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Cutaneous squamous cell carcinoma (cSCC) accounts for about 20% of all skin
cancers, the most common type of malignancy in the United States. Genome-
wide association studies (GWAS) have successfully identified multiple genetic variants
associated with the risk of cSCC. Most of these studies were single-locus-based, testing
genetic variants one-at-a-time. In this article, we performed gene-based association
tests to evaluate the joint effect of multiple variants, especially rare variants, on the risk of
cSCC by using a fast sequence kernel association test (fastSKAT). The study included
1,710 cSCC cases and 24,304 cancer-free controls from the Nurses’ Health Study,
the Nurses’ Health Study II and the Health Professionals Follow-up Study. We used
UCSC Genome Browser to define gene units as candidate loci, and further evaluated the
association between all variants within each gene unit and disease outcome. Four genes
HP1BP3, DAG1, SEPT7P2, and SLFN12 were identified using Bonferroni adjusted
significance level. Our study is complementary to the existing GWASs, and our findings
may provide additional insights into the etiology of cSCC. Further studies are needed to
validate these findings.

Keywords: region-based association test, fast sequence kernel association test, cutaneous squamous cell
carcinoma, rare variants, generalized genetic random field

INTRODUCTION

Cutaneous squamous cell carcinoma (cSCC) is the second most common type of non-melanoma
skin cancers, accounting for about 20% of all skin cancers and the majority of deaths attributable to
non-melanoma skin cancers (Chitsazzadeh et al., 2016; Motaparthi et al., 2017; Parekh and Seykora,
2017; Que et al., 2018a). The incidence of cSCC in the United States has been increasing over the last
few decades, with over 1 million annual cases in recent years (Nguyen et al., 2014; Muzic et al., 2017;
Que et al., 2018a,b). The increase is also expected to continue because of the longer life expectancy,
aging population and chronic ultraviolet exposure (Nguyen et al., 2014; Motaparthi et al., 2017;
Waldman and Schmults, 2019). The growing mortality and morbidity of cSCC has posed immense
economic burden on the national healthcare systems. Though the remission rate of cSCC cases
has substantially improved, many cases were still associated with higher probability of recurrence,
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metastasis and poor prognosis after surgery (Motaparthi et al.,
2017; Que et al., 2018a; Waldman and Schmults, 2019). It is of
crucial importance to understand the pathogenesis of cSCC and
to reduce the public health impact of the disease.

The etiology of cSCC has not been fully understood.
However, the risk of the disease can be influenced by multiple
environmental exposures. For example, higher risk of cSCC is
found to be associated with increased age, fair skin color, male
gender, exposure to ultraviolet radiation, immunosuppression
and human papillomavirus (Chahal et al., 2016; Parekh and
Seykora, 2017; Que et al., 2018a; Waldman and Schmults,
2019). Similar to all cancers, genetic susceptibility also plays an
important role in the development of cSCC. Familial aggregation
provides direct evidence for the heritability of cSCC (Hussain
et al., 2009; Asgari et al., 2015). A few known cancer-related
genes, such as TP53, CDKN2A, Ras, and NOTCH1 were also
causal to skin cancers (Que et al., 2018a). Mutations with these
genes may disrupt normal cell growth, cell circle and cellular
signal transduction, leading to the development of the disease.
In the past decade, genome-wide association studies (GWAS)
have become a commonly used strategy to identify genetic
variants for complex human diseases in the general population.
A few GWASs have identified multiple genetic variants that are
associated with the risk of cSCC, such as CADM1, AHR, SEC16A,
and DEF8 (Nan et al., 2011; Asgari et al., 2016; Chahal et al.,
2016; Siiskonen et al., 2016). Many findings were also successfully
replicated in independent populations. These findings have
provided valuable insights into the genetic etiology of cSCC.

Despite of these successes, it was estimated that the genetic
variants identified by existing GWASs only account for ∼8.5%
of the cSCC heritability (Sarin et al., 2020). The genetic causes
of the disease remain largely unknown (Chahal et al., 2016). This
challenge may be due to a number of limitations of the existing
GWASs, such as insufficient statistical power to detect small to
moderate genetic effects, burden of multiple testing adjustment,
and overlooking potential interactions among variants (Mo et al.,
2015; Nettiksimmons et al., 2016). As an alternative to the
single-locus analysis, gene- or region-based analysis can be a
complementary approach addressing some of those limitations.
It may integrate effects of multiple genetic variants, especially
rare variants, within a genetic region for improved power,
reduce the computational intensities and alleviate the burden of
multiple testing (Wu et al., 2010). In recent years, a number of
statistical methods have been developed for conducting region-
based association test. For example, a sequence kernel association
test (SKAT) has been a commonly used method that evaluates the
joint effects of genetic variants in a region on a disease outcome
while adjusting for covariates (Wu et al., 2011). It uses flexible
kernel functions to integrate the effects from multiple variants
and allows the effect of causal variants to be bi-directional.
Further, a fast sequencing kernel association test (fastSKAT)
has been developed to implement SKAT in a computational
efficient fashion, especially for large-scale studies with thousands
of subjects (Lumley et al., 2018). In this article, we assessed
the validity of region-based fastSKAT by replicating 18 GWAS-
identified SNPs using single-locus testing. We further tested
the association between approximately 23,000 gene regions and

cSCC outcome in five independent study populations. The results
from each population were further integrated by a Fisher’s
combined probability test.

