (mm); r, growth rate;
d, duration of growth; iD, timing of the switch between accelerating and decelerating growth; 10, 11, and 12 represent QTL identified in 2010, 2011, and
2012 field seasons, respectively. Specific cM positions, percent variance explained, and genomic markers can be found in File S3.
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length duration of growth (LL_d), leaf width maximum size
(LW_Lmax), and duration of growth (LW_d). We also observed
evidence for genetic variation in the expression of phenotypic plas-
ticity among years (genotype · year interactions) for all leaf FVT
traits (Table 1). Interestingly, for leaf FVT estimating growth rates
and durations (d, iD, r) the interaction term was always several fold
larger in magnitude than the main effect of genotype as estimated by
the test statistic value. In contrast, the main effect of genotype for
FVT estimating final leaf size (Lmax) was �15-20 fold larger in
magnitude than the corresponding genotype · year interaction term
(Table 1). The three-way density treatment · year · genotype
showed a similar pattern of strong significance for iD, d and r pa-
rameters and either non-significance for LW_Lmax or low magni-
tude in comparison to the main effect of genotype for LL_Lmax
(Table 1). Notably, the patterns of plasticity were similar for LL
and LW parameters, e.g., the effect of genotype for both LL_r and
LW_r is only significant in the two environmental interactions and
iD and d both show similarly large effects of the two and three-way
interactions involving year. In sum, the results suggest that the
trajectory of leaf growth (estimated from iD, d and r) may be mod-
ulated by inter-annual environmental variation, but that the final
size of leaves (estimated from Lmax) is less so.

We detected significant genetic variation among genotypes for all
spectroradiometric indices except ari2 (which was marginally signifi-
cant, P, 0.01) and cri. We found no evidence for phenotypic plasticity
for population mean trait values for any of the indices or R:FR ratio,
because the main effects of treatment and year were always non-
significant (Table 2). However, we found evidence for genetic var-
iation in phenotypic plasticity across density treatments for mcari,
sipi2, tcari, and psri as well as across years for npci. There were no
significant three-way interactions of genotype · year · treatment.

Comparison of QTL mapping using Frequentist vs.
Bayesian trait estimation
Toassess the effectivenessof Frequentist (least squareorLS) vs. Bayesian
procedures in estimating FVT, we mapped 2012 FVT parameters using
genotypic values arising from LS (BAKER et al. 2015) and Bayesian FVT

estimation procedures, the same map, and the same mapping proce-
dures as previously described. Bayesian FVT estimation outperformed
LS FVT modeling for all metrics considered. Bayesian trait estimation
yielded 33 QTL compared to 26 identified via LS approaches. On
average, Bayesian QTL tended to have greater LOD scores than QTL
mapped for LS-estimated traits (4.53 vs. 4.25, respectively; P = 0.065)
and tended to explained a greater percent variance (16.0% vs. 15.8%,
respectively; P = 0.067) based on a Wilcox rank-order tests. Bayesian
and LS FVT modeling often identified the same QTL, based on over-
lapping confidence intervals (14 QTL). However, each method also
identified unique QTL (with non-overlapping confidence intervals).
Bayesian modeling yielded 19 unique QTL (File S3).

Additive QTL: Having compared the mapping results under the two
trait estimationprocedures,weproceededwithanalysesofQTLbasedon
Bayesian trait estimation. We detected 96 additive QTL across seven of
the ten B. rapa chromosomes with no QTL detected on chromosomes
four, five and eight (Figure 1 and File S3). However, because many of
the 1.5 LOD support limits for individual QTL overlap, an alternative
interpretation is that we identified as few as 14 highly pleiotropic QTL.
Individual QTL had LOD scores of between 3.12 and 10 representing
between 8.07 (UNLL_iD11) and 32.1% (UNLW_d12) of the genotypic
variation. Consistent with greater genetic variances for 2011 compared
to 2012 leaf FVT traits (Table 1), we detected more QTL for the
2012 than 2011 field seasons (41 vs. 15).

