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Abstract
Many parasitoids have single-locus complementary sex determination (sl-CSD), which 
produces sterile or inviable males when homozygous at the sex determining locus. A 
previous study theoretically showed that small populations have elevated risks of ex-
tinction due to the positive feedback between inbreeding and small population size, 
referred to as the diploid male vortex. A few modeling studies have suggested that 
the diploid male vortex may not be as common because balancing selection at sex 
determining loci tends to maintain high allelic diversity in spatially structured popula-
tions. However, the generality of the conclusion is yet uncertain, as they were drawn 
either from models developed for particular systems or from a general-purpose com-
petition model. To attest the conclusion, we study several well-studied host–parasi-
toid models that incorporate functional response specifying the number of attacked 
hosts given a host density and derive the conditions for a diploid male vortex in a 
single population. Then, we develop spatially structured individual-based versions of 
the models to include female behavior, diploid male fertility, and temporal fluctua-
tions. The results show that producing a handful of successful offspring per female 
parasitoid could enable parasitoid persistence when a typical number of CSD alleles 
are present. The effect of functional response depends on the levels of fluctuations 
in host abundance, and inviable or partially fertile diploid males and a small increase 
in dispersal can alleviate the risk of a diploid male vortex. Our work supports the gen-
erality of effective genetic rescue in spatially connected parasitoid populations with 
sl-CSD. However, under more variable climate, the efficacy of the CSD mechanism 
may substantially decline.
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1  | INTRODUC TION

Small populations are susceptible to inbreeding and reduced popu-
lation growth rate caused by the positive feedback between small 
population size and inbreeding depression, known as the extinction 
vortex (Gilpin & Soule, 1986). This positive feedback may occur in 
a more exacerbated form in hymenopteran taxa (sawflies, bees, 
wasps, and ants), which have the haplodiploid genetic system with 
complementary sex determination (CSD; Heimpel & de Boer, 2008). 
In these taxa, unfertilized haploid eggs develop into males, while fer-
tilized diploid eggs develop into females only if they are heterozy-
gous at the CSD loci (Figure 1a; Heimpel & de Boer, 2008). Diploid 
eggs that are homozygous at the CSD loci develop as diploid males. 
Diploid males are often infertile or inviable (hereafter DMs; Cowan & 
Stahlhut, 2004; Heimpel & de Boer, 2008; Whiting, 1943). Because 
inbreeding increases homozygosity and hence can produce excess 
infertile or inviable individuals in taxa carrying CSD loci, their popu-
lations consequently can become vulnerable to a decline due to in-
breeding depression. In many species, CSD involves only one locus 
(single-locus CSD or sl-CSD; Harpur et al., 2012; van Wilgenburg 
et al., 2006). Zayed and Packer (2005) theoretically demonstrated 
that, using a single population model, excess production of DMs may 
cause an extinction vortex in small populations with sl-CSD, which 
they called the diploid male vortex (Figure 1b). The study concluded 

that DM production can elevate the risk of extinction by ten or more 
folds and alerted conservation management to substantially higher 
extinction risks of small hymenopteran populations with sl-CSD.

Empirical evidence of the diploid male vortex in literature is, how-
ever, limited, and existing studies provide suggestive but inconclu-
sive evidence (de Boer et al., 2015; Boff et al., 2014; Nair et al., 2018; 
Soro et al., 2016; Takahashi et al., 2008; Zayed & Packer, 2001). 
There could be inherent difficulties in documenting a diploid male 
vortex “in action” over several generations before the population 
goes extinct. The fragility of populations with sl-CSD suggested 
by Zayed and Packer (2005) seems also counter to the facts that 
over 80 species of hymenopterans with known sl-CSD exist in na-
ture (Harpur et al., 2012; Heimpel & de Boer, 2008; van Wilgenburg 
et al., 2006) and that hymenopterans are one of the most specious 
taxa (Gaston, 1991; Godfray, 1994). Previous modeling studies have 
shown that a diploid male vortex may not occur as readily in nature 
because migration and negative frequency-dependent selection 
can maintain allelic variation at the CSD loci in spatially structured 
populations (Hein et al., 2009; Nair et al., 2018) and because cou-
pled dynamics of host and parasitoid populations dampen unstable 
oscillations (Bompard et al., 2016). Hein et al. (2009) found that, 
using a general competition model, initiation of a diploid male vortex 
would require stringent life history traits (e.g., low fertility of DMs, 
almost no dispersal), as seemingly small changes in these traits could 

F I G U R E  1   (a) A schematic diagram of the inheritance of the single-locus complementary sex determination (sl-CSD) system. Modified 
from figure 1 in Nair et al. (2018). (b) External factors can drive populations to become small, which could trigger the negative feedback 
between small population size and diploid male production (due to increased inbreeding), potentially leading to extinction in an extinction 
vortex. A diploid male vortex is an extinction vortex caused by diploid male production in hymenopteran populations. Modified from figure 
3a in Zayed and Packer (2005)
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boost parasitoid persistence. Two other studies examined particu-
lar systems with empirically parameterized models and likewise re-
ported resilience of parasitoid populations (Nair et al., 2018; Weis 
et al., 2017). Nair et al. (2018) reported that, although the proportion 
of DMs increased by threefold in the population of a parasitoid after 
the host populations crashed, their modeling results indicated little 
imminent risk of a diploid male vortex even if the host fluctuates 
with similar variability. Investigation using other types of models can 
attest the generality of these conclusions.