MATERIALS AND METHODS

Ethics Statement
The study protocol was approved by the institutional review
boards of the Brigham and Women’s Hospital and Harvard
T.H. Chan School of Public Health, and those of participating
registries as required.

Study Population
Our study included 26,014 individuals from three large
prospective cohort studies in the U.S., including the Nurses’
Health Study (NHS), the Nurses’ Health Study 2 (NHS2), and the
Health Professionals Follow-up Study (HPFS). The subjects were
selected under a nested case-control design based on cSCC status.
Cases were defined as individuals diagnosed with invasive cSCC,
while controls were individuals free of cSCC or any primary type
of cancers. The individuals’ characteristics, genotypes and other
covariates information were collected in the NHS, the NHS2
and the HPFS studies. In this study, we partitioned the subjects
into five independent sub-populations based on their genotyping
platforms, including “Affymetrix,” “Illumina,” “OmniExpress,”
“OncoArray” and “HumanCore.” In the following, we used these
platforms to represent five populations. After the quality control
process, the five populations included a total of 5,533, 3,314,
5,354, 5,267, and 6,646 subjects, respectively. More details about
the study design and data collection were described elsewhere
(Chahal et al., 2016; Duffy et al., 2018).

Genomic Imputation and Quality Control
The genomic datasets, imputation and quality control procedures
were conducted separately in each population and were
described with details in previous publications (Lindström
et al., 2017; Duffy et al., 2018). Briefly, the participants from
five sub-populations were genotyped at different times and by
different genotyping platforms. The subjects in “Affymetrix”
were genotyped by the Genome-wide Human SNP Array
6.0. The subjects in “Illumina” were genotyped by either
Illumina HumanHap300 BeadChip, HumanHap550-Quad
BeadChip, Human610-Quad BeadChip, or Human660W-Quad
BeadChip. The subjects in “OmniExpress” were genotyped by
Illumina HumanOmniExpress-12 BeadChip. The subjects in
“OncoArray” were genotyped by Infinium OncoArray-550K
BeadChip. The subjects in “HumanCore” were genotyped by
Illumina HumanCoreExome-12v1-0 BeadChip.

Variants with low call rate (<95%) were removed. A pairwise
identity-by-descent (IBD) analysis was conducted to identify
duplicates. For individuals who may be genotyped for more
than once using different genotyping platforms, one of the
duplicated pair was excluded by the order of “Affymetrix,”
“Illumina,” “OmniExpress,” “OncoArray,” and “HumanCore.”
For individuals with different cohort IDs but a high genetic
concordance rate, both of the pairs were removed. Genome
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imputation was further conducted in each population using
the 1000 Genomes Project Phase 3 Integrated Release Version
5 as reference panels. Software ShapeIT (v2.r837) was used
for genotype phasing, and the phased genotypes were further
imputed to ∼ 47 million variants using Minimac3 (O’Connell
et al., 2014; Das et al., 2016).

Replication of GWAS Identified SNPs
Using Single-Locus Testing
To evaluate the validity of fastSKAT, we used 18 SNPs identified
in two previous GWAS as positive controls (Chahal et al., 2016;
Sarin et al., 2020). In these previous GWASs, ten SNPs were
identified involving 3 independent populations (i.e., “Affymetrix,”
“Illumina,” and “OmniExpress”), and 8 SNPs were identified
using all 5 populations. For comparison purpose, we first used
fastSKAT to test the association between each of these SNPs and
cSCC, and further conducted a Fisher’s combined probability test
to evaluate the overall association across three or five populations
consist with their analysis in the previous GWASs. For fair
comparison, we calculated p-values by applying fastSKAT to the
same NHS and HPFS populations used in previous publications.
In particular, “Affymetrix,” “Illumina,” and “OmniExpress” were
used in Chahal et al. (2016), while “Affymetrix,” “Illumina,”
“OmniExpress,” “OncoArray,” and “HumanCore” were all used
in Sarin et al. (2020). The p-values were compared to those of
previous GWAS publications for consistency.

