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GPCRs transform extracellular stimuli into a physiological response by activating an
intracellular signaling cascade initiated via binding to G proteins. Orphan G protein-
coupled receptors (GPCRs) hold the potential to pave the way for development of
new, innovative therapeutic strategies. In this review we will introduce G protein-
coupled receptor 143 (GPR143), an enigmatic receptor in terms of classification within
the GPCR superfamily and localization. GPR143 has not been assigned to any of the
GPCR families due to the lack of common structural motifs. Hence we will describe the
most important motifs of classes A and B and compare them to the protein sequence of
GPR143. While a precise function for the receptor has yet to be determined, the protein is
expressed abundantly in pigment producing cells. Many GPR143 mutations cause
X-linked Ocular Albinism Type 1 (OA1, Nettleship-Falls OA), which results in
hypopigmentation of the eyes and loss of visual acuity due to disrupted visual system
development and function. In pigment cells of the skin, loss of functional GPR143 results in
abnormally large melanosomes (organelles in which pigment is produced). Studies have
shown that the receptor is localized internally, including at the melanosomal membrane,
where it may function to regulate melanosome size and/or facilitate protein trafficking to the
melanosome through the endolysosomal system. Numerous additional roles have been
proposed for GPR143 in determining cancer predisposition, regulation of blood pressure,
development of macular degeneration and signaling in the brain, which we will briefly
describe as well as potential ligands that have been identified. Furthermore, GPR143 is a
promiscuous receptor that has been shown to interact with multiple other melanosomal
proteins and GPCRs, which strongly suggests that this orphan receptor is likely involved in
many different physiological actions.
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INTRODUCTION

G protein-coupled receptor 143 (GPR143) is encoded by the ocular albinism 1 (OA1) gene, which
was first cloned because of its role in the pathogenesis of ocular albinism, a disorder caused by
dysfunction of pigment producing cells (Bassi et al., 1995). Lack of expression of functional GPR143
in pigment producing cells in the skin and hair (known as melanocytes) results in morphologic
abnormalities of the organelles in which the pigment melanin is synthesized (known as
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melanosomes). The effects of pathogenic OA1 mutations are
more consequential in the pigment cells of the eyes (including
melanocytes and retinal pigment epithelium/RPE), resulting in
severe reduction of visual acuity. Early studies of the protein were
thus limited to melanocytes and RPE, however recent
investigations have addressed a broader role for GPR143 as
one of the few intracellular G protein-coupled receptors (GPCRs).

G PROTEIN-COUPLED RECEPTOR
RELATED STRUCTURAL ELEMENTS OF
GPR143
GPCRs, the largest family of membrane receptors, mediate almost
all (patho)physiological functions in mammals (Fredriksson
et al., 2003; Rosenbaum et al., 2009). Among the over 800
known GPCR gene sequences, approximately half encode
receptors involved in sensory perception. Of the remaining
non-sensory receptors, about 100 are orphan GPCRs
(oGPCRs) for which either ligands and/or downstream
signaling pathways are unknown (Fredriksson et al., 2003;
Hauser et al., 2017; Harding et al., 2018). Since GPCRs have
been established as a major class of protein that can be targeted by
pharmaceuticals, deorphanization of oGPCRs may unlock
valuable physiological information and provide new
therapeutic approaches to improve human health (Rask-
Andersen et al., 2014; Hauser et al., 2017; Jabeen and
Ranganathan, 2019). GPR143 is one such oGPCR, an atypical
receptor that is localized intracellularly in endolysosomes and
melanosomes rather than the cell membrane where most other
GPCRs function (O’Donnell et al., 1976; Samaraweera et al., 2001;
Schiaffino and Tacchetti, 2005). Aside from assignment to a
receptor family, the precise function of GPR143 still remains
to be determined.

GPR143 and Its Relation to the GPCR
Superfamily
From a structural perspective, all GPCRs display the same
architecture—seven transmembrane alpha helices (TMs)
connected by three intracellular and three extracellular loops
(ICL1-3, ECL1-3). N-termini and C-termini, which the majority
of GPCRs possess, can vary in length and in regulatory roles they
play in GPCR signaling (Coleman et al., 2017; Odoemelam et al.,
2020).