Population ecologists have developed a number of parasitoid 
models that incorporate “functional response” to model the rate of 
parasitism (Hassell, 2000). Functional response in parasitoid mod-
els determines how the number of hosts attacked (and parasitized) 
by parasitoids depends on host density and is limited by parasitoids’ 
ability to search and handle hosts (Hassell, 2000). These models 
with functional response can therefore encode parasitoid biology 
more explicitly than a general competition model used by Hein 
et al. (2009). They used a logistic growth model and thus assumed 
that the parasitoids were host limited and attacked hosts randomly. 
Parasitoids can also be egg or time limited, which motivated the de-
velopment of functional response models (Hassell, 2000). Because 
the shapes of functional response reflect how the number of at-
tacked hosts responds as a function of host density, the models in-
corporating different types of functional responses are suited to 
investigate the effects of host population size on parasitoid popula-
tions and their persistence. In particular, because population bottle-
necks can cause genetic drift and loss of CSD alleles, how parasitoid 
and host densities relate at their low densities likely influences per-
sistence of parasitoid populations with CSD. In addition, fluctuations 
in host abundance can be introduced into these models to study the 
effects of population bottlenecks and recoveries on the frequencies 
of extinctions. More variable and correlated climatic fluctuations are 
anticipated under future climate change scenarios, and higher vari-
ability and prolonged or spatially extensive population bottlenecks 
(Jangjoo et al., 2020; Kahilainen et al., 2018; Tack et al., 2015) could 
increase the vulnerability of populations with sl-CSD.

In this study, we examine parasitoid population models involv-
ing six different functional responses and life history characteris-
tics to study their effects on population persistence. Our approach 
combines population dynamics models and population genetics in 
attempt to better understand the population-level consequences of 
sex determination genetics. We also consider the effects of environ-
mental fluctuations through host abundance. To this end, we analyze 
simple deterministic models of a single population and then individ-
ual-based models of spatially structured populations incorporating 
demographic stochasticity and various parasitoids’ reproductive and 
behavioral characteristics. Our results show that negative frequen-
cy-dependent selection and dispersal in spatially structured popula-
tions enable effective genetic rescue and that modest changes in life 
history characteristics could alleviate extinction risk substantially. In 
agreement with previous modeling studies mentioned above, natural 
parasitoid populations may be more resistant to a diploid male vor-
tex than originally suggested based on results obtained from a single 

population model (Zayed & Packer, 2005). However, population per-
sistence could become less certain when large fluctuations in host 
abundance cause prolonged population bottlenecks in parasitoids. 
This study suggests that the maintenance of habitat connectivity 
should be an effective conservation strategy for parasitoid popula-
tions with sl-CSD in fragmented landscapes under anticipated more 
extreme and variable climate.

2  | METHODS

2.1 | The deterministic single population model

We assume solitary parasitoids. Females randomly mate only once, 
males can mate multiple times (Godfray, 1994; Zayed, 2004). DMs 
can mate but do not transfer functional sperm (Harpur et al., 2012; 
but later we relax this assumption in the simulation model). Females 
mated with a DM can still have sons via parthenogenesis, and all 
her daughters will be inviable triploids (van Wilgenburg et al., 2006) 
and immediately die as eggs so that the host becomes available for 
other parasitoids to parasitize. Therefore, DMs not only “waste” 
their mothers’ efforts to produce daughters but also their mates’ 
reproductive efforts. The population dynamics of parasitoids are 
described by

where �� t and �� t are the densities of diploid and haploid indi-
viduals at time t, respectively. c is the expected number of parasit-
oids emerging per parasitized host, and Nt is the density of the host 
at time t. s0 is the primary (i.e., mothers’ intended) sex ratio (females 
can control how many eggs to fertilize in haplodiploid species), M̃t is 
the fraction of normal males among all males, Mt

Mt+�� t

,Mt is the num-

ber of male parasitoids, and bt is a function of Ft, the number of fe-
male parasitoids and signifies the rate of parasitism (fraction of hosts 
being parasitized).

We consider six well-studied parasitoid models presented in 
Table 2.1 in Hassell (2000; Tables 1 and 2), including functional re-
sponses type I, II, and III and two modes of attacks to be contrasted 
to assess the effects of positive slopes, saturation, and convexity at 
low host densities. Model 1 assumes that parasitoids are egg-limited 
(pro-ovigenic; females emerge with a fixed complement of eggs), 
while others assume they are never egg-limited (synovigenic; mature 
eggs throughout their life; Godfray, 1994). Models 1, 2, 4, and 6 as-
sume that eggs are randomly distributed among host individuals, im-
plying all host individuals are equally susceptible to parasitism 
(Hassell, 2000). These functional forms assume a Poisson process in 
parasitoids’ finding hosts, implying that a host can be attacked multi-
ple times. That is, females cannot tell apart parasitized and not-yet 
parasitized hosts. We assume that one parasitoid at most comes out 
of one host (i.e., c=1; Table 2). In Models 3 and 5, all host individuals 

�� t+1= cNt(1−s0)btM̃t

�� t+1= cNts0bt
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are not equally susceptible to parasitism and an overall distribution of 
parasitoid attacks is more aggregated than random, as modeled by 
the negative binomial distribution. Aggregation of attacks can occur 
when the probability of finding hosts by parasitoids is biased in space 
(e.g., due to habitat heterogeneity or searching behavior), certain 
genotypes are more resistant to parasitism, or when hosts are spa-
tially aggregated (e.g., on host plants or microhabitats (Godfray, 1994; 
Hassell & May, 1985)). With the extra clumping parameter k, the ran-
dom and aggregated attack models are not directly comparable to 
each other except the case when k approaches infinity. Models 2 and 
3 take on type I (linear without an asymptote) functional response of 

parasitoids, while Models 4 and 5 take on type II (hyperbolic) and 
Model 6 type III (sigmoidal; Table 1). Type II and type III functional 
responses assume that parasitoids are time limited so that any para-
sitoid cannot indefinitely increase the number of attacked hosts as in 
type I (the functions saturate at 1

Th
). The number of attacked hosts 

does not change with host density in Model 1 (no functional re-
sponse). The relative numbers of attacked hosts switch among the 
functional responses as the density of female parasitoids increases at 
low host densities (Figure S1). Therefore, depending on the duration 
and severity of bottlenecks these functional responses differentially 
affect parasitoid persistence.