Genomic Region Selection
To identify biologically meaningful loci, we used UCSC Genome
Browser (assembly GRCh37/hg19) to define gene units as
candidate loci for region-based analysis. Software bedtools were
used to merge the redundant and overlapping genomic regions
based on the gene annotation (Kindlon ARQaN, 2009–2019;
Quinlan and Hall, 2010). A candidate locus was then defined
as 7.5KB upstream and downstream the corresponding gene
region. Ultimately, a total of 25,437 regions were extracted.
During the data processing, SNPs with an imputation quality
score less than 0.3 were removed. We also extracted common
and rare variants separately for each region using PLINK2.0
(Purcell et al., 2007; Purcell). Common and rare variants were
defined based on whether the minor allele frequency (MAF) was
larger than 5%. Because previous GWAS has comprehensively
evaluated each single variant for association with cSCC, we only
considered regions with two or more variants for region-based
association analysis.

Region-Based Association Test
We evaluated the association between genomic regions and
cSCC using the fastSKAT, a region-based association test that
is computationally efficient for large-scale genomic datasets
(Lumley et al., 2018). Similar to the SKAT method, it is a
variance component score test that integrates the effect of
multiple genetic variants within the same region (Wu et al.,
2011). The improvement of computational speed over SKAT
was achieved by accurately approximating the tail probability for
the asymptotic distribution of the test statistics (Lumley et al.,
2018). Instead of computing all the eigenvalues of the genotypic

similarity matrix, only the top ones were computed through
random projections (Halko et al., 2011; Tropp, 2011). The tail
probability can then be approximated by the top eigenvalues and
a reminder term computed using Satterthwaite approximation,
which approximates the sum of weighted chi-square distributions
with a single chi-square distribution. The fastSKAT has been
implemented in R package “bigQF” (Lumley et al., 2018). For
each gene region, the method was applied for rare variants
(MAF < 5%) and common (MAF ≥ 5%) variants separately,
and also for all variants together, adjusting for age, gender and
the first five genetic principal components. A weighted linear
kernel was used with each variant weighted by Beta(MAF, 1, 25),
the beta distribution density function. After testing each region
within each of the five sub-populations, we further adopted the
Fisher’s combined probability test to integrate the p-values from
sub-populations for an overall p-value.

Cross-Check With Expression
Quantitative Trait Loci (eQTL) Database
The majority of variants identified by existing GWASs were
located in the non-coding regions of the genome, and were
therefore likely to be involved in gene regulation. One hypothesis
is that that causal genetic variants for complex diseases may
function through regulating the expression level of genes within
specific tissues. To prioritize our findings, we further examined
if the identified genes harbor any known expression quantitative
trait locus (eQTL) in the database. We used the Genotype-
Tissue Expression (GTEx) database (GTEx Consortium, 2013)
for cross checking. There are two main types of skin tissues
available in the GTEx, including sun-exposed skin at lower leg
and sun-unexposed skin in suprapubic region. We summarized
the number of eQTLs located within each identified region for
either of skin tissue types.

RESULTS

Study Population
Our study included a total of 1,710 cSCC cases and 24,304
controls, partitioned into five sub-populations based on
genotyping platforms. The number of subjects and their
characteristics by each population is summarized in Table 1.
The case-control ratios ranged from 1:6 to 1:31 across five
populations. Gender was statistically different between cases
and controls in four populations (p < 0.05), which was consist
with the fact that the incidence rate was higher in men than
in women (Karagas et al., 1999; Nguyen et al., 2014). Age, a
well-established risk factor, was associated with cSCC in all
populations (p < 0.001).

Replication of GWAS Identified SNPs
Using Single-Locus Testing
For a total of 18 SNPs identified by previous GWASs, we used
fastSKAT to test each variant for association with the disease
outcome and compared the testing p-values with those reported
in previous publications. The comparison is presented in Figure 1
and summarized in Table 2. We found that the Fisher’s p-values
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combining fastSKAT results of multiple populations were highly
correlated with the reported p-values in previous publications.
The Fisher’s combined p-values tend to be smaller, especially
for variants with relatively small testing p-values (e.g., <0.01),
leading to a higher level of statistical significance for the

TABLE 1 | Study population characteristics and number of regions tested in
each population.

Population n (%) Male Age

n (%) p-valuea Mean (SD) p-valuea

Affy (n = 5,533)

Cases 340 (6.1) 166 (48.8) 0.004 50.34 (9.53) <0.001

Controls 5193 (93.9) 2118 (40.8) 48.10 (9.48)

Illumina (n = 3,314)

Cases 200 (6.0) 63 (31.5) 0.002 48.25 (8.70) <0.001

Controls 3114 (94.0) 683 (21.9) 43.72 (8.71)

Omni (n = 5,354)

Cases 737 (14.0) 281 (38.1) 0.310 48.51 (9.52) <0.001

Controls 4517 (86.0) 1631 (36.1) 46.90 (8.90)

Onco (n = 5,267)

Cases 226 (4.3) 94 (41.6) <0.001 47.80 (9.77) <0.001

Controls 5041 (95.7) 866 (17.2) 41.01 (8.87)

HumanCore (n = 6,646)

Cases 207 (3.1) 102 (49.3) <0.001 48.40 (10.24) <0.001

Controls 6439 (96.9) 1262 (19.6) 40.96 (9.54)

ap-value by two-sample t-test for age and by Chi-square test for gender.

association. The results suggested that testing with fastSKAT
in each population and combining with Fisher’s combined
probability test was able to reliably identify the gene-disease
association with improved statistical power.