GPCRs can also be classified into subfamilies based on
sequence homology. Vertebrate GPCRs can be subdivided by
the GRAFS system (Glutamate, Rhodopsin, Adhesion, Frizzeled/
Taste2, Secretin) (Fredriksson et al., 2003; Schiöth and
Fredriksson, 2005; Alexander et al., 2017, 2019; Hu et al.,
2017). Alternatively, a system of subdivision by functional
similarities and sequence homology, which includes non-
vertebrate GPCRs, has also been developed. GPCRs can be
categorized into six classes by the ABC system: Class
A—rhodopsin-like receptors, Class B—secretin family, Class
C—metabotropic glutamate receptors, Class D—fungal mating
pheromone receptors (non-vertebrate receptors), Class

E—cAMP receptors (non-vertebrate receptors) and Class
F—frizzled (FZD) and smoothened (SMO) receptors (Attwood
and Findlay, 1994; Kolakowski, 1994; Hu et al., 2017). In order to
classify a GPCR into a specific class it has to have been shown, by
phylogenetic studies, that the candidate shares at least 20%
sequence identity in the TMs, indicating likely evolution from
a common ancestor (Alexander et al., 2019). A number of
receptors, including GPR143, which do not display sufficient
homology to known GPCR subfamilies remain to be assigned to a
specific class.

Apart from sequence identity, the growing number of
structure-function studies and resolved crystal structures have
revealed that there are common structural and functional motifs
which are crucial for the activation of each respective GPCR class
(Latek et al., 2013; Moreira, 2014; Isberg et al., 2015; Zhou et al.,
2019). In order to easily localize suchmotifs and to compare them
to other GPCR classes, all GPCR residues can be annotated using
the Ballesteros and Weinstein nomenclature (Ballesteros and
Weinstein, 1995). Based on this nomenclature, the first digit
identifies the TM helix and the second digit the residue position
in relation to the most conserved residue of each TM helix
(assigned index number 50). Numbers decrease towards the
N-terminus and increase towards the C-terminus (Ballesteros
and Weinstein, 1995; Moreira, 2014). We will briefly discuss the
most prominent structural and functional motifs of class A and B
receptors, which may be relevant for GPR143. Aside from class D
and E receptors, which are only present in invertebrates, classes C
and F do not display any similarities with GPR143. In addition we
will highlight other residues, such as glycosylation sites and
sorting signals. These key residues and features are annotated
in Figure 1.

Key Residues Relevant for GPR143
GPR143, the protein product of the OA1 gene, was found to span
the plasma membrane seven times, indicating that it could be a
potential GPCR as far back as 2007 when the 404 amino acid
length protein, was classified as orphan receptor GPR143 (Sone
and Orlow, 2007). Here we summarize the key residues found in
class A and B receptor families and compare them to GPR143, as
early studies by Schiaffino et al. demonstrated that the receptor
shows weak similarities with classes A and B (Schiaffino et al.,
1999) (see Figure 1). Similar findings were described by Gosh
et al. who investigated GPR143 using a 3-dimensional modeling
approach (Gosh at al., 2012). In the IUPHAR guide to
pharmacology, GPR143 is still listed in the family of “other
7 TM proteins” (Alexander at al., 2019; http://www.
guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=
203, accessed on 9 February 2022) and in the GPCRdb it is listed
among “other GPCR orphans” (Kooistra et al., 2021).

The structural and functional motifs that define class A are the
most extensively studied with relation to their activation
mechanism. Class A GPCRs, also referred to as rhodopsin
receptors, include many functionally diverse receptor
members. Diverse physiological actions such as inter- and
intracellular communication, sense of sight, smell taste and
touch, chemotaxis and neurotransmission are mediated
through class A GPCRs (Fredriksson et al., 2003; Mombaerts,
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2004; Moreira et al., 2010; Moreira, 2014; Isberg et al., 2016).
According to Zhou et al. (Zhou et al., 2019) and numerous other
studies (for example, (Moreira, 2014; Filipek, 2019), the most
important (and conserved) motifs are:

1) The interaction of the cytoplasmic “ionic lock” in TM3, which
is disrupted when the receptor is activated with the consensus
“(D/E)R (Y/M)” (3.49–3.51) with D/E (6.30) in TM6
(Ballesteros et al., 1998, 2001; Schneider et al., 2010;
Jacobson et al., 2014; Yuan et al., 2014; Feng et al., 2017;
Roth et al., 2017; Schönegge et al., 2017; Alhadeff et al., 2018);
the characteristic DRY motif in TM3 is DAY in GPR143
(Ghosh et al., 2012), while the counterpart in TM6 D/E 6.30 is
G in GPR143.