TA B L E  1   The definitions of the symbols, state variables, and parameters

Symbols 
used Definition Values used in the IBM Source

Ft Number of female parasitoids at time t State variable (positive integer)

DMt Number of diploid males at time t State variable (positive integer)

Mt Number of normal males at time t State variable (positive integer)

N Mean host population size across patches 100 Hein et al. (2009)

Nj
Mean host population size in patch j Drawn randomly from a uniform distribution 

between 10 and 190
Hein et al. (2009)

Nj,t Host population size in patch j at time t Drawn randomly from the lognormal 
distribution with Normal

(

log
(

Nj

)

, �j

)

Hein et al. (2009)

w Number of eggs to become reproducing adults, 
laid per female parasitoids (Model 1 only)

[3, 4, 5] [3, 4, 5, 6, 7, 8, 9] in the 
supplementary materials

a Per capita searching efficiency (“area of 
encounter”) defined as the proportion of total 
hosts encountered and parasitized by one female 
per life time (Model 2–6)

[0.03, 0.035, 0.04, 0.045, 0.05] Hassell (2000) [0.025, 0.03, 
0.035, 0.04, 0.045, 0.05] in 
the supplementary materials

c The number of parasitoids emerging per 
parasitized host

1 Hassell (2000)

k Clumping parameter for negative binomial 
distributions (Models 3 and 5)

1 Hassell and May (1985), Hassell 
(2000), May (1978)

Th Handling time per attacked prey (Models 4–6) 
expressed as a fraction of a life time and 
corresponds to the length of the time interval 
between consecutive eggs laid

0.005 (200 eggs laid in a life time) Zhang et al. (2004), Zamani 
et al. (2006), Fathipour 
et al. (2017), Pourtaghi 
et al. (2017)

d, g Fitting parameters (Model 6 only) Varied such that a= dN���

1+gN���

 varies between 

0.03 and 0.05, where N��� is mean host 

density among all the patches (=100)

s0 Primary sex ratio (fraction of haploid) 0.5

� The number of CSD alleles 20 initially Cook and Crozier (1995)

h Fraction of diploid homozygote 1

�
 at equilibrium Yokoyama and Nei (1979); van 

Wilgenburg et al. (2006); 
Harpur et al. (2012)

m Probability of dispersal Varied between 0 and 0.4

� Correlation between patches for the variance–
covariance matrix

0 or 0.2 Nair et al. (2018)

�j Standard deviation of the underlying normal 
distribution for temporal fluctuation in patch j

0 (no fluctuation), 0<𝜎 j≤0.5 (small 
fluctuation), or 0<𝜎j≤1.2 (large 
fluctuation)

Nair et al. (2018)

� Color of the environmental noise 0.6 (red noise) Kaitala et al. (1997)
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Diploid offspring are either females (if heterozygous at the CSD 
locus) or DMs (if homozygous). We partition �� t+1 into females or 
DMs by calculating the proportion of homozygotes among offspring, 
ht+1;

in a population at the Hardy–Weinberg equilibrium and 

pi (t+1)=
2∗DP(t+1)∗pi,dp(t+1)+HP(t+1)∗pi,hp(t+1)

∑�

j=1
2∗DP(t+1)∗pj,dp(t+1)+HP(t+1)∗pj,hp(t+1)

 where pi,dp and pi,hp are the 

proportion of i  allele in the diploid and haploid population, respec-
tively. According to the model of the temporal dynamics of CSD allele 
frequencies, all � alleles have the frequency equal to 1∕� at the equilib-
rium (Harpur et al., 2012; van Wilgenburg et al., 2006; Yokoyama & 
Nei, 1979). We then split the equation of �� t+1 into Ft+1 (females) and 
�� t+1 (diploid males), and relabel �� t+1 as Mt+1 (males),

2.2 | The individual-based simulation model of a 
spatially structured parasitoid population

We extend the deterministic model above to an individual-based 
simulation model where it is more straightforward to incorporate 

spatial structure, parasitoid life history and behavior, and fluctua-
tions in host abundance. Females and DMs are represented by two 
copies of CSD alleles, and (haploid) males are by one allele. They are 
initialized at the start of the simulation by randomly drawing integers 
from the uniform distribution between 1 and the maximum number 
of alleles present.