Region-Based Association Test
Approximately 23,000 candidate regions were extracted and
tested in each population. The numbers differed slightly across
populations and was listed in Table 3. For each candidate region,
the rare variants, common variants and all variants were tested
separately for association with cSCC outcome using fastSKAT.
The distribution of testing p-values were examined against a
uniform distribution via quantile-quantile plots (Supplementary
Figures 1–3 for rare, common and all variants, respectively).
The genomic inflation factors ranged between 0.974 and 1.07,
suggesting well-controlled type I error rates. The Manhattan
plots based on fastSKAT and Fisher’s method are provided in
Figures 2–4.

A total of four genomic regions were identified by Fisher’s
combined probability test at the Bonferroni adjusted significance
level. The genomic regions and their testing p-values are listed
in Table 4. Four regions were identified via rare variants
association, and one of them was also identified via all
variants analysis. No regions reached statistical significance
after Bonferroni adjustment via common variants analysis.
While the overall significant association was largely driven
by one particular population for most of these regions, the
association for one region was replicated by one additional
population in the study. In particular, a region (gene

TABLE 2 | Comparison of p-values for 18 SNPs identified by published GWASs and computed by fastSKAT.

Publication SNP Chro Genec p-value in paperd p-value by fastSKATe

Sarin et al., 2020a rs10399947 1 ARNT–[]–SETDB1 2.31 × 10−2 9.41 × 10−1

rs10200279 2 ALS2CR12 3.34 × 10−1 2.59 × 10−1

rs10944479 6 BACH2 5.99 × 10−2 3.73 × 10−1

rs7834300 8 TRPS1 1.58 × 10−1 6.89 × 10−1

rs1325118 9 []–TYRP1 8.60 × 10−2 2.08 × 10−1

rs7939541 11 ZNF143–[]–WEE1 8.55 × 10−2 1.80 × 10−1

rs657187 12 KRT6A–[]–KRT5 3.25 × 10−1 4.20 × 10−1

rs721199 12 HAL 1.08 × 10−3 3.07 × 10−1

Chahal et al., 2016b rs12203592 6 IRF4 3.10 × 10−6 1.33 × 10−10

rs1805007 16 MC1R 4.90 × 10−5 1.88 × 10−7

rs35407 5 SLC45A2 5.50 × 10−2 8.56 × 10−2

rs1126809 11 TYR 3.30 × 10−1 1.15 × 10−2

rs6059655 20 RALY-ASIP 5.40 × 10−1 5.51 × 10−2

rs1800407 15 OCA2 8.30 × 10−1 4.76 × 10−1

rs57994353 9 SEC16A 4.70 × 10−1 5.65 × 10−1

rs10810657 9 BNC2, CNTLN 1.20 × 10−2 1.70 × 10−3

rs74899442 11 CADM1, BUD13 1.80 × 10−1 1.85 × 10−1

rs117132860 7 AHR 4.00 × 10−2 1.94 × 10−1

aSarin et al. (2020). Genome-wide meta-analysis identifies eight new susceptibility loci for cutaneous squamous cell carcinoma. Nat Commun 11, 820.
bChahal et al. (2016). Genome-wide association study identifies novel susceptibility loci for cutaneous squamous cell carcinoma. Nat Commun 7, 12048.
cThe format gene–[]– indicates SNPs are located within intergenic regions.
dp-values reported in previous publications using either three or five NHS/HPFS populations.
ep-values of Fisher’s method combining fastSKAT p-values from NHS/HPFS populations used in previous publications.
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FIGURE 1 | Replication of 18 GWAS identified SNPs using fastSKAT. The p-values of fastSKAT were based on Fisher’s method combining its testing p-values from
the same NHS and HPFS populations used in previous publications.

TABLE 3 | Total number of regions and genetic variants tested in each population.