The genetic architecture underlying LL and LW FVT is similar as
demonstrated by colocalization of many LL and LW FVT QTL. For
instance, QTL jointly affect Lmax for leaf length and width (bottom of
chromosome 1, middle of chromosome 2, middle of chromosome 6) as
well as d or iD for leaf length and width (middle of chromosome 2,
middle of chromosome 3, and top and bottom of chromosome 10;
Figure 1 and File S3). QTL frequently colocalized across density treat-
ments, that is, a QTL affecting an LL parameter in the CR treatment
tended to also have a significant additive effect in the UN treatment
(e.g., for Lmax UN and CR QTL colocalize in the middle of chromo-
somes 3 and 6, bottom of chromosome 7 and the top of chromosome
10; Figure 1 and File S3).

n Table 1 Block (nested within the interaction of Year and Treatment), treatment (treat), year, genotype, and their interactive effects in
Brassica rapa inbred lines (RILs)

Trait
Model

t-value (df)

Random Effects – Chi Square value (degrees of freedom)

Block (Treat ·
Year) Treat Year Geno-type Treat· Year

Geno-type ·
Treat

Geno-type ·
Year

Geno-type ·
Treat · Year

LL_r 5.63 (1.1) 112 (2) 2.23 (1) 6.75 (1) 0.03 (1) 0.00 (1) 1.68 (1) 34.3 (2) 95.7 (1)
. ��� NS �� NS NS NS ��� ���

LL_Lmax 12.98 (1.2) 154 (2) 0.97 (1) 4.03 (1) 89.5 (1) 0.00 (1) 3.48 (1) 3.98 (1) 14.7 (1)
� ��� NS � ��� NS . � ���

LL_iD 6.45 (1.2) 94.83 (2) 1.37 (1) 8.80 (1) 28.17 (1) 0.00 (1) 0.00 (1) 74.5 (1) 11.61 (1)
. ��� NS �� ��� NS NS ��� ���

LL_d 30.73 (2.0) 107.66 (2) 1.79 (1) 1.73 (1) 16.03 (1) 0.00 (1) 0.15 (1) 39.26 (1) 29.06 (1)
��� ��� NS NS ��� NS NS ��� ���

LW_r 4.75 (1.5) 71.54 (2) 1.76 (1) 5.31 (1) 4.87 (1) 1.34 (1) 4.18 (1) 21.69 (1) 121.91 (1)
. ��� NS � � NS � ��� ���

LW_Lmax 13.34 (1.9) 95.0 (2) 1.84 (1) 2.51 (1) 118.0 (1) 0.00 (1) 10.5 (1) 7.93 (1) 5.26 (1)
�� ��� NS NS ��� NS �� �� �

LW_iD 5.63 (1.3) 59.8 (2) 1.25 (1) 9.61 (1) 25.8 (1) 0.00 (1) 0.64 (1) 97.4 (1) 13.4 (1)
. ��� NS �� ��� NS NS ��� ���

LW_d 24.47 (2.0) 58.82 (2) 2.71 (1) 2.53 (1) 20.56 (2) 0.00 (1) 1.39 (1) 46.66 (1) 41.75 (1)
�� ��� . NS ��� NS NS ��� ���

Signif. codes: 0 ‘���’ 0.001 ‘��’ 0.01 ‘�’ 0.05 ‘.’ 0.1 ‘ ’ 1.
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QTL for spectroradiometric indices often formed clusters within the
genome (e.g., QTL on the top of chromosomes 1 and middle of chro-
mosome 9). QTL for spectroradiometric data also colocalize with Lmax
FVT QTL (e.g., UNLW_Lmax12, CRLW_Lmax12, UNLW_Lmax11,
and UNLL_Lmax11 with mtci, pri1, sipi2, psri, pri2, wi, and ari1 on
chromosome 1). Spectroradiometric indices, however, rarely colocalize
with FVT parameters describing leaf growth rates or duration (for an
exception, see mtci, pri1, ari1, RFR, and wi on chromosome 3, which
co-localize with multiple estimates of duration; Figure 1).