The space consists of 64 patches arranged in an 8 x 8 lattice, jth 
of which contains a host population 

(

Nj,t

)

whose mean abundance 
(

−Ñj

)

is drawn from a uniform distribution between 10 and 190 indi-
viduals (mean across all the patches, −Ñ,equals to 100; Table 1). The 
temporal dynamics of host abundance in each patch is determined 
independently randomly, unless specified, from the lognormal distri-
bution with the mean of the underlying normal distribution equal to 
log

(

−Ñj

)

and the standard deviation 
(

�j

)

equal to 0 (i.e., no temporal 
variation nor variation in �jamong patches), uniformly randomly dis-
tributed in 0<𝜎 j≤0.5(i.e., temporal variation and variation in �j
among patches) or in 0<𝜎 j≤1.2across patches. Thus, the host dy-
namics are independent of the parasitoid. When host abundance is 
spatially autocorrelated, log

(

Nj,t

)

is drawn from the multivariate nor-

mal distribution with mean host abundance log
(

Nj

)

. and a variance–

covariance matrix with �j in the diagonal and the correlation 
parameter � = 0.2. �j is uniformly randomly distributed in 0<𝜎 j≤1.2.  
These values follow empirically observed ranges in a previously 
studied system (Nair et al., 2018). Temporally autocorrelated host 
abundance is generated by assuming a multiplicative effect of the 
noise

ht+1=

�
∑

i=1

p2
i
(t+1)

Ft+1=�� t+1

(

1−ht+1
)

= cNt

(

1−s0
)

btM̃t

(

1−ht+1
)

�� t+1=�� t+1ht+1= cNt

(

1−s0
)

btM̃tht+1

Mt+1= cNts0bt

dj,t+1=�dj,t+Normal
(

0, � j
)

TA B L E  2   The expressions of btbt for the six models, functional response, distributions of attacks, and the persistence conditions for a 
parasitoid population

bt(the rate of parasitism) Functional response Distribution of attacks
Condition for parasitoid persistence 
expressed in terms of h∗ = 1

�
 and s0

1
bt =

(

1−e
−

wFt

Nt

)

N

No FR Random
w>

1+

√

1+4h∗
(

1

s0
−1

)

2c(s0−1)(h
∗−1)

2 bt =
(

1−e−aFt
)

N

Type I Random
aN>

1+

√

1+4h∗
(

1

s0
−1

)

2c(s0−1)(h
∗−1)3

bt =

(

1−
(

1+
aFt

k

)−k
)

Negative binomial 
(aggregated)

4
bt =

(

1−e
−

aFt

1+aThNt

)

N

Type II Random
aN>

1+

√

1+4h∗
(

1

s0
−1

)

2c(s0−1)(h
∗−1)−

(

1+

√

1+4h∗
(

1

s0
−1

)

)

Th5
bt =

(

1−
(

1+
aFt

k(1+aThNt)

)−k
)

Negative binomial 
(aggregated)

6
bt =

(

1−e
−

dNtFt

1+gNt+dThN
2
t

)

a=
dNt

1+gNt

N

Type III Random

Note: See Table 1 for the definition of the parameters and symbols. In the second column, the shapes of the function responses are shown 
schematically. N��� = the number of hosts encountered (and attacked). N= host density. Notice that the right-hand side of the persistence conditions 
are the same for the first three models.
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(Kaitala et al., 1997). dj,t is colored environmental noise in patch j 
at time t, � controls the color of the noise (when 𝜅 >0 red noise (pos-
itive autocorrelation), when 𝜅 <0 blue noise (negative)). We set �= 
0.6. �j is again uniformly randomly distributed in 0<𝜎 j≤1.2.

Parasitoids can disperse once to one of the neighboring 4 
patches in cardinal directions with a specified probability (m), and 
dispersing parasitoids are randomly chosen every generation. After 
dispersal, the rate of parasitism 

(

bt
)

 and the number of parasitized 
hosts are calculated for each patch. The number of offspring (includ-
ing inviable DMs) to be produced is the same as the number of para-
sitized hosts (i.e., c=1). Reproducing females are randomly selected 
from the females in the patch, are assigned to one or more hosts 
to parasitize, and randomly select one male or DM to mate. Male 
and DMs can be chosen multiple times. No sib-mating avoidance is 
assumed as evidence is scarce (Collet et al., 2020; van Wilgenburg 
et al., 2006). For each reproducing female, the number of daughters 
among her offspring is determined randomly with probability 1−s0. 
Daughters inherit one allele randomly selected out of two from their 
mothers and the other one from their fathers. Sons inherit one ran-
domly chosen allele from their mothers. Females mating with sterile 
DMs only produce sons, while those with partially fertile DMs can 
produce some daughters (i.e., if a female mated with a 20% fertile 
DM, 20% of eggs to be daughters will be randomly assigned to ac-
tually become daughters, and the rest will be inviable triploids). The 
alleles in the offspring can mutate to a brand new or another allele 
already in the populations, but we set mutation rate at zero for this 
study. Diploids that are homozygous at the CSD locus either become 
sterile or partially fertile DMs, eliminated as inviable DMs, or stay as 
females if CSD is not operating.

We consider six DM scenarios that are similar to what Hein 
et al. (2009) considered. The reference level is provided by the sce-
nario where all diploids are females (“No CSD”). The viability and 
sterility of DMs are varied in three scenarios where they are invia-
ble (die immediately; “inviable DM”), effectively sterile (participate 
in mating but do not transfer functional sperm; “sterile DM”), and 
20% fertile (only 20% of sired eggs are diploid, not triploid; “partially 
fertile DM”; Heimpel & de Boer, 2008; van Wilgenburg et al., 2006). 
In the last two scenarios, we vary female behavior; the ability to re-
ject DMs with 20% probability (“reject DM 20%”) and the prefer-
ence for female-biased primary sex ratio (“sex ratio 40/60”; Antolin 
et al., 2003; Cook & Crozier, 1995; Godfray, 1994).