Population Rare variants Common variants All variants

# of
regions

# of SNPs in regions Significance
levela

# of
regions

# of SNPs in regions Significance
levela

# of
regions

# of SNPs in regions Significance
levela

Range Median Range Median Range Median

Affy 23,566 2–26,354 131 2.12 × 10−6 23,552 2–13,667 79 2.12 × 10−6 23,675 2–40,021 210 2.11 × 10−6

Illumina 23,565 2–26,485 131 2.12 × 10−6 23,518 2–13,673 80 2.13 × 10−6 23,661 2–40,158 211 2.11 × 10−6

Omni 23,645 2–27,077 157 2.11 × 10−6 23,619 2–13,700 80 2.12 × 10−6 23,729 2–40,777 230 2.11 × 10−6

Onco 23,546 2–24,220 120 2.12 × 10−6 23,540 2–13,655 79 2.12 × 10−6 23,673 2–37,875 198 2.11 × 10−6

HumanCore 23,734 2–18,549 109 2.11 × 10−6 23,699 2–13,648 79 2.11 × 10−6 23,823 2–32,197 214 2.10 × 10−6

Fisher 23,844 – – 2.10 × 10−6 23,803 2.10 × 10−6 23,897 – – 2.09 × 10−6

aBonferroni adjusted significance level.

SLFN12) was located on chromosome 17, BP: 33,737,940–
33,760,195. The rare variant association test achieved statistical
significance after Bonferroni correction (p = 2.40 × 10−8). The
association was highly significant in “OncoArray” population
(p = 5.05 × 10−9) and was replicated in “HumanCore”
population (p = 3.73× 10−3).

We further looked into the significant findings within each
population. In Table 5, we summarized the regions that were
identified in a particular population by both rare variants and all
variants association test. In Table 6, we summarized the regions
that were identified by rare variants association test only. The
p-values computed in five populations for these regions were
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FIGURE 2 | The Manhattan plots by rare variants analysis in each population (A) Affymetrix. (B) Illumina. (C) OmniExpress. (D) OncoArray. (E) HumanCore. (F) Fisher.

summarized in Supplementary Tables 1, 2. In particular, the
results suggested that multiple gene regions on chromosome 12
and chromosomes 17 were identified for association with the
disease outcome. For example, two regions close to each other on
chromosome 17 (gene LOC101928000, BP: 5,015,229–5,017,677
and gene USP6, BP: 5,019,732–5,078,326) were identified for
both rare and all variants association. A different region on
chromosome 17 was identified for rare variants association.
While the underlying genetic mechanism and causal SNPs were
not clear, we think the rare variants association test may provide
findings that are complementary to existing GWAS that usually
are limited to relatively common variants. For common variants

analysis, we were not able to identify any regions after Bonferroni
adjustment. In Table 7, we summarized regions with suggestive
significance (i.e., 10−5) in a particular population. In particular,
the association for region SPATA2L was marginally significant
in “OmniExpress” and was also nominally significant in both
“Illumina” and “OncoArray.”

Cross-Check With Expression
Quantitative Trait Loci (eQTL) Database
To provide additional insights on the possible involvement
of these identified regions in regulating gene expression, we
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FIGURE 3 | The Manhattan plots by common variants analysis in each population (A) Affymetrix. (B) Illumina. (C) OmniExpress. (D) OncoArray. (E) HumanCore.
(F) Fisher.

summarized the number of known eQTLs within each region
(Table 8). Most of those loci (15 out of 18) included at
least one eQTL either in not-sun-exposed or sun-exposed skin
tissues. Among 24,279 regions being tested, a total of 16,534
contained at least one eQTL in the GTEx database. To evaluate
the overrepresentation of eQTL in the identified region, we
calculated an exact p-value using a hyper-genomic distribution as:

pval =
k=18∑
k=15

(
16, 534

k

)(
24, 279− 16, 534

18− k

)
(

24, 279
16, 534

) = 0.126

It is also worthwhile to note that most of existing studies
of eQTL were also based on single-locus association test
between each genetic variants and gene expression data. Though
the p-value was not statistically significant at 0.05 level, the
large proportion of identified regions harboring known eQTL
suggested their possible involvement of gene expression within
skin tissues.

DISCUSSION

In this study, we identified 18 cSCC-associated genomic regions
using gene-based fastSKAT method. One region (i.e., SLFN12)
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FIGURE 4 | The Manhattan plots by all variants analysis in each population (A) Affymetrix. (B) Illumina. (C) OmniExpress. (D) OncoArray. (E) HumanCore. (F) Fisher.

was statistically significant in one population and replicated in
another population. The eQTL analysis further supported the
possible biological contribution of those regions to the genetic
susceptibility of cSCC. The replication of previous GWAS-
identified SNPs also demonstrated the reliability of fastSKAT in
identifying susceptibility loci with improved statistical power. To
our knowledge, our study is among the first ones to investigate
the region-based association for cSCC on a genome-wide level.