QTL-by-environment interactions
Consistentwith the limited genotype· treatment interactions,we foundno
significant QTL · density treatment effects for FVT parameters describing
leaf development. An additional field season worth of data allowed us to
analyze QTL · year andQTL · treatment · year interactions for leaf FVT
parameters. Consistent with the highly significant genotype · year inter-
actions (Table 1), multiple QTL underlying leaf growth rates (r), durations
(d), and inflection sizes (iD) exhibited year · QTL interactions (Table 3).
By contrast, FVT estimating final leaf sizes (Lmax) did not exhibit any
significant QTL · year interactions (Table 3).

For several spectroradiometric QTL, significant QTL · density treat-
ment (2011 only) and QTL · year (uncrowded treatment only) effects
were detected (Table 3). Three-way interactions for spectroradiometric
traits and environmental variables were not tested because spectroradio-
metric data were only collected on both treatments in one year.

Predictive modeling
We predicted leaf width growth dynamics (r and Lmax) for randomly
chosen genotypes grown in the uncrowded treatment in the 2012 field

season. We evaluated our predictions using two methods. First, we
compared our predictions to genotypic means estimated from the cor-
responding phenotypic values (BLUPs) using correlation analyses. Val-
ues of r and Lmax predicted from QTL-based genotypic models were
significantly genetically correlated with observed trait means for UN
2012 LW_r (r = 0.26, df = 94, P = 0.01) and UN 2012 LW_Lmax (r =
0.61, df = 94, P= 3.9e-11). The relatively low correlation value for LW_r
likely reflects the fact that we detected fewer QTL for LW_r and there-
fore our predicted values for LW_r were less precise than those for
Lmax. Second, we asked whether our estimated predictions fell within
the credible envelopes surrounding replicate-level phenotypic data.
Predicted LW_r and LW_Lmax fell within the yellow credible envelope
87% and 85% of the time, respectively, and these predictions were
considered successful (Figure 2 & File S4). For both r and Lmax, our
success rates for prediction were significantly greater than chance (i.e.,
50%; Z = 3.29, P = 5e-04). Predicted values of r and Lmax fell within the
green credible envelope for predicted future phenotypes for a given
genotype grown in the same conditions (Figure 2) 97% and 100% of
the time, respectively, and these were considered marginally successful.

We asked whether our models based on UN QTL could predict
phenotypes expressed across density environments, given the similarity
in genetic architecture between the UN and CR treatments (lack of
QTL · E in 2012; Table 3). Predicted values of LW_rwere uncorrelated
with CR observed trait means of r (r = 0.16, df = 94, P = 0.1205), but
predicted values of LW_Lmax were significantly correlated with ob-
served CR Lmaxmeans (r = 0.58, df = 94, P = 4.19e-10).We considered
predictions across the density treatments successful based on less strin-
gent criteria than within a single environment. Specifically, we used the
wider green credible intervals. When evaluating our predictions of r

n Table 2 Fixed and random effects for spectroradiometric data. Note that there is no data from 2011 for CR spectral indices

Trait
Model

t-value (df)

Random Effects – Chi Square value (degrees of freedom)

Block (Treat ·
Year) Treat Year Geno-type Treat · Year

Treat ·
Geno-type

Geno-type ·
Year

Treat · Year ·
Genotype

mcari1 3.49 (1.9) 47.9 (2) 0.63 (2) 0.94 (1) 17.6 (1) 0.00 (1) 6.58 (1) 0.00 (1) 0.00 (1)
. ��� NS NS ��� NS � NS NS

mcari2 3.70 (1.2) 89.6 (2) 0.34 (1) 1.85 (1) 33.7 (1) 0.00 (1) 2.23 (1) 0.00 (1) 0.00 (1)
��� NS NS ��� NS NS NS NS

Mtci 6.67 (1.0) 555.0 (2) 0.00 (1) 3.31 (2) 17.5 (1) 0.00 (1) 0.88 (1) 3.13 (1) 0.00 (1)
. ��� NS . ��� NS NS . NS

sipi2 9.57 (1.1) 42.2 (2) 0.00 (1) 2.19 (1) 10.29 (1) 0.00 (1) 9.61 (1) 0.00 (1) 0.00 (1)
. ��� NS NS �� NS �� NS NS