We run the simulations for 5,000 generations to determine 
whether the parasitoid populations can persist for a sufficiently long 
period of time. The populations are initialized with 5,000 parasitoids 
and 20 CSD alleles. We set c=1 for computational efficiency and 
therefore consider only successful eggs laid to kill the host (i.e., no 
host escaping parasitism nor dying from other causes, or no triploid 
eggs). We vary dispersal rate from 0 to 0.4, w from 3 to 5 (Model 
1), and �� from 0.03 to 0.05 (Model 2–6). We select these values of 
w and a to compare Model 1 with the rest of the models (the mean 
host abundance in the landscape is set at 100 so that these values 

of a yield 3 to 5 successful eggs per female parasitoid on average). In 
the absence of host abundance fluctuation, parasitoid populations 
mostly persist the above values of w and a in Models 1 and 2. The re-
sults for wider ranges of w and a are presented in the supplementary 
materials. We run 20 replicates of each unique parameter combina-
tion. The parasitoid populations are considered extinct if the num-
bers of females or normal haploid males become zero before the end 
of the 5000-generation simulations. Persistence is calculated as the 
number of simulations with persistent parasitoid populations divided 
by the number of replicates, 20. Allelic richness is the number of 
unique CSD alleles in the entire metapopulation and averaged across 
20 replicates. Persistence and allelic richness are averaged over all 
the simulations across the values of w or a and dispersal rate or av-
eraged by dispersal rate.

3  | RESULTS

3.1 | The deterministic single population model

We conduct a stability analysis of the extinction equilibrium 
(F,M,DM)= (0, 0, 0) of this system to derive expressions for deter-
ministic extinction of the parasitoid population. We observe in nu-
merical simulation of this model that the fraction of normal (haploid) 
males, M̃, and the fraction of homozygotes, h, approach a constant 
value as F→0,M→0, and DM→0. We can, therefore, express the 
equilibrium value of M̃ at the extinction equilibrium as

where M∗,DM∗, M̃
∗, and h∗ are equilibrium values of respective 

state variables. Faria et al. (2016) arrived at an equivalent expression 
with different parameterization. We can solve the quadratic equa-
tion for M̃∗

>0 and evaluate the derivative of F as F→0 to discern 
the stability of F at F=0. For Model 1, the extinction equilibrium is 
stable if.

Or equivalently,

because M̃∗
+ ̃��

∗
=1. Therefore, when the fraction of DMs ex-

ceeds this quantity, the extinction equilibrium is stable. Otherwise, 
the parasitoid population is to persist. For the unrealistically strin-
gent case of two CSD alleles the equilibrium value of h, h∗, is 0.5. 
Assuming s0=0.5 and c=1, the minimum w for persistence is 6, 
which is one to two orders of magnitude lower than a potential 
number of eggs to be typically laid by a female parasitoid (Figure 2a; 

Nj,t+1=Nj+dj,t+1

M̃
∗
=

M∗

M∗ +DM∗ =
s0

s0+
(

1−s0
)

M̃
∗
h∗

M̃
∗

M̃
∗
<

1

wc
(

1−s0
) (

1−h∗
)

̃𝐷𝑀
∗
>1−

1

wc
(

1−s0
) (

1−h∗
)
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Cheng et al., 2017; Harvey, 2007; Harvey et al., 2001, 2017; Heimpel 
et al., 1998; Houston et al., 1992; Vos & Hemerik, 2003; Waage & 
Ming, 1984). In natural hymenopteran populations, the number of 
CSD alleles normally ranges from 9 to 20 (Cook & Crozier, 1995), 
and our result suggests that 3 or more viable offspring per female 
could sustain population persistence (Figure 2a). A large fraction of 
parasitized hosts will die from causes other than parasitism or kill 
parasitoid eggs or larvae via immune responses (e.g., encapsulation) 
so that likely c<1 in nature (for solitary parasitoids laying one egg 
per host). For instance, in the case with c=0.1, 30, or more success-
fully attacked hosts per female would suffice to sustain the parasit-
oid population. Parasitoid populations can be strongly female biased 
(Godfray, 1994), and if we assume s0=0.2, it requires fewer success-
ful offspring to attain persistence (Figure 2b). Similarly, for Model 2 

and 3, we obtain the persistence condition (Table 2) and find that the 
two conditions are equivalent when w=aN. The condition becomes 
more complex when handling time 

(

Th
)

 is included in the model 
(Model 4–6; Table 1, Figure 2c,d). The result elucidates that the per-
sistence of the parasitoid population depends on the population size 
of the host in Models 2–6, but not in Model 1.

3.2 | Individual-based simulation model

We set up the parameter values so that, when CSD is not operating, 
populations very rarely go extinct in any of the scenarios (2 out of 
1,000s of simulations). The persistence of parasitoid populations is 
least sensitive to increasing levels of fluctuations in host abundance 

F I G U R E  2   The minimum number of successful offspring needed to be produced for parasitoid persistence (Table 1) evaluated at various 
values of c (expected number of parasitoids emerging from a parasitized host) and l  (number of alleles) at two values of primary sex ratio 
(fraction of haploid males, s0), for Models 1–3 (a and b) and for Models 4–6 (c–f). For the latter set of models, the conditions are evaluated at 
Th=0.005 (a parasitoid can attack up to 200 hosts per lifetime)
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and their autocorrelation when the model does not include func-
tional response (Model 1; Figure 3a). It is most sensitive in the ag-
gregated attack models (Models 3 and 5; Figure 3e,f). Persistence is 
similar between the models with type I (Models 2 and 3, Figure 3b,e) 
and type II functional response (Models 4 and 5 Figure 3c,f) within 
either mode of attacks. The random attack model with functional 
response type III (Model 6; Figure 3d) achieves lower persistence 
than those with type I or type II. Persistence is the lowest when DMs 
are sterile in all scenarios. When DMs are inviable or partially fertile, 
persistence improves, in many cases, substantially (by up to almost 
60%; Figure 3).

