ISSN 1600-5368

Bis(*N*-butyl-*N*-ethyldithiocarbamato- $\kappa^2 S, S'$)nickel(II)

Wan Nur Shazwani Wan Juhari,^a Ibrahim Baba,^a Yang Farina^a and Seik Weng Ng^b*

^aSchool of Chemical Sciences, Universiti Kebangbaan Malaysia, 43600 Bangi, Malaysia, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Received 21 February 2010; accepted 22 February 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.034; wR factor = 0.098; data-to-parameter ratio = 23.2.

The dithiocarbamate anions in the title compound, $[Ni(C_7H_{14}NS_2)_2]$, chelate to the Ni^{II} atom, which is fourcoordinate in a square-planar geometry. The Ni^{II} atom lies on a center of inversion.

Related literature

For nickel bis(diethyldithiocarbamate) and nickel bis(dibutyldithiocarbamate), see: Bonamico *et al.* (1965); Khan *et al.* (1987); Lokaj *et al.* (1984).

Experimental

Crystal data [Ni(C₇H₁₄NS₂)₂]

 $M_r = 411.33$

```
Monoclinic, P2_1/n

a = 8.5641 (9) Å

b = 8.6316 (9) Å

c = 13.6047 (14) Å

\beta = 94.753 (2)°

V = 1002.23 (18) Å<sup>3</sup>
```

Data collection

Bruker SMART APEX diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.724, T_{max} = 0.934$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.034$ 6 restraints $wR(F^2) = 0.098$ H-atom parameters constrainedS = 1.03 $\Delta \rho_{max} = 0.38 \text{ e } \text{\AA}^{-3}$ 2295 reflections $\Delta \rho_{min} = -0.21 \text{ e } \text{\AA}^{-3}$ 99 parameters99 parameters

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We thank Universiti Kebangsaan Malaysia (UKM-GUP-NBT-08-27-111 and 06-01-02-SF0539) and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2734).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bonamico, M., Dessy, G., Mariani, C., Vaciago, A. & Zambonelli, L. (1965). Acta Cryst. 19, 619–626.

Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Khan, M. N. I., Fackler, J. P., Murray, H. H., Heinrich, D. D. & Campana, C. (1987). Acta Cryst. C43, 1917–1919.
- Lokaj, J., Vrabel, V. & Kello, E. (1984). Chem. Zvesti, 38, 313-317.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). publCIF. In preparation.

Mo $K\alpha$ radiation

 $0.25 \times 0.25 \times 0.05 \text{ mm}$

9338 measured reflections

2295 independent reflections

1628 reflections with $I > 2\sigma(I)$

 $\mu = 1.38 \text{ mm}^-$

T = 293 K

 $R_{\rm int} = 0.029$

Z = 2

Acta Cryst. (2010). E66, m339 [doi:10.1107/S1600536810006677]

Bis(*N*-butyl-*N*-ethyldithiocarbamato- $\kappa^2 S, S'$)nickel(II)

W. N. S. Wan Juhari, I. Baba, Y. Farina and S. W. Ng

Experimental

Nickel(II) chloride (10 mmol), butylethylamine (10 mmol) and carbon disulfide (10 mmol) were reacted in ethanol (50 ml) at 277 K to produce a brown solid. The mixture was stirred for an hour. The solid was collected and recrystallized from ethanol.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.96 to 0.97 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C).

Figures

Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of $Ni(C_7H_{14}NS_2)_2$ at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Bis(*N*-butyl-*N*-ethyldithiocarbamato- $\kappa^2 S$, S^1)nickel(II)

Crystal data	
$[Ni(C_7H_{14}NS_2)_2]$	F(000) = 436
$M_r = 411.33$	$D_{\rm x} = 1.363 {\rm ~Mg~m^{-3}}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 2307 reflections
a = 8.5641 (9) Å	$\theta = 2.4 - 24.6^{\circ}$
b = 8.6316 (9) Å	$\mu = 1.38 \text{ mm}^{-1}$
c = 13.6047 (14) Å	T = 293 K
$\beta = 94.753 \ (2)^{\circ}$	Plate, brown
$V = 1002.23 (18) \text{ Å}^3$	$0.25\times0.25\times0.05~mm$
<i>Z</i> = 2	
Data collection	
Bruker SMART APEX diffractometer	2295 independent reflections