As an effective and powerful tool, GWAS has been commonly
used to investigate the genetic architecture of complex diseases,
including squamous cell carcinoma. The goal of our study is to
provide a complementary strategy to address a few limitations

of the GWAS, especially to evaluate the rare variants with low
frequencies in the populations. In our study, although the total
sample size was relatively large (∼26K), the number of cases
were relatively small in each sub-population (<800). In such
a situation, the single-locus-based GWAS is expected to be
under-powered to identify rare variants (Tong et al., 2011; Mo
et al., 2015). In addition, the highly unbalanced numbers of
cases and controls may also present additional challenge to both
conventional GWAS and rare-variants association tests. Recent
studies have suggested that the number of cases and case to
control ratio may both have an impact on the statistical power
and type I errors, especially under large control group scenarios
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TABLE 4 | Regions identified by Fisher’s combined probability test after Bonferroni adjustment.

Chro Regions Gene p-value

Affy Illumina Omni Onco HumanCore Fisher

Rare variants analysis 1 21,069,170–21,113,181 HP1BP1 7.90 × 10−1 7.97 × 10−11 8.47 × 10−1 3.62 × 10−1 6.99 × 10−2 3.65 × 10−8

3 49,506,135–49,573,051 DAG1 8.62 × 10−1 5.80 × 10−11 8.30 × 10−1 7.00 × 10−1 7.32 × 10−1 3.83 × 10−7

7 45,763,385–45,808,617 SEPT7P2 5.35 × 10−1 7.72 × 10−1 1.07 × 10−1 4.56 × 10−1 6.94 × 10−9 1.86 × 10−6

17 33,737,940–33,760,195 SLFN12 1.64 × 10−1 6.11 × 10−1 4.38 × 10−1 5.05 × 10−9 3.73 × 10−3 2.40 × 10−8

All variants analysis 1 21,069,170–21,113,181 HP1BP1 8.29 × 10−1 8.03 × 10−11 5.86 × 10−1 9.51 × 10−1 3.52 × 10−1 2.54 × 10−7

Bold values indicate significant association after Bonferroni adjustment in the discovery phase or nominal significant association in the replication phase.

TABLE 5 | Regions identified by both rare and all variants analysis in a particular population after Bonferroni adjustment.

Population Chro Regions Gene Rare variants analysis All variants analysis

p-value in this
population

Fisher’s
p-value

# of SNPs
in region

p-value in this
population

Fisher’s
p-value

#of SNPs
in region

Illumina 1 21,069,170–21,113,181 HP1BP3 7.97 × 10−11 3.65 × 10−8 224 8.03 × 10−11 2.54 × 10−7 296

3 48,445,260−48,471,460 PLXNB1 5.82 × 10−8 7.17 × 10−6 155 5.82 × 10−8 1.43 × 10−5 187

3 49,506,135–49,573,051 DAG1 5.80 × 10−11 3.83 × 10−7 169 5.99 × 10−8 6.37 × 10−5 304

17 5,015,229–5,017,677 LOC101928000 1.20 × 10−6 4.25 × 10−5 78 1.14 × 10−6 1.72 × 10−4 119

17 5,019,732–5,078,326 USP6 3.11 × 10−7 1.31 × 10−4 253 2.92 × 10−7 3.43 × 10−5 406

HumanCore 12 56,512,003–56,516,280 ZC3H10 9.95 × 10−7 1.37 × 10−4 54 1.05 × 10−6 1.16 × 10−4 71

12 56,521,985–56,538,460 ESYT1 1.14 × 10−6 1.68 × 10−4 102 1.16 × 10−6 1.66 × 10−4 122

12 56,546,203–56,551,771 MYL6B 6.04 × 10−7 7.77 × 10−5 61 6.04 × 10−7 9.85 × 10−5 76

12 56,660,641–56,664,750 COQ10A 5.68 × 10−7 9.10 × 10−5 27 1.38 × 10−6 5.74 × 10−4 53

12 57,623,355–57,628,718 SHMT2 1.57 × 10−7 2.49 × 10−5 70 1.57 × 10−7 2.49 × 10−5 86

12 57,628,685–57,634,475 NDUFA4L2 1.90 × 10−7 2.81 × 10−5 52 1.90 × 10−7 2.81 × 10−5 66

12 57,637,237–57,644,976 STAC3 7.88 × 10−8 1.23 × 10−5 55 7.88 × 10−8 1.23 × 10−5 70

12 57,647,546–57,824,788 R3HDM2 1.96 × 10−7 1.10 × 10−5 501 1.96 × 10−7 1.11 × 10−5 729

12 57,828,467–57,845,845 INHBC 1.06 × 10−6 2.94 × 10−5 85 1.06 × 10−6 2.94 × 10−5 133

TABLE 6 | Regions identified by rare variants analysis in a particular population after Bonferroni adjustment.

