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Background: LGR5 is an important marker of intestinal stem cells and performs its vital functions at the cell membrane. Despite
the importance of LGR5 to both normal and cancer stem cell biology, it is not known how microenvironmental stress affects the
expression and subcellular distribution of the protein.

Methods: Nutrient stress was induced through glucose starvation. Glycosylation status was assessed using endoglycosidase or
tunicamycin treatment. Flow cytometry and confocal microscopy were used to assess subcellular distribution of LGR5.

Results: Glucose deprivation altered the glycosylation status of LGR5 resulting in reduced protein stability and cell surface
expression. Furthermore, inhibiting LGR5 glycosylation resulted in depleted surface expression and reduced localisation in the cis-
Golgi network.

Conclusions: Nutrient stress within a tumour microenvironment has the capacity to alter LGR5 protein stability and membrane
localisation through modulation of LGR5 glycosylation status. As LGR5 surface localisation is required for enhanced Wnt
signalling, this is the first report to show a mechanism by which the microenvironment could affect LGR5 function.

Leucine-rich repeat containing G-protein coupled receptor 5 (LGR5)
is a seven-transmembrane protein recently identified as a marker of
normal stem cells in several tissues including the intestine (Barker
et al, 2013). LGR5 functions in the modulation of Wnt/b-catenin
signalling, a vital pathway in stem cell biology and tissue homeostasis.
LGR5 binds extracellular R-spondins at the cell membrane (Carmon
et al, 2011; de Lau et al, 2011) and subsequently associates with Wnt
receptors to increase Wnt/b-catenin signalling (Glinka et al, 2011;
Carmon et al, 2012). Multiple studies have proposed that LGR5
identifies tumour-initiating cells, or promotes ‘stemness’ in colorectal

cancer (CRC) (Barker et al, 2009; Kemper et al, 2012; Kobayashi et al,
2012; Schepers et al, 2012; Hirsch et al, 2013). Further studies suggest
a pro-survival role in CRC cells, thus raising the potential of LGR5 as
a therapeutic target in CRC (Al-Kharusi et al, 2013; Hirsch et al, 2013;
Hsu et al, 2014). Nutrient deprivation occurs in a developing tumour
when the metabolic demand exceeds that suppliable by the local
vasculature (Vaupel et al, 1989). Such microenvironmental stresses
can force molecular adaptations which promote a survival rather than
proliferative response, resulting in clonal selection of a more
malignant phenotype (Yun et al, 2009; Roberts et al, 2011). Despite
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the importance of LGR5 to stem cell biology, little is known about
how expression and subcellular localisation are affected in micro-
environmental pressures, such as nutrient stress. In this study, we
show for the first time that LGR5 is glycosylated and that glucose
deprivation alters the glycosylation status of LGR5 affecting the
stability and subcellular localisation of the molecule.

MATERIALS AND METHODS

Cell lines and culture. The human colorectal adenoma-derived cell
line RG/C2 was derived in this laboratory and maintained as
described previously (Paraskeva et al, 1984, 1988; Williams et al,
1990). The LS174t-LGR5 cell line (double HA/FLAG tag) was a kind
gift from Hans Clevers (de Lau et al, 2011). All other colorectal cell
lines were obtained from the American Type Culture Collection and
maintained as previously described (Moore et al, 2009).

Cell treatments. Deglycosylation of cell lysates by Endoglycosi-
dase H (EndoH) and peptide N-glycosidase F (PNGaseF) was
performed as previously described (Molnar et al, 1995). For in vitro
inhibition of glycosylation, cells were treated with 0.1–10 mg ml� 1

tunicamycin (TMC; Sigma-Aldrich, Poole, UK) or the equivalent
volume of DMSO vehicle control at 37 1C for 24, 48 and 72 h. For
inhibition of protein synthesis, cells were treated with 10 mg ml� 1

cyclohexamide (Sigma), or the equivalent volume of water control,
for 0–3 h. Glucose starvation was performed as previously
described (Roberts et al, 2011).

Immunoblotting. Immunoblotting was performed as described
previously (Greenhough et al, 2010) using a previously validated
rabbit monoclonal LGR5 antibody (ab75850, Abcam, Cambridge,
UK) (Al-Kharusi et al, 2013).