2) The hydrophobic arginine cage around the conserved arginine
(R3.50) of the DRY motif, which restrains its conformation in
the inactive state of the receptor consisting of two
hydrophobic amino acids (such as L, V, I or M) in TM3
and TM6 (3.46, 6.37) (Ballesteros et al., 1998; Visiers et al.,
2002; Weinstein, 2006; Caltabiano et al., 2013); the arginine
cage is not present in GPR143.

3) The NPxxYxF motif in TM7, which forms the interaction of a
tyrosine (7.53) in TM7 with the phenylalanine (7.60) in HX8
together with the side chain and backbone of an arginine in
TM2 (2.40) through binding of a watermolecule (Prioleau et al.,
2002; Fritze et al., 2003; Angel et al., 2009; Hofmann et al., 2009;

Rasmussen et al., 2011; Trzaskowski et al., 2012;
Venkatakrishnan et al., 2016; Schönegge et al., 2017; Filipek,
2019); this motif is partially found in GPR143 represented by
N7.41and P7.42 (Ghosh et al., 2012), however the tyrosine in
the motif is missing in GPR143, only the conserved Y7.53
is found.

4) A coordinated conformational change upon ligand coupling
of aromatic residues in TM6, also known as CWxP motif
around a very conserved tryptophan (6.48) that leads to
disruption of the ionic lock and outward movement of
TM6 (called Rotamer Toggle Switch), while TM7
undergoes inward movement towards TM5 (Weinstein,
2006; Hofmann et al., 2009; Nygaard et al., 2009; Holst
et al., 2010; Standfuss et al., 2011; Trzaskowski et al., 2012;
Valentin-Hansen et al., 2012; Tehan et al., 2014; Zhang et al.,
2015; Venkatakrishnan et al., 2016; Plazinska et al., 2017; Eddy
et al., 2018; Kaiser et al., 2018; Filipek, 2019); instead of CWxP,
CWLS is found in GPR143 in the same position (Ghosh et al.,
2012).

5) The PIF motif comprising residues P5.50, I3.40 and F6.44
(Ballesteros and Weinstein, 1995; Ishchenko et al., 2017;
Schönegge et al., 2017; Kato et al., 2019; Hilger, 2021;
Smith, 2021); the PIF motif is also not present in GPR143,
only P5.50 itself is found.

6) The Na+-pocket at a conserved aspartic acid (2.50) (Liu et al.,
2012; Yuan et al., 2013; Zhang et al., 2013; Katritch et al., 2014;
Eddy et al., 2018; Vickery et al., 2018; White et al., 2018; Ye
et al., 2018; Chen S. et al., 2019; Filipek, 2019; Agasid et al.,
2021); D2.50 important for Na+ binding is also present in
GPR143.

Some of the conserved residues in the helix packing clusters of
class A GPCRs are also found in GPR143 (G/S1.46, A2.47, A3.38,
S/A4.53, P5.50), however GPR143 does not contain all of the
described switches (Sanchez-Reyes et al., 2017). The conserved
disulfide bond between C3.25 on TM3 and C184 (ECL2),
common in most GPCRs, is also found in the GPR143
sequence (Venkatakrishnan et al., 2013), see Figure 1.

Adhesion and secretin receptors were initially classified as two
distinct families, however the secretin GPCRs were later shown to
have some structural resemblance to adhesion GPCRs and
through phylogenetic analysis it was determined that secretin
GPCRs evolved from adhesion GPCRs (Nordström et al., 2009;
Hamann et al., 2015). The secretin receptor family was labeled
class B1 and the adhesion receptor family class B2 (Pándy-
Szekeres et al., 2018; Scholz et al., 2019).

Distinct from class A receptors, secretin receptors possess a very
large N-terminus, which is also called extracellular domain (ECD)
that is important for ligand recognition and activation of the
receptor together with the TM domains (Hoare, 2005; Parthier
et al., 2009; Pal et al., 2012; Ramos-Álvarez et al., 2015; Karageorgos
et al., 2018). The ECLs and the upper regions of the TMs form the
so-called “J domain” of class B receptors (Karageorgos et al., 2018).
GPR143 does not have an ECD, however it may have been lost in
evolution, since remnants of at least one former OA1 exon is still
found on the Y chromosome (Van Laere et al., 2008; Pandey et al.,
2013) (see chapter “Evolutionary Aspects”).