Radiation source: fine-focus sealed tube 1628 reflections with $I > 2\sigma(I)$

graphite	$R_{\rm int} = 0.029$
ω scans	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 2.7^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -10 \rightarrow 11$
$T_{\min} = 0.724, T_{\max} = 0.934$	$k = -11 \rightarrow 11$
9338 measured reflections	$l = -17 \rightarrow 15$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.034$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.098$	H-atom parameters constrained
<i>S</i> = 1.03	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0469P)^{2} + 0.1755P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
2295 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
99 parameters	$\Delta \rho_{max} = 0.38 \text{ e} \text{ Å}^{-3}$
6 restraints	$\Delta \rho_{min} = -0.21 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
Ni1	0.5000	0.5000	0.5000	0.05331 (16)
S1	0.75597 (8)	0.48176 (8)	0.53089 (5)	0.0629 (2)
S2	0.52687 (8)	0.56847 (9)	0.65651 (5)	0.0631 (2)
N1	0.8339 (3)	0.5601 (3)	0.72015 (17)	0.0647 (6)
C1	0.7236 (3)	0.5403 (3)	0.64766 (19)	0.0564 (6)
C2	0.7964 (3)	0.6124 (3)	0.81795 (18)	0.0658 (7)
H2A	0.7008	0.6732	0.8111	0.079*
H2B	0.8799	0.6791	0.8456	0.079*
C3	0.7752 (4)	0.4796 (3)	0.8887 (2)	0.0746 (8)
H3A	0.6875	0.4163	0.8630	0.090*
H3B	0.8684	0.4154	0.8928	0.090*
C4	0.7460 (4)	0.5353 (4)	0.9904 (2)	0.0836 (9)
H4A	0.6554	0.6032	0.9856	0.100*
H4B	0.8355	0.5955	1.0167	0.100*
C5	0.7180 (4)	0.4044 (4)	1.0615 (2)	0.1014 (11)
H5A	0.6962	0.4470	1.1241	0.152*
H5B	0.8098	0.3403	1.0699	0.152*
H5C	0.6305	0.3433	1.0356	0.152*
C6	1.0008 (4)	0.5276 (4)	0.7074 (2)	0.0805 (9)
H6A	1.0079	0.4559	0.6530	0.097*
H6B	1.0490	0.4791	0.7667	0.097*
C7	1.0871 (4)	0.6734 (4)	0.6871 (2)	0.0951 (10)
H7A	1.1957	0.6500	0.6818	0.143*
H7B	1.0780	0.7453	0.7401	0.143*