Flow cytometry. For LGR5 surface staining, cells were immuno-
labelled with a previously validated primary rat anti-LGR5
antibody (4D11F8, Becton Dickinson, Oxford, UK) (Kemper
et al, 2012) followed by secondary labelling with phycoerythrin-
conjugated goat anti-rat IgG (BD). For total LGR5 staining, cells
were fixed in 2% paraformaldehyde and permeabilised using 0.1%
Triton X-100 prior to antibody addition as above. Multi-parameter
flow cytometric measurements were performed using FACSCanto
II cytometer (BD) in conjunction with FACS Diva software v8.0
(BD). 7AAD (BD) was used to assess cell viability and the
threshold for positive LGR5 staining was determined using the
appropriately matched isotype control antibody (BD). Post-
acquisition analyses were performed using FlowJo software
vX.0.6 (Tree Star Inc, Ashland, OR, USA).

Confocal laser scanning microscopy. Colorectal cancer cells
were grown on glass coverslips for 72 h prior to DMSO control or
TMC treatment. Treated cells were then stained for both total and
surface LGR5 as above (see ’Flow Cytometry’) except an Alexa488
goat anti-rat secondary antibody (Invitrogen, Paisley, UK) was
preferred. Cells were co-stained with sheep anti-Grasp65 (Jon
Lane, Bristol University) and Alexa647-conjugated anti-E-cad-
herin (cell membrane marker; BD) antibodies. Grasp65-stained
cells were detected using an Alexa594-conjugated donkey anti-
sheep secondary antibody (Invitrogen). All cells were counter-
stained with DAPI prior to mounting. Confocal laser scanning
microscopy was performed as previously described (Petherick
et al, 2013) and images were generated without any post-
acquisition manipulation using LAS AF v2.6.0 (Leica Micro-
systems, Milton Keynes, UK). Co-localisation quantification
analyses were performed using Volocity confocal software
v6.3.0 (Perkin-Elmer, Waltham, MA, USA).

Real-time polymerase chain reaction. Analysis of LGR5 mRNA
was performed as previously described (Al-Kharusi et al, 2013).

Statistics. All statistical analyses were performed using GraphPad
Prism v5.01 (GraphPad Software, Inc., San Diego, CA, USA).
Significance of difference was assessed using one-sample or
students t-test with significance defined at Po0.05.

RESULTS

To examine how tumour microenvironmental pressures such as
nutrient stress affect LGR5 expression, we placed CRC cells into
glucose-starved conditions. Following 16 h of glucose deprivation,
both LoVo and LS174t-LGR5 cells not only demonstrated
reduced expression of LGR5 but also exhibited a 10–20 kDa
lower molecular weight form of LGR5 (Figure 1A). Such protein
mobility shifts can be the result of heavy posttranslational
modifications such as glycosylation. Upon its initial characterisa-
tion, four consensus N-linked glycosylation sites were identified
in the ectodomain of LGR5 (Hsu et al, 1998). Furthermore,
using publicly available glycosylation site prediction software
(NetNGlyc 1.0 Server, Technical University of Denmark, http://
www.cbs.dtu.dk/services/NetNGlyc (Blom et al, 2004)), we
identified six potential glycosylation sites in the LGR5 amino
acid sequence, three of which had strong confidence in the
ectodomain. To formally explore the glycosylation status of
LGR5, we treated cell lysate from LGR5-expressing colorectal
tumour (CRT) cell lines with endoglycosidases that remove
specific types of glycosylation. While EndoH removes immature
forms only, PNGaseF removes all forms of N-linked glycosyla-
tion. A panel of CRT cell lines were selected representing various
stages of CRT progression including RG/C2 (adenoma), LS174t
(carcinoma), SW620 and LoVo (advanced metastatic carcinoma).
Treatment with either EndoH or PNGaseF resulted in a
10–20 kDa molecular weight reduction in the LGR5 protein
across all cell lines examined indicating LGR5 is glycosylated
(Figure 1B). Across all CRT cell lines, there remained a readily
detectable EndoH-resistant LGR5 protein at 99 kDa confirming
that both mature and immature glycosylated LGR5 protein are
abundant within CRT cells. This is unsurprising given the very
short half-life of LGR5 protein, which we estimated to be
approximately 1 h using cyclohexamide treatment (Figure 1C).
To examine the consequence of altered glycosylation status on
expression and subcellular distribution of LGR5, it was important
to be able to inhibit LGR5 glycosylation in living cells. To achieve
this, we treated cells with an escalating dose of TMC, which
broadly inhibits all N-linked glycosylation. As observed in
Figure 1D, LGR5 glycosylation was optimally inhibited at
1 mg ml� 1 TMC in most cell lines except for SW620 cells, which
required a higher concentration of 5 mg ml� 1. This is evidenced
by the 10–20 kDa loss in LGR5 molecular weight and reduced
protein stability as previously observed with glucose deprivation
(Figure 1D). We confirmed the above observations were likely
due to a posttranslational modification of LGR5 by showing that
LGR5 mRNA expression was not significantly affected by glucose
starvation or TMC treatment (Figure 1E).