Population persistence of parasitoids increases with dispersal 
rate for the majority of the scenarios (Figure 4). Across all the mod-
els and fluctuation scenarios, persistence increases more quickly 
with increasing dispersal rate in the inviable and partially fertile DM 
scenarios than in the other scenarios. As the amplitudes of fluc-
tuations increase, more dispersal is needed to achieve comparable 
levels of persistence. Compared with the random attack models 
with type I and type II functional response (Figure 4b,c), the model 
with type III (Figure 4d) shows slower increases in persistence 
with increasing dispersal. The aggregated attack models (Models 3 
and 5; Figure 4e,f) show slower increases in persistence with in-
creasing dispersal than the random attack models (Models 2, 4, 6; 
Figure 4b–d).

The number of alleles maintained at the CSD locus with increasing 
dispersal rate mirrors the patterns of population persistence (Figure 5). 
Because the locus is neutral when no CSD is operating, allelic diversity 
is quickly lost with increasing dispersal, as expected. Random attacks 
(Figure 5b–d) lead to greater numbers of maintained alleles for a given 
fluctuation and DM scenario than aggregated attacks (Figure 5e,f). 
When fluctuation is large and spatially or temporally autocorrelated, 
the number of maintained alleles drops in all the models and scenarios 
(the second and third column). These results show that strong balanc-
ing selection at the CSD locus causes newly arriving alleles via immi-
grants to increase in frequency and restores lost allelic diversity from 
population bottlenecks. In other words, negative density-dependent 
selection at the CSD locus enables efficient genetic rescue in the popu-
lation. However, extensive (i.e., spatially autocorrelated) and prolonged 
(i.e., red noise) bottlenecks can deplete allelic diversity and hence in-
crease the chance of parasitoid extinction via a diploid male vortex.

4  | DISCUSSION

By studying models of parasitoid populations with functional re-
sponse that links host abundance and the number of attacked (and 
parasitized) hosts, we explore how the persistence of parasitoids 
with sl-CSD can be affected by population dynamics, behavioral 

F I G U R E  3   The proportion of simulation runs that persisted for 5,000 generations. In each panel, the six DM life history scenarios are in 
rows, and the fluctuation scenarios in the columns. For each parameter set, 20 simulations are run. To produce this figure, simulated data 
with w=

[

3, 4, 5
]

 or aN=

[

3, 4, 5
]

 are aggregated across all dispersal rates from 0 to 0.4. Red noise = temporally positively autocorrelated host 
abundance
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and life history traits, and inbreeding. First, we confirmed ana-
lytically previous results from simulations by Zayed and Packer 
(2005) that in a large population a handful of successful offspring 
produced per female enable parasitoid persistence when a typical 
number of CSD alleles (9 to 20; Cook & Crozier, 1995) are present. 
Second, type I and type II functional response behave similarly 
within each mode of attacks (random or aggregated). The ran-
dom attack models with no (flat) or type III functional response 
show lower persistence of parasitoid populations across the DM 
or fluctuation scenarios than type I or type II random attack mod-
els. Persistence decreases markedly in the type III random attack 
model when amplitudes of fluctuations are large. Third, all the DM 
scenarios, inviable and partially fertile DMs in particular, increase 
parasitoid persistence, relative to the sterile DM case, invariably 
across the models and fluctuation scenarios. Lastly, a small frac-
tion of dispersing parasitoids enables effective genetic rescue 
among fragmented populations. Negative density-dependent se-
lection at the CSD locus in combination with dispersal enables 

genetic rescue, where newly arriving alleles carried by immigrants 
increase in frequency and restore allelic diversity in genetically de-
pauperate local populations (Antolin et al., 2003; Nair et al., 2018). 
Overall, our study extends the findings from the previous study by 
Hein et al. (2009) to models with density-dependent attacks and 
to autocorrelated fluctuations of host abundance.

4.1 | Model assumptions

We assumed that the host population was independent of the 
parasitoid to have the focus of the analysis on parasitoid persis-
tence, as we were interested in how parasitoid populations re-
spond to host density could affect the frequency of the diploid 
male vortex. This situation may occur when host abundance is 
determined by factors other than parasitoids such as abiotic con-
ditions or resource availability (e.g., Nair et al., 2018). Decoupling 
the populations may have stabilized the dynamics, as coupled 

F I G U R E  4   The proportion of simulation runs (out of 20) that persisted for 5,000 generation with increasing dispersal rate. The six models 
are shown in the rows and three fluctuation scenarios in the columns (the other scenarios are in the online supplementary materials). In each 
panel, the six DM scenarios are in the rows. The dispersal rate varies from 0 to 0.4 (0, 0.005, 0.01, 0.02, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 
0.4). The parameter values are w = 4 (Model 1) and aN=4 (Models 2–6)
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host–parasitoid models such as the Nicholson-Bailey model (our 
Model 2 with a coupled host; Hassell, 2000) is typically unstable. 
Interestingly, a recent study showed that sl-CSD stabilized dy-
namics and promoted parasitoid persistence in a coupled model 
(Bompard et al., 2016). In our (noncoupled) models, sl-CSD exerted 
purely negative effects. These two modeling approaches are com-
plementary, but it is interesting that both generally point to less 
ominous effects of sl-CSD on population persistence than it may 
have seemed initially.

We limited the dispersal of parasitoids to once in lifetime to one 
of the neighboring local populations. Because many parasitoids are 
known to be good dispersers, this assumption may seem restrictive. 
We envisioned that the spatial extent scales with dispersal ability. 
If the parasitoid is highly mobile, a local population likely occupies 
a large area, which may render dispersal to another population in-
frequent. If the parasitoid is sedentary, dispersal is rare. Longer 
dispersal distance could cause CSD alleles to be permanently lost 

during a bottleneck by random drift from the entire population, if 
the gene flow becomes too high. Somewhat limited dispersal allows 
local populations to maintain different sets of alleles and a larger set 
as a whole metapopulation.