Tcari 4.78 (1.6) 21.2 (2) 0.47 (1) 1.15 (1) 8.07 (1) 0.00 (1) 5.37 (1) 0.00 (1) 0.00 (1)
. ��� NS NS �� NS � NS NS

ari1 2.90 (1.1) 299.0 (2) 0.13 (1) 2.19 (1) 47.8 (1) 0.00 (1) 0.00 (1) 0.24 (1) 2.50 (1)
NS ��� NS NS ��� NS NS NS NS

ari2 212.00 (1.0) 339.0 (2) 0.4 (1) 0.26 (1) 3.0 (1) 0.00 (1) 0.00 (1) 0.00 (1) 0.07 (1)
� ��� NS NS . NS NS NS NS

Cri 5.00 (1.5) 329.0 (2) 0.38 (1) 1.06 (1) 0.00 (1) 0.00 (1) 0.01 (1) 0.55 (1) 0.00 (1)
. ��� NS NS NS NS NS NS NS

Npci 3.54 (1.1) 261.6 (2) 0.13 (1) 2.65 (1) 19.1 (1) 0.00 (1) 0.00 (1) 4.11 (1) 0.49 (1)
NS ��� NS NS ��� NS NS � NS

pri2 1.70 (1.2) 503.0 (2) 0.26 (1) 1.75 (1) 47.1 (1) 0.00 (1) 1.71 (1) 1.57 (1) 0.12 (1)
NS ��� NS NS ��� NS NS NS NS

Psri 1.81 (1.1) 2.65 (2) 0.12 (1) 2.36 (1) 28.3 (1) 0.00 (1) 5.22 (1) 3.41 (1) 0.00 (1)
NS ��� NS NS ��� NS � . NS

Wi 17.6 (1.3) 614.8 (2) 0.24 (1) 1.92 (1) 13.93 (1) 0.00 (1) 0.22 (1) 0.00 (1) 1.27 (1)
� ��� NS NS ��� NS NS NS NS

RFR 3.26 (1.0) NS 442.0 (2) 0.07 (1) 2.58 (1) 15.07 (1) 0.0 (1) 1.49 (1) 0.0 (1) 0.83 (1)
��� NS NS ��� NS NS NS NS

Signif. codes: 0 ‘���’ 0.001 ‘��’ 0.01 ‘�’ 0.05 ‘.’ 0.1 ‘ ’ 1.
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and Lmax based on credible envelopes, our predictions were successful
100% and 98% of the time, respectively. Our successful prediction rates
were significantly greater than chance (0.50) for LW_r (Z = 4.9, P ,
0.0003) and LW_Lmax (Z = 2.5,P = 0.0052). The high rate of successful
predictions despite lack of genetic correlation for LW_r is likely because
the credible envelopes are generated from distributions based on ob-
served phenotypic data whereas the correlations are based solely on
means of predicted values vs. observed phenotypes.

DISCUSSION
Predicting phenotypes based on genotypes is a central objective of evolu-
tionary developmental biology and a key component of breeding programs
(MOCZEK et al. 2015). However, predictive models require understanding
the genetic architecture of phenotypes throughout ontogeny because the
trait of interest may be influenced by different combinations of genetic
and environmental factors at different times during growth and develop-
ment (BENJAMINI AND HOCHBERG 1995; BENJAMINI AND YEKUTIELI 2001).
Quantifying growth trajectories is also important because selection
may act throughout ontogeny rather than on final phenotypes alone
(DOBZHANSKY 1956; MOOSE AND MUMM 2008; BAKER et al. 2015). Final
phenotypes may also be contingent upon prior environments and devel-
opmental events (DIGGLE 1997; WEINIG AND DELPH 2001; DECHAINE et al.
2014). To predict growth phenotypes, we explored the genetic basis and
environmental dependencies (plasticity) of non-linear leaf length and
width growth trajectories utilizing mathematical modeling to fit logistic
growth curves to ontogenetic data in a population of Brassica rapa RILs.
We evaluated the effectiveness of Bayesian vs. frequentist approaches to
Function-Valued Trait (FVT) estimation by mapping QTL for FVT pa-
rameters. Our “parameters as data” approach to FVTmodeling allowed us
to detect differences in the genetic architecture and environmental sensi-
tivities among growth parameters (i.g. rates vs. durations vs. final sizes;
JAFFRÉZIC AND PLETCHER 2000; KINGSOLVER et al. 2001; WU AND LIN 2006;
STINCHCOMBE et al. 2010; BAKER et al. 2015; JIANG et al. 2015; ZHANG et al.
2017). Notably, although growth parameters (r, Lmax, d, iD) showed
different genetic architectures, the genetic basis of any single parameter
was very similar between leaf length andwidth. Finally, we built and tested
QTL-basedmodels for predicting growth phenotypes fromgenotypic data.