H7C	1.0432	0.7183	0.626	55	0.143*	
Atomic displace	ment parameters	(\mathring{A}^2)				
	1711	L) ²²	1,33	1,12	1,13	L) ²³
Ni1	0 0586 (3)	0 0553 (3)	0 0464 (3)	-0.0031(2)	0.0063 (2)	-0.00089(19)
S1	0.0530(5)	0.0333(3)	0.0404(3)	0.0031(2)	0.0005(2)	-0.00089(1)
S1 S2	0.0028(4) 0.0589(4)	0.0785(5)	0.0526(4)	0.0015(3)	0.0095(3)	-0.0081(3)
52 N1	0.0596(13)	0.0780(14)	0.0520(4)	0.0000(3)	0.0070(3)	-0.0171(12)
C1	0.0629 (16)	0.0556 (14)	0.0572(15)	-0.0005(11)	0.0077(11)	-0.0052(11)
C2	0.0629(10)	0.0350(11)	0.0542(16)	0.0016 (13)	0.0023 (12)	-0.0198(13)
C3	0.0070(17)	0.0790(17)	0.0512(10) 0.0629(18)	0.0010 (13)	0.0029(15)	-0.0130(15)
C4	0.000(2)	0.000(2)	0.0621(10)	0.0055 (17)	0.0010(13) 0.0047(17)	-0.0136(17)
C5	0.000(2)	0.000(2)	0.0021(1))	0.0033(17)	0.0017(17)	0.0130(17)
C6	0.0653 (18)	0.109(3)	0.071(2)	0.001(2)	-0.002(2)	-0.0236(17)
C7	0.0055(10)	0.105(3) 0.125(3)	0.086(2)	0.0082(17)	0.0031(13)	-0.0250(17)
07	0.070 (2)	0.125 (5)	0.000 (2)	0.000 (2)	0.01/1 (17)	0.000 (2)
Geometric parar	neters (Å, °)					
Ni1—S1 ⁱ		2.2032 (8)	С3—	-H3B	0.97	00
Ni1—S1		2.2032 (8)	C4—	-C5	1.51	9 (4)
Ni1—S2		2.2034 (7)	C4—	-H4A	0.97	00
Ni1—S2 ⁱ		2.2034 (7)	C4—	-H4B	0.97	00
S1—C1		1.712 (3)	С5—	-H5A	0.96	00
S2—C1		1.716 (3)	С5—	-H5B	0.96	00
N1—C1		1.319 (3)	С5—	-H5C	0.96	00
N1—C2		1.466 (3)	С6—	-C7	1.49	7 (4)
N1—C6		1.481 (4)	С6—	-H6A	0.97	00
С2—С3		1.517 (4)	С6—	-H6B	0.97	00
C2—H2A		0.9700	С7—	-H7A	0.96	00
C2—H2B		0.9700	С7—	-H7B	0.96	00
C3—C4		1.505 (4)	С7—	-H7C	0.96	00
С3—НЗА		0.9700				
S1 ⁱ —Ni1—S1		180.0	H3A	—С3—Н3В	107.	9
S1 ⁱ —Ni1—S2		100.82 (2)	С3—	-C4—C5	113.	3 (3)
S1—Ni1—S2		79.18 (2)	С3—	-C4—H4A	108.	9
S1 ⁱ —Ni1—S2 ⁱ		79.18 (2)	С5—	-C4—H4A	108.	9
S1—Ni1—S2 ⁱ		100.82 (2)	С3—	-C4—H4B	108.	9
S2—Ni1—S2 ⁱ		180.0	С5—	-C4—H4B	108.	9
C1—S1—Ni1		85.45 (10)	H4A	—С4—Н4В	107.	7
C1—S2—Ni1		85.34 (9)	C4—	-C5—H5A	109.	5
C1—N1—C2		121.4 (2)	C4—	-C5—H5B	109.	5
C1—N1—C6		121.7 (2)	H5A	—С5—Н5В	109.	5
C2—N1—C6		116.8 (2)	C4—	-C5—H5C	109.	5
N1-C1-S1		124.8 (2)	H5A	—С5—Н5С	109.	5
N1—C1—S2		125.1 (2)	H5B-	—С5—Н5С	109.	5
S1—C1—S2		110.04 (16)	N1—	-C6—C7	111.0	0 (3)

N1—C2—C3	113.0 (2)	N1—C6—H6A	109.4	
N1—C2—H2A	109.0	С7—С6—Н6А	109.4	
C3—C2—H2A	109.0	N1—C6—H6B	109.4	
N1—C2—H2B	109.0	С7—С6—Н6В	109.4	
С3—С2—Н2В	109.0	Н6А—С6—Н6В	108.0	
H2A—C2—H2B	107.8	С6—С7—Н7А	109.5	
C4—C3—C2	112.3 (2)	С6—С7—Н7В	109.5	
С4—С3—Н3А	109.1	Н7А—С7—Н7В	109.5	
С2—С3—НЗА	109.1	С6—С7—Н7С	109.5	
C4—C3—H3B	109.1	H7A—C7—H7C	109.5	
С2—С3—Н3В	109.1	H7B—C7—H7C	109.5	
S2—Ni1—S1—C1	-0.24 (9)	Ni1—S1—C1—S2	0.32 (12)	
S2 ⁱ —Ni1—S1—C1	179.76 (9)	Ni1—S2—C1—N1	180.0 (2)	
S1 ⁱ —Ni1—S2—C1	-179.76 (9)	Ni1—S2—C1—S1	-0.32 (12)	
S1—Ni1—S2—C1	0.24 (9)	C1—N1—C2—C3	94.2 (3)	
C2—N1—C1—S1	179.3 (2)	C6—N1—C2—C3	-84.6 (3)	
C6—N1—C1—S1	-2.0 (4)	N1—C2—C3—C4	176.7 (3)	
C2—N1—C1—S2	-1.0 (4)	C2—C3—C4—C5	177.8 (3)	
C6—N1—C1—S2	177.6 (2)	C1—N1—C6—C7	98.5 (3)	
Ni1—S1—C1—N1	-180.0 (2)	C2—N1—C6—C7	-82.8 (3)	
Symmetry codes: (i) $-x+1, -y+1, -z+1$.				