To examine the significance of LGR5 glycosylation status for
its subcellular distribution within tumour cells, we treated CRT
cell lines with TMC and assessed both total and cell surface LGR5
level by flow cytometry. TMC treatment significantly reduced
total LGR5 levels in LoVo and LS174t-LGR5 cell lines by
67.7%±12.4% and 45.6%±15.2%, respectively (Figure 2A).
In comparison, cell surface LGR5 protein level was highly
significantly diminished with TMC treatment in both cell lines.
Disproportional to total LGR5 level, cell surface LGR5
was reduced by 98.7%±1.9% and 90.8%±6.6% for LoVo and
LS174t-LGR5 cell lines, respectively (Figure 2B). To confirm these
findings, we used confocal laser scanning microscopy which
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demonstrated that LGR5 membrane expression was dramatically
reduced in both TMC-treated LoVo and LS174t-LGR5 cells
(Figure 2C and D, respectively). Detection of E-cadherin in LoVo
cells served not only as a membrane marker, but also
demonstrated that TMC treatment does not universally deplete
cell surface expression of all glycosylated membrane proteins such
as E-cadherin (Figure 2E) (Zhao et al, 2008). Detection of
E-cadherin in the LS174t cell line was not possible in keeping
with a previously reported CDH1 mutation (Efstathiou et al,
1999). To confirm that TMC treatment affected LGR5 in a similar
manner to nutrient stress, we repeated our flow cytometry
experiments in Figure 2A but with glucose starvation and also
observed significantly depleted LGR5 surface expression
(Figure 2F). We also confirmed that 16-h glucose deprivation
did not alter cell viability (Figure 2G).

Following initial glycosylation events in the endoplasmic
reticulum, newly synthesised proteins are transported to the cis-
Golgi network where further glycosylation trafficks the protein to
the appropriate subcellular compartment. Using Grasp65 as a

marker of the cis-Golgi network (Cheng et al, 2010), we examined
LGR5 localisation after inhibition of glycosylation. For both
DMSO control-treated LoVo and LS174t-LGR5 cells, intracellular
LGR5 staining presented mainly as large intracellular puncta
within the cytoplasm and perinuclear regions (Figure 3A and B,
respectively) as previously reported (Kemper et al, 2012;
Snyder et al, 2013). A substantial proportion of the LGR5 signal
co-localised with Grasp65 as indicated by areas of white
co-fluorescence. In TMC-treated LoVo cells, the overall LGR5
signal was clearly reduced as previously observed in flow cytometry
and immunoblot experiments, again suggesting reduced overall
protein stability. However, the remaining LGR5 signal appeared
more dispersed within the cytoplasm with several Grasp65-positive
regions devoid of any LGR5 co-staining (Figure 3A and B).
Co-localisation quantification analyses using both Pearson’s
Correlation Coefficient and Mander’s Colocalisation Coefficient
(Manders et al, 1993) confirmed these observations. For both
LoVo and LS174t-LGR5 cells, there existed a strong positive
correlation between LGR5 and Grasp65 signal which was
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Figure 1. The glycosylation status of the LGR5 protein can be modified by glucose starvation and in vitro treatments. (A) Immunoblots showing
LGR5 protein migration patterns from LoVo and LS174t-LGR5 cells cultured in glucose containing (þ ) and non-glucose containing (� ) culture
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conformation from CRT cell lines treated for 24 h with increasing doses of TMC. (E) Quantitative real-time PCR analysis of LGR5 mRNA in LoVo and
LS174t-LGR5 cells following 16 h of glucose starvation (GS) or 24 h TMC treatment. Data represent mean±1 s.d., n¼ 3. Statistical significance is
denoted by **Po0.01, ***Po0.001 and NS¼ not significant as analysed by one-sample t-test.
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significantly weakened upon TMC treatment in both cell lines
(Figure 3C and D, respectively). These data indicate that the
absence of N-linked glycosylation results in a lower proportion of

LGR5 localised within the cis-Golgi network, consistent with the
notion that incorrectly folded proteins are not trafficked to the
Golgi.