Phenotypic plasticity of leaf FVT
Environmental inputs can have profound influences on phenotypic
expression. Understanding how genotypes plastically respond to

theenvironmentover thecourseofdevelopment isafirst step indeveloping
cultivars that are optimally suited to their growth conditions (KANG 1997).
In our study, spectroradiometric indices did not often express phenotypic
plasticity in response to either density or interannual microclimatic var-
iation (i.e., year; Table 3). For leaf FVT, the plastic responses to interannual
microclimatic variation were much more pronounced than responses to
density. The main effect of crowding was never significant for any leaf
FVT, while plasticity to year was often significant. Additionally, we iden-
tified genetic variation for phenotypic plasticity (that is, changes in rank-
order genotypic values and variances) among all leaf FVT (Tables 1),
indicating that different genotypes respond to inter-annual variation in
different ways. However, the magnitude of the genotype-by-environment
response was several times larger for growth parameters (r, d, and iD)
compared to final size (Lmax), indicating that ontogenetic aspects of leaf
size (for both length and width) are more plastic than final sizes (Table 1).

Bayesian vs. frequentists Function Valued
Trait approaches
To investigate the genomic architecture underlying leaf FVT across
environments, we mapped QTL for FVT and asked whether Bayesian
approaches to FVTmodeling and trait estimation resulted in improved
mapping compared to frequentist (least squares) approaches (Baker
et al., 2015). When comparing mapping results from Bayesian and
frequentist approaches for 2012 data, Bayesian routines yielded higher
estimates of FVT trait heritability (BAKER et al. 2018). In side-by-side
comparisons in the current study, parameters extracted from Bayesian
FVT models mapped a greater number of QTL than those estimated
from frequentist FVT models (33 vs. 26), had marginally higher LOD
scores (P = 0.065) and tended to explain a larger proportion of pheno-
typic variance (P = 0.067). We attribute these improvements in QTL
detection and resolution to the fact that hierarchical Bayesian models
extract global information more efficiently from the data and reduce
error propagation compared to frequentist approaches (CHARMET 2000;
BAKER et al. 2018) thereby improving trait estimation and phenotype-
genotype association tests that are the basis of QTL mapping.

Genetic architecture of spectroradiometric indices and
leaf length and width FVT
Few studies have compared the genetic architecture of spectror-
adiometric reflectance patterns, developmental dynamics, and final