FIGURE 1 | Protein sequence of GPR143 with highlighted features and
residues. Grey: transmembrane domains (TM) as predicted by GPCRdb
(Isberg et al., 2015, 2016; Kooistra et al., 2021); yellow: potential glycosylation
sites N106 in ECL1 and N263 in ECL3 (Samaraweera et al., 2001);
green: highly conserved cysteine residue in TM3 (C3.25) which might form a
disulfide bond with C184 in extracellular loop 2 (ECL2); red: sorting signals for
intracellular localization (dileucine motif (L223/L224) in the intracellular loop 3
(ICL3) and tryptophan-glutamic acid doublet (W329/E330) in the C terminal
tail) (Piccirillo et al., 2006). Conserved residues found in class A GPCRs or
similar motifs are bold, italic and underlined, motifs common in class B GPCRs
are bold and italic, residues known to cause ocular albinism type 1 when
mutated are marked with an asterix (for references see main text).
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Only a few studies have attempted to investigate adhesion
receptors from a pharmacological perspective, such as through
mutational studies (Peeters et al., 2016; Nazarko et al., 2018;
Arimont et al., 2019; Beliu et al., 2021). From these studies
important residues and from sequence alignments with
sequences from class A and B1 relevant residues in class B2
receptors have been identified (Nijmeijer et al., 2016; Arimont
et al., 2019). For instance, most class B1 conserved residues are
also present in class B2 such as S1.50 (1.46 in class A), H2.50 (2.43
in class B1), E3.50 (3.46 in class A), W4.50 (4.50 in class A), N5.50
(5.54 in class A), G6.50 (6.45 in class A) and G7.50 (7.46 in class
A) (Wootten et al., 2013; Nijmeijer et al., 2016; Arimont et al.,
2019). Furthermore, a conserved proline residue of TM5 of
secretin receptors P5.42 can also be found in adhesion
receptors as well as a conserved tryptophan at position 6.53
which is similar to the conserved tryptophan at position 6.48 in
class A GPCRs which is part of the CWxP motif and may act as
potential toggle switch as seen for class A (Nijmeijer et al., 2016;
Plazinska et al., 2017; Ping et al., 2021). The conserved P5.42 is
one of the few residues GPR143 has in common with class B
receptors as well as the highly conserved W4.50 found in class A
and B.

Other Structural Features
GPR143 possesses two distinct sorting signals for lysosomal and
melanosomal localization, a dileucine motif in ICL3 and a
tryptophan-glutamic acid doublet in the C terminal tail. Both
are essential and sufficient for localization to organelles (Piccirillo
et al., 2006). When mutated to alanine residues, the receptor is
primarily localized to the plasma membrane (Piccirillo et al.,
2006; De Filippo et al., 2017b). In addition to the sorting signals,
Giordano et al. demonstrated that GPR143 intracellular sorting
and ubiquitination are dependent upon functional components
of endosomal sorting complexes required for transport (ESCRT)
complex (Giordano et al., 2011). Intracellular sorting and down-
regulation were also associated with the amount of ESCRT-0, -I,
and -III subunits, as their depletion or overexpression inhibited
GPR143 degradation together with retention in the endosomal
system (Giordano et al., 2011). Giordano and co-workers
hypothesized, based on their results, that the ESCRT
machinery ubiquitinates GPR143 in intralumenal vesicles of
multivesicular endosomes thereby allowing for modulation
between downregulation and GPR143 delivery to melanosomes
(Giordano et al., 2011).

The receptor also contains two potential glycosylation sites,
one in ECL1 (N106) and the second in ECL3, however evidence
for glycosylation has only been shown for N106 (Samaraweera
et al., 2001) (see Figure 1).

Evolutionary Aspects
In the gene (NG_009074.1) and nucleotide (NM_000273.3)
databases GPR143 is referenced with 9 exons, of which 7
contain coding sequence regions and the protein is 404 amino
acids long (NP_000264.2; UniProt ID P51810). Several shorter
isoforms of the protein have been predicted, e.g., isoform X1
(XP_005274598.1) with 386 amino acids and isoform X2
(XP_024308155.1) with 320 amino acids.