4.2 | Interactions between population 
dynamics and the population genetics of sl-CSD

Fluctuations in population size in time and space influence how much 
genetic diversity is maintained and how it is distributed among local 
populations in spatially structured populations (Jangjoo et al., 2020; 
Varvio et al., 1986; Whitlock, 1992). In populations going through 
a population bottleneck, the amounts of heterozygosity and alleles 
lost depend on the severity of the bottleneck (population size at a 
bottleneck) and population growth rate (Nei et al., 1975). Functional 
response determines the number of hosts attacked, hence the 

F I G U R E  5   The number of unique alleles in the 64 patches remaining after 5,000 generations with increasing dispersal rate. The six 
models are shown in the rows and three fluctuation scenarios in the columns (the other scenarios are in the online supplementary materials). 
In each panel, the six DM scenarios are in rows. The dispersal rate varies from 0 to 0.4 (0, 0.005, 0.01, 0.02, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 
0.35, 0.4). The parameter values are w = 4 (Model 1) and aN=4 (Models 2–6). Each simulation is initiated with 20 unique alleles (no mutation)
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number of emerging parasitoids, at given parasitoid and host densi-
ties. Therefore, it determines the size of a parasitoid population in 
a bottleneck and how quickly they can grow when host abundance 
subsequently increases. Type I and type II functional response allow 
parasitoid populations to achieve higher numbers of attacked hosts 
at low host densities than type III functional response. As a result, 
parasitoid populations governed by type III functional response ex-
perience severer population bottlenecks and take longer to recover, 
raising the chances for losing CSD alleles by genetic drift. Moreover, 
parasitoid populations can take advantage of high host density when 
the number of attacked hosts increases with host density, allowing 
populations to grow large and accumulate genetic diversity. This 
explains why the model with no functional response leads to lower 
persistence of parasitoid populations. These population dynamical 
effects of functional response contribute to reducing extinction risk 
under certain conditions, hence the occurrence of the diploid male 
vortex, caused by the negative feedback between small population 
size and genetic drift.

Our analytical results suggest that a small number of successful 
parasitoid offspring per female suffice to sustain the persistence 
of a large parasitoid population with a typical number of CSD al-
leles found in natural populations. This agrees with the results from 
Zayed and Packer (2005) and Hein et al. (2009). Female parasitoids 
would need to lay multiple times more eggs than these numbers be-
cause many host species have defense mechanisms to kill parasitoid 
eggs or developing larvae and many parasitized hosts likely die of 
other causes. Even when postoviposition mortality is taken into ac-
count, the numbers of eggs laid needed for parasitoid persistence 
seem attainable by a female parasitoid in normal conditions as they 
usually produce hundreds up to a couple of thousands of eggs in 
lifetime (Waage & Ming, 1984; Houston et al., 1992; Godfray, 1994; 
Heimpel et al., 1998; Harvey et al., 2001, 2017; Harvey, 2007; 
Vos & Hemerik, 2003; Cheng et al., 2017). If this conjecture is re-
alistic, although sl-CSD appears fragile and “unintelligent” (sensu 
van Wilgenburg et al., 2006) at the first sight, the system seems 
to work quite well at the population level. A meta-analysis found 
that experimental studies most commonly reported type II func-
tional response with parasitoids (Fernández-arhex & Corley, 2003). 
Although population bottlenecks can eliminate rare alleles, rare al-
leles have weaker effects on heterozygosity at the population level 
as far as the remaining alleles occur in intermediate frequencies (Nei 
et al., 1975). Also, decline in heterozygosity after a bottleneck is less 
when populations can recover quickly (Maruyama & Fuerst, 1985; 
Nei et al., 1975).

The models with random and aggregated attacks are not directly 
comparable because of the additional parameter k. Only if k ap-
proaches infinity, the aggregated attack models converge to the ran-
dom attack model with the same functional response. We assume 
k=1, based on the studies that reported the values of k between 
0.28 to 1.3 (Hassell, 2000; Hassell & May, 1985; May, 1978). In the 
simulations the functional responses in the aggregated attack mod-
els attain lower number of attacked hosts at intermediate female 
parasitoid densities than in the random attack models (Figure S1). 

There are multiple reasons known for unequal susceptibility to par-
asitism among hosts (hence aggregated attacks) in natural popula-
tions, and unequal susceptibility is probably more realistic than hosts 
all being equally susceptible (Hassell, 2000). If parasitoids are able to 
select high quality hosts to attack, the aggregated attack models can 
be considered to have already discounted the number of attacked 
hosts for loss of offspring from host mortality and immunological 
defense to some degree. If this is the case, the discrepancy between 
the number of successful offspring and the number of eggs needed 
to be laid to compensate for lost offspring should be smaller for ag-
gregated attacks than for random attacks.