Figure 2 Predicted and measured phenotypes for genotype 206 in (A) Uncrowded and (B) Crowded treatment during the 2012 growing season.
Colored circles represent measured phenotypic data from multiple individuals of genotype 206. The black line is a logistic growth curve fitted to
the genotypic mean using Bayesian routines. Any new observation for an individual from genotype 206 grown in the same conditions is predicted
to fall within the green 95% credible envelope. Our predicted phenotype (based on QTL data and incorporated into the logistic functions from
Equation 3 and 4; red growth curve) falls within the yellow 95% credible envelope for the fitted logistic growth curve.
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phenotypes. Our QTL analysis of spectroradiometric indices and a R:
FR ratio indicates that these indices are largely genetically distinct from
FVT parameters of leaf development. When QTL for spectroradio-
metric indicesdocolocalizewithQTLforFVTparameters, these tend to
be QTL for final sizes rather than parameters that describe growth
dynamics (e.g., chromosome 1 in Figure 1), indicating that single time
point spectral indices may serve as suitable proxies for final leaf sizes,
but not growth dynamics. With regard to leaf length and width FVT,
functional annotation of individual genes have identified loci that
specifically affect leaf length and have little to no effect on leaf width
(TSUKAYA 2005). However, quantitative genetic studies often find that
LL and LW are tightly genetically correlated and may be pleiotropi-
cally regulated (FUJITA et al. 2009; BAKER et al. 2015; DROST et al. 2015).
Previously, we found that FVT parameters for leaf length and leaf
width (e.g., LW_r and LL_r; LW_d and LL_d) were highly genetically
correlated within an environment and showed similar plasticities
across environments. In addition to correlations of the same FVT
parameter between LL and LW, we found that different FVT param-
eters were moderately correlated (BAKER et al. 2015; BAKER et al. 2018).
Estimates of final sizes (Lmax) were genetically correlated with aspects
of growth such as rates (r) and duration (d); however, these correla-
tions were not perfect (Baker et al., 2015). Here, we found thatQTL for
Bayesian FVT parameters describing r and Lmax rarely colocalized
(see LW_r and LW_Lmax from 2012 on chromosome 3 (UN) and
2 (CR) for exceptions; Figure 1). Our results confirm previous studies
of the genetic architecture of leaf growth dynamics vs. final size (Baker
et al., 2015) and support the general hypothesis that leaf growth and
final size have different genetic architectures. The independent genetic
control of final size and growth dynamics implies that these may be
independently selected upon to increase a plant’s space occupancy or
light harvesting ability (reviewed inWU et al. 2004; WU AND LIN 2006).

Genetic and environmental interactions for leaf FVT
Within a single organ, environmental sensitivities may differ among
traits and across developmental time (WRIGHT AND MCCONNAUGHAY

2002; SUGIYAMA AND GOTOH 2010). Robust QTL-by-environment
detection is dependent upon large sample sizes and multiple
environments. In our RIL population of over 100 lines, we observed
QTL-by-environment interactions that corresponded with genotype-
by-environment interactions for leaf FVT (Compare Tables 1 and 3).
Specifically, we found no QTL-by-density treatment interactions.
Two traits (LW_iD and LW_r) had significant QTL-by-year interac-
tions, and these QTL-by-environment interactions likely contribute
to the population-level phenotypic plasticity exhibited by LW_iD and
LW_r in response to interannual environmental variation (year). We
also observed significant QTL-by-year interactions for QTL underly-
ing traits that did not exhibit phenotypic plasticity as assessed by the
main effect of year. For example, QTL-by-year interactions for growth
duration (d) likely underlie rank order differences in genotypic means
and changes in trait variances across growing seasons (compare Tables 1
and 3). We found strong evidence for QTL-by-environment interac-
tions for aspects of growth dynamics (rates, durations, and inflection
points), but not for final leaf sizes. Notably, the differing extent of
QTL-by-environment interactions among FVT parameters further
supports the hypothesis that leaf growth dynamics and final size have
independent genetic underpinnings.

Predicting phenotypes based on genotypes (QTL)
Reliably predicting phenotypes is important to understanding evolu-
tionary dynamics, selecting seed sources for ecological restoration, and
designingmolecular breeding programs. Predictions of fitness and yield
may be improved by incorporating information about plant growth
(ASSEFA et al. 2015) and physiology (AMELONG et al. 2015). However,

n Table 3 Significant QTL 3 Environment (density treatment and year) interactions based on Type III sums of squares. Note that for
spectral indices and RFR, there are no three-way interactions

Treat · QTL Year · QTL
Year · QTL ·
Treatment

Trait QTL marker F(Df) F(Df) F(Df)

LL_d A06x16894473 0.19 (1,464) 4.97 (1, 464) � 0.19 (1,464)
LL_iD A10x2471393 0.14 (1,464) 8.17 (1,464) � 0.14 (1,464)
LW_d A01x8348377 0.89 (2, 460) 3.72 (2,460) � 0.89 (2,460)

A03x17233425 0.87 (1,464) 6.19 (1,464) � 0.87 (1, 464)
A06x17027456 1.01(1,464) 6.41 (1,464) � 1.01 (1,464)

LW_iD A10x2471393 0.26 (1,464) 9.15 (1,464) �� 0.26 (1,464)
LW_r A02x12174045 0.24 (1,464) 9.66 (1,464) � 0.24 (1,464)