= Autofluor. Total

Total

Cell surface

Cell surface
Cell surface

= Isotype
= LGR5 (Cont)
= LGR5 (TMC)

LoVo

LoVo

LGR5 LGR5

LGR5 LGR5E-Cad DAPI Phase DAPI Phase

Cont

TMC

Cont

TMC

LS174t-LGR5

LoVo

LS174t-LGR5

LGR5

N
or

m
al

is
ed

 e
ve

nt
s

LS174t-LGR5

N
or

m
al

is
ed

 e
ve

nt
s

0 0.00
Cont TMC

Cont TMC

LG
R

5 
fo

ld
 c

ha
ng

e
LG

R
5 

fo
ld

 c
ha

ng
e

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

**

**

0

20

102 103 104 105 0 102 103 104 105

0 102 103 104 105

0 102 103 104 105

0 102 103 104 105

0 102 103 104 105

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0.00
Cont TMC

Cont TMC

LG
R

5 
fo

ld
 c

ha
ng

e

0.25

0.50

0.75

1.00

0.00

LG
R

5 
fo

ld
 c

ha
ng

e

0.25

0.50

0.75

1.00

***

***

15

E
-C

ad
 m

ea
n 

flu
or

. 20
NS

10

Cont TMC

5

0

15

E
-C

ad
 m

ea
n 

flu
or

. 20
NS

10

Cont TMC

5

0

0

25

Lo
Vo 

co
nt

Lo
Vo 

GS

LS
-L

GR5 
co

nt

LS
-L

GR5 
GS

50

75

%
 V

ia
bi

lit
y

100

0

20

40

60

80

100

0.00
Cont

***

***

GS

Cont GS

LG
R

5 
fo

ld
 c

ha
ng

e
LG

R
5 

fo
ld

 c
ha

ng
e

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0

20

40

60

80

100

10µm

10µm

N
or

m
al

is
ed

 e
ve

nt
s

25µm

25µm

Figure 2. Inhibiting glycosylation of LGR5 results in severely depleted cell surface expression. Representative flow cytometric histograms and
associated summary graphs demonstrating the (A) total or (B) cell surface expression of LGR5 in response to 24 h DMSO control (Cont) or
1 mg ml� 1 TMC treatment. Representative confocal laser scanning microscopy Z-sections showing LGR5 cell surface expression in (C) LoVo and (D)
LS174t-LGR5 cells following 24 h DMSO control (Cont) or 1mg ml� 1 TMC treatment. LGR5 (green), E-cadherin (E-Cad; red), DAPI (blue) and Phase
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Representative flow cytometric histograms and associated summary graphs showing the cell surface expression of LGR5 in LoVo and LS174t-LGR5
cells following 16 h glucose starvation (GS). (G) Flow cytometric assessment of percentage viability in control and glucose-starved cultures (480%
as deduced from 7AAD dye). For all graphs, data represent mean±1 s.d., n¼3. Statistical significance is denoted by **Po0.01, ***Po0.001 and
NS¼not significant as analysed by one-sample t-test.
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DISCUSSION

This study shows for the first time that LGR5 is glycosylated and
importantly that nutrient stress can alter the glycosylation status
of LGR5 resulting in reduced protein stability and membrane
localisation in CRT cells. The main LGR5 stem cell function
described to date is in the regulation of Wnt signalling through
capturing of R-Spondins and complexing with the Wnt receptors
Frz and LRP5/6 (Carmon et al, 2011; de Lau et al, 2011).
Therefore, glycosylation represents a critical posttranslational
modification allowing LGR5 to perform these, and other potential
uncharacterised functions at the membrane. It is conceivable that
a tumour-initiating cell, within a glucose-deprived microenviron-
ment, could obtain a competitive advantage through reduced
LGR5 surface levels, by directing the cell into a pro-survival mode
rather than the proliferative response associated with Wnt
signalling promotion. This study also has implications for

targeting cancer stem cells through surface markers, such as
LGR5, because surface expression is significantly reduced by
fluctuating tumour microenvironmental pressures such as
nutrient stress.
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