4.3 | Life history and behavioral scenarios

In all simulation scenarios, inviable and partially fertile DMs miti-
gate extinction risk the most, while rejecting DM 20% of the time 
and female-biased primary sex ratio improve population persis-
tence to much lesser extent. These results qualitatively agree 
with previous studies (Fauvergue et al., 2015; Hein et al., 2009; 
Zayed, 2004; Zayed & Packer, 2005). Sterile DMs not only fail their 
mothers’ reproductive efforts to produce daughters but also waste 
their mates’ such efforts. Inviable DMs die without mating (i.e., 
no wasting of their mates). Parasitoid populations where females 
reject DMs 20% of the time persist much less than those where 
females mate with 20% fertile DMs, although in both cases 20% of 
eggs intended to be daughters become daughters. One explanation 
is that, with the reject DMs scenario, demographic stochasticity in 
rejection success is greater when population size is small. Another 
explanation is genetic stochasticity; the chance to include a wider 
variety of CSD alleles is higher when each female produces some 
daughters. In the simulations, allelic diversity is slightly but consist-
ently higher in the partially fertile DMs scenario at low dispersal 
rate than in the reject DMs scenario (Figure 5). Female parasitoids 
may bias toward producing more daughters when inbreeding oc-
curs in the population (Antolin et al., 2003; Cook & Crozier, 1995; 
Godfray, 1994). In our simulations, this strategy mitigates extinc-
tion risk only little. Because we assume all DMs are sterile in the 
daughter-biased sex ratio scenario, females that mated with DMs 
produced even fewer sons (and no daughters). If DMs are partially 
fertile, daughter-biased sex ratio could be expected to increase 
parasitoid persistence more substantially. Viability and fertility of 
DMs remain uncertain for many species (Harpur et al., 2012), but 
effectively sterile DMs could be more common than inviable DMs 
because deleterious recessive alleles are purged in haploid males 
in haplodiploid taxa (Zayed, 2004). Limited evidence indicates that, 
in most of parasitoid species with sl-CSD, DMs are as viable as 
females, and a small fraction has partially viable or inviable DMs 
(Harper et al., 2016; Harpur et al., 2012). Partially fertile DMs have 
been found in several species, while some appear effectively ster-
ile (de Boer et al., 2007; Elias et al., 2009, 2010; Harpur et al., 2012; 
Zaviezo et al., 2017). Only one species has been confirmed to have 
fully fertile DMs (Cowan & Stahlhut, 2004).
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Our results agree with suggestions made by previous studies that 
being dispersive is a good strategy to maintain genetic diversity at the 
CSD locus and alleviate extinction risk (Antolin & Strand, 1992; Collet 
et al., 2020; Cook & Crozier, 1995; Faria et al., 2016; Ruf et al., 2011; 
van Wilgenburg et al., 2006). Solitary parasitoids are generally good 
fliers (Godfray, 1994; van Wilgenburg et al., 2006). At or near the 
top of the food chain, parasitoids often experience sparser resources 
in space to reach than their hosts do (Holt, 2002; Martinson & 
Fagan, 2014; van Nouhuys, 2005). Moreover, Inbreeding avoidance 
is one of the factors that can promote the evolution of dispersal 
(Saastamoinen et al.,  2018). Field studies have shown that parasit-
oids can disperse for 10s of meters up to 7.5 km (Collet et al., 2020; 
Couchoux et al., 2016; Nair et al., 2016; Roland et al., 2000) and 
can be wind-borne over several kilometers (Kristensen, Schellhorn, 
Hulthen, Howie, & De Barro, 2013). Wing polymorphism and sex-bi-
ased dispersal have been documented in multiple species of para-
sitoids (Asplen et al., 2009; Collet et al., 2020; Godfray, 1994; Ruf 
et al., 2011), suggesting that dispersal is adaptive. Some species have 
a premating refractory period during which one or both sexes of 
newly emerged adults disperse before mating (Godfray, 1994; van 
Wilgenburg et al., 2006). Collet et al. (2020) observed sib-mating tol-
erance in natural populations of a parasitoid that possesses sl-CSD 
and produces sterile DMs and suggested that dispersal probably re-
duces production of DMs effectively enough for the parasitoid not to 
evolve other behavioral or genetic countermeasures.

4.4 | Fluctuating host populations

Large fluctuations, when spatially and temporally autocorrelated 
at the levels we introduce into the model, further endanger popu-
lation persistence of parasitoids in our simulations. The variability 
of fluctuations is based on a previous study, which used long-term 
empirical data that showed increasing frequencies of extreme but-
terfly host abundances in the last decade (Nair et al., 2018; Tack 
et al., 2015). Because low abundance of hosts can cause population 
bottlenecks in parasitoids, we expect that positive spatial or tem-
poral autocorrelation in host abundance would exacerbate bot-
tleneck effects. In a butterfly metapopulation studied by Jangjoo 
et al. (2020), a prolonged bottleneck event depleted genetic di-
versity from local populations and disrupted the spatial pattern of 
population differentiation more than a bottleneck of a shorter du-
ration. In recent years, weather patterns may have become more 
spatially autocorrelated in some areas (Kahilainen et al., 2018). In 
our models, spatially autocorrelated fluctuations do not reduce 
persistence as much as temporally autocorrelated noise probably 
because the parasitoid disperses at moderate to high rates in a 
large fraction of the simulations (Figure S2). Dispersal is one of 
the mechanisms that can cause spatial autocorrelation in popu-
lation dynamics (Liebhold et al., 2004), so that externally impos-
ing spatial autocorrelation may not further increase the risk of 
population bottlenecks in our simulations. There is no reason to 
assume that fluctuations in weather conditions themselves are 

temporally autocorrelated. However, parasitoids experience fluc-
tuations that have been filtered by their hosts, and environmental 
variation could be modified to become more alike to red noise as 
it propagates through the food chain (Kuparinen et al., 2018; Ripa 
et al., 1998; Sugihara, 1995). Although the CSD system appears 
to be effective in mitigating the occurrence of a diploid male vor-
tex, it could break down if fluctuations in host abundance become 
more extreme and temporally autocorrelated.
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