A02x966946 1.40 (2,464) 4.46 (2,464) � 1.40 (2,464)
mtci A03x356060 5.36 (1,234) � (�) 5.47 (1,239) �

A09x34851227 6.22 (1,234) � (�) 5.48 (1,239) �

npci A01x9511676 0.26 (1,234) 15.31 (1,239) �

A06x19335038 1.61 (1,234) 4.51 (1,329) �

pri1 A01x26649666 10.89 (1,234) �� 14.93 (1,238) ���

A01x9400632 31.54 (1,234) ��� 31.68 (1,239) ���

A03x10583907 8.66 (1,234) �� 12.01 (1,239) ���

A09x16619967 21.28 (1,234) ��� 27.65 (1,239) ���

sipi2 A01x9927004 14.72 (1,234) ��� 0.00 (1,238)
A09x16619967 8.55 (1,234) �� 5.94 (1,239) �

tcari A09x16619967 1.00 (1,234) 13.31 (1,239) ���

wi A01x8029418 3.19 (2,232) � 3.57 (2,237) �

A03x10583907 4.86 (1,234) � 7.22 (1,239) ��

A09x16619967 3.93 (1,234) � 2.75 (1,329)
RFR A03x15439617 14.47 (1,234) ��� 0.15 (1,239)

A09x16619967 5.78 (1,234) � 4.00 (1,239) �

Signif. codes: 0 ‘���’ 0.001 ‘��’ 0.01 ‘�’ 0.05 ‘.’ 0.1 ‘ ’ 1.
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most models constructed to predict phenotypes based on genomic data
focus on single-time-points such as seedling traits (COOPER et al. 2005;
XU et al. 2011), disease resistance (PACE et al. 2015), or components of
yield (YIN et al. 2000; BAO et al. 2015). Models that do incorporate
ontogeny tend to treat sequential time points independently (e.g.,
REYMOND et al. 2003) rather than incorporating interdependence of
ontogenetic data via FVTmodels. Further, FVT modeling can describe
non-linear growth curves that capture the potentially independent as-
pects of exponential and asymptotic growth phases. We developed
models to predict complete growth curves based on QTL underlying
FVT parameters (r and Lmax; Equations 6 & 7). In the same (un-
crowded) environment, FVT parameters predicted based on genotypic
information were significantly correlated with independently observed
FVT phenotypes and components of our predicted logistic growth
curves fell within 95% credible intervals for the actual phenotypic data
85% of the time. These success rates are significantly greater than
chance and equivalent to predictivemodels for grain yield that integrate
crop growth models and whole genome information (TECHNOW et al.
2015).

We also askedwhether ourmodels could provide accurate predictions
across environments. Consistent with the lack of significantmain effect of
density treatment and QTL-by-density interactions, our models success-
fully predicted phenotypes in 2012 crowded conditions 98-100% of the
time. As for other complex traits, future work on predictive modeling for
multi-locus non-linear growth traits should focus on expanding beyond
additive models to include interactive effects such as epistasis and to
explicitly incorporate environmental parameters to account for pheno-
typic plasticity and gene by environment interactions (YIN et al. 2004;
TARDIEU et al. 2005; CHENU et al. 2009; BUSTOS-KORTS et al. 2016).

Conclusions
Amajor goal in evolutionary biology and crop science is understanding
the connections between genotypes and phenotypes. Our Bayesian FVT
trait estimation approach to leaf growth isolates leaf developmental
genetic programsby factoringout endogenous influencesongrowthand
development such as genotype-specific photosynthetic capacities. We
detect differences in the environmental sensitivity among traits: the
strength of the plastic response was much stronger in growth traits
compared to final sizes. We also detect distinct genomic architectures
underlying different components of leaf growth curves. The Bayesian
approach to FVTmodeling provides superior QTL detection compared
to previous frequentist approaches. Together, our data indicate that leaf
growth dynamics and final sizes have different genomic architectures
and different patterns of environmental sensitivity. Genotypic models
effectively predicted FVT phenotypes, suggesting that comparatively
simpleQTLmodels can capture the non-linearity intrinsic to someFVT
in this species; elaboration of these models to include environmental
effects and expression data are a topic of ongoing research.
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