Population Chro Regions Gene Rare variants analysis

p-value in this population Fisher’s p-value # of SNPs in region

Illumina 9 71,650,478–71,715,094 FXN 4.32 × 10−8 6.01 × 10−6 394

Onco 17 33,737,940–33,760,195 SLFN12 5.05 × 10−9 2.40 × 10−8 154

HumanCore 7 45,763,385–45,808,617 SEPT7P2 6.94 × 10−9 1.86 × 10−6 97

HumanCore 12 56,631,590–56,652,143 ANKRD52 9.60 × 10−7 1.50 × 10−4 49

(Zhang et al., 2019). It was also found that SKAT can reach
reasonably high power with well-controlled type I error if the
number of cases is larger than 200. In our study, the number of
cases ranged between ∼200 and 700 across five subpopulations,
and the results appeared to be consistent with previous studies.
The QQ-plot and estimated genomic inflation factors suggested
well-controlled type I errors. While we expect the statistical
power will improve with additional cases, the current results also
suggested that region-based association test was able to identify
genomic regions though rare variants association.

A number of gene units were identified to harbor genetic
variants that may contribute to the susceptibility of cSCC. One
gene was identified with replicated association in two sub-
populations. Gene SLFN12, or Schlafen family member 12,

belongs to a group of genes mediating growth-inhibition as cell
cycle regulators (Katsoulidis et al., 2010). Many studies have
found that SLFN12 played a key role in generating anti-tumor
effects triggered by certain drugs or interventions (Katsoulidis
et al., 2010; An et al., 2019; Lewis et al., 2019). For example, the
drug Anagrelide (ANA) can only inhibits cancer cell growth when
both PED3A and SLFN12 are expressed.

A number of other gene units were identified to be associated
with cSCC in one population without replication. However, they
have been reported in the literature for involvement with cancer
development. For example, the identified gene units HP1BP1
and SEPT7P2 have been found to be involved in cancer growth
and progression (Dutta et al., 2014; Wang et al., 2019). In
addition, gene SPATA2L have been identified to be associated
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TABLE 7 | Regions reaching suggestive significance level of 10−5 by common variants analysis.

Identification Chro Regions Gene p-values in each population
platform

Affy Illumina Omni Onco Human core Fisher

Illumina 1 52,254,865–52,344,609 NRDC, MIR761 2.95 × 10−1 6.39 × 10−6 2.50 × 10−1 1.13 × 10−1 4.91 × 10−1 1.29 × 10−4

2 190,627,505–190,630,282 OSGEPL1-AS1 3.97 × 10−1 7.95 × 10−6 8.37 × 10−1 8.93 × 10−1 8.73 × 10−1 3.50 × 10−3

2 190,634,992–190,649,097 ORMDL1 4.16 × 10−1 4.94 × 10−6 7.25 × 10−1 9.57 × 10−1 8.96 × 10−1 2.47 × 10−3

2 190,648,810–190,742,355 PMS1 4.15 × 10−1 4.93 × 10−6 7.25 × 10−1 9.57 × 10−1 8.96 × 10−1 2.47 × 10−3

Omni 16 89,762,764–89,768,121 SPATA2L 7.03 × 10−1 2.56 × 10−2 4.96 × 10−6 2.77 × 10−2 1.96 × 10−1 5.19 × 10−6

Fisher 21 42,513,426–42,519,991 LINC00323 5.21 × 10−1 7.41 × 10−3 1.11 × 10−5 3.02 × 10−1 5.87 × 10−2 7.54 × 10−6

No regions were genome-wide significant after Bonferroni adjustment.
Bold values indicate suggestive association in the discovery phase or nominal significant association in the replication phase.

TABLE 8 | Number of eQTLs located within identified regions in skin tissues exposed or not exposed to sun.

Population Chro Regions Gene Number of eQTLs within region

Skin not exposed to sun Skin exposed to sun

Illumina 1 21,069,170–21,113,181 HP1BP3 0 0

3 48,445,260–48,471,460 PLXNB1 2 2

3 49,506,135–49,573,051 DAG1 3 3

17 5,015,229–5,017,677 LOC101928000 0 2

17 5,019,732–5,078,326 USP6 1 1

HumanCore 12 56,512,003–56,516,280 ZC3H10 0 1

12 56,521,985–56,538,460 ESYT1 2 1

12 56,546,203–56,551,771 MYL6B 2 0

12 56,660,641–56,664,750 COQ10A 2 4

12 57,623,355–57,628,718 SHMT2 2 0

12 57,628,685–57,634,475 NDUFA4L2 0 0

12 57,637,237–57,644,976 STAC3 0 2

12 576,47,546–57,824,788 R3HDM2 2 4

12 57,828,467–57,845,845 INHBC 0 0

Illumina 9 71,650,478–71,715,094 FXN 1 2

Onco 17 33,737,940–33,760,195 SLFN12 3 4

HumanCore 7 45,763,385–45,808,617 SEPT7P2 3 1

HumanCore 12 56,631,590–56,652,143 ANKRD52 3 3

with vitiligo in a recent study (Cai et al., 2021), and the inverse
relationship between vitiligo and NMSC was suggested in many
research (Paradisi et al., 2014; Rodrigues, 2017; Wu et al., 2018;
Wen et al., 2020).