The OA1 gene is located on chromosome Xp22.2. Adjacent to
GPR143, at the same chromosomal location, is SHROOM2,
which is also highly expressed in the retina and may also be
associated with ocular defects, similar to GPR143 (Van Laere
et al., 2008; Pandey et al., 2013). Interestingly, it may contain one
or more non-coding GPR143 exons which were lost during
evolution. Mammalian sex chromosomes evolved from
homologous autosomes after a series of recombination
suppression and inversion events that rendered the Y
chromosome relatively short. So-called “small
pseudoautosomal regions” remain on the Y chromosome and
can be mapped to distinct evolutionary strata (Van Laere et al.,
2008; Pandey et al., 2013). Pseudogenes of the SHROOM/
GPR143 gene cluster are still present on the Y chromosome
(Van Laere et al., 2008).

GPR143 FUNCTION

GPCRs typically transform extracellular stimuli into a
physiological response by activating an intracellular signaling
cascade initiated by binding to G proteins. Regarding GPR143,
little is known about its intracellular signaling or its binding of
ligands, most probably due to its unique localization within the
cell. However, a few studies have identified potential ligands for
GPR143. The topological orientation of the receptor suggests that
ligands would have to bind from the organelle lumen (Sone and
Orlow, 2007; Schiaffino, 2010).

Potential GPR143 Ligands
L-3,4-dihydroxyphenylalanine (L-DOPA) and dopamine have
been proposed as ligands by Lopez et al. in 2008 (Lopez et al.,
2008). While L-DOPA is an intermediate compound in the
biosynthesis of melanin and the conversion of L-tyrosine to
L-DOPA the rate-limiting step of the process (D’Mello et al.,
2016), dopamine is not part of the synthesis but can be produced
through hydroxylation of L-DOPA (Daubner et al., 2011). In
addition, Staleva and Orlow suggested, based on their results in a
yeast-based study, that activating compounds or proteins for
GPR143 may be located in the 100,000 g fraction of cultured,
heavily pigmented melanocytes, which contains melanosomes
(Staleva and Orlow, 2006).

In radioligand-binding experiments an equilibrium
dissociation constant (Kd) of 9.35 µM for L-Dopa and a Kd of
2.39 µM for dopamine were obtained (Lopez et al., 2008). By
measuring the intracellular calcium release through Gq/11 protein
coupling in CHO cells, only L-DOPA was shown to activate
GPR143, while dopamine displayed antagonist properties
instead. After treatment with L-DOPA GPR143 and β-Arrestin
colocalized at the plasma membrane, indicating that GPR143 is
able to change its localization in a ligand-dependent manner
(Lopez et al., 2008). In another study by Hiroshima et al., a Kd of
79.1 µM was measured for L-DOPA using murine GPR143, but
only in RPE-derived cells, while no calcium release was detected
in CHO cells. The authors further reported that the binding of
L-DOPA to murine GPR143 was competitively antagonized by
L-DOPA cyclohexyl ester (DOPA-CHE) (Hiroshima et al., 2014).
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Since the discovery of L-DOPA as potential ligand for GPR143,
many studies have been conducted based on this finding, for
example clinical studies to evaluate L-DOPA as a therapy for
ocular albinism, which were not conclusive (Summers et al.,
2014). Although it is most likely that GPR143 is a receptor for
L-DOPA, there are also contradictory findings (see below).

Goshima and co-workers, who performed microinjections
into the nucleus tractus solitarius (NTS) to investigate
cardiovascular actions of L-DOPA through GPR143, could not
exclude that dopamine converted from L-DOPA in non-neuronal
tissues would be also able to exert cardiovascular and/or renal
actions through β-adrenergic receptor and dopamine receptors
D1R and D2R (Goshima et al., 2014). It was shown that D1R
activity in vascular smooth muscle is associated with
vasodilatation (Kohli, 1990). Moreover D2R were shown to
exert their effects on sympathetic nerve terminals which
resulted in a decrease of noradrenaline release (Dubocovich
and Langer, 1980). Also effects on renal blood flow,
glomerular filtration rate, urinary sodium, and water excretion
as well as promotion of phosphate excretion and antagonizing the
hydro-osmotic effect of vasopressin were described (Goshima
et al., 2014).

In addition, a study by Ueda et al. showed that L-DOPA
(10–100 mg/kg, i.p.) induced ptosis in wildtype (WT) and
GPR143-knockout (KO) mice, which were pretreated with 3-
hydroxybenzylhydrazine, a central aromatic L-amino acid
decarboxylase inhibitor, used to prevent conversion of
L-DOPA to dopamine (Ueda et al., 2016; Goshima et