A number of other methods were also available for region-
based association test. For example, we and others have proposed
a generalized genetic random field (GGRF) method for testing
the association between a set of variants and a disease phenotype
(Li et al., 2014). The proposed GGRF is a similarity-based
method. It maps subjects to a Euclidean space using on their
genotypes as coordinates, so that subjects who are close to
each other in space would have similar phenotype if there is
a gene-phenotype association (Li et al., 2014). GGRF used a
Wald-type of test statistic and may achieve improved power
over SKAT under various disease scenario. However, fastSKAT
used a score test and is more computationally efficient with
the approximation by random projection. In this study, we
have used fastSKAT for analysis and we showed in Appendix,

GGRF would be equivalent to SKAT if a generalized score
test is used.

Our study must be considered in the light of certain
limitations. First, none of the association was consistently
replicated in all populations. This is partly due to the
heterogeneous nature of rare variants and their low allele
frequencies across populations. Multiple rare mutations within
the same gene can independently influence the disease (i.e.,
allelic heterogeneity), and rare variants in different genes can
also be involved in related pathways underlying complex human
diseases (i.e., locus heterogeneity) (McClellan and King, 2010).
Second, due to the nature of gene-based analysis, it is not
straightforward to ascertain the causal SNPs or estimate their
effect on cSCC risk. We also have not considered intergenic
variants that were not within the gene regions (Mo et al., 2015).
Third, the existing findings based on region-based association
have been limited. For example, the eQTL variants available in
GTEx database were mainly identified via single-locus analysis.
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Additional functional analysis is needed to validate the identified
regions in the future. Forth, we are also aware that the results
are subject to the strengths and limitations of fastSKAT due to
its assumptions and implementation. For example, we have used
a weight function that is inversely correlated with the MAF of
each variant (i.e., probability density of beta distribution, default
option of fastSKAT). It is often helpful to incorporate functional
annotation of the variants to upweight those with potentially
stronger effect on the disease (Kumar et al., 2009; Lee et al., 2015;
Quick et al., 2019). Further, extensions of SKAT, such as SKAT-
O, were able to effectively combine the test statistics of SKAT
and burden test (Lee et al., 2012), which may have improved
power when the causal variants have the same direction of effects.
We have adopted fastSKAT mainly because of the computational
advantage for studies with a very large number of subjects and
variants. It can also be helpful to improve the power in other
scenarios when SKAT-O becomes feasible for extremely large
studies. Fifth, no genomic region was identified by common
variants analysis after Bonferroni adjustment. It is partly because
the weight function adopted gave more weight to variants with
low MAF and regions with common variants receiving less weight
may not be able to identify. Furthermore, region-based test would
be less powerful when there are a few susceptible loci with effects
in this region and the total number of tested SNPs is large.
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APPENDIX

In our study, a fastSKAT method was applied to test the association between each genomic region and disease outcome. A number of
other methods were also available for region-based association test. For example, we and others have proposed a generalized genetic
random field (GGRF) method for testing the association between a set of variants and a disease phenotype (Li et al., 2014), and
compared its performance to that of SKAT. We described below that GGRF would have similar test statistic with SKAT if a generalized
score test is used for inference.

Suppose the study include a total of N subjects, each withK variants in a region and M covariates. Let Y , G, X denotes the phenotype
(N = 1), genotype (N = K), and covariates (N = M) matrix, respectively. The GGRF adopts a conditional autoregression model as:

E (Y | Y−) = µγS (Y − µ) , ;

Where the i-th element of Y− denotes the phenotype of all other subjects other than i-th subject, µ = f (Xβ) is used for covariants
adjustment, and S is a matrix for pairwise genetic similarity among N subjects. To test the genotype-phenotype association (H0 : γ =

0), a generalized score test can be used (Liang and Zeger, 1989), so that:

Uγ (β, γ) =
∂E (Y | Y−)

∂γ

T
{Y − E (Y | Y−)} = (Y − µ)TS {I − γS} (Y − µ) = 0;

A generalized score statistic can thus be defined as (Boos, 1992)

Q = Uγ

(̂
β, 0

)
= (Y − µ̂)′S (Y − µ̂) ;

where β̂ is estimated under the null hypothesis that γ = 0 via a generalized linear model. The score statistic 1
mQ takes the same format

with that of SKAT, and follows asymptotically a mixture of Chi-square distributions (Wu et al., 2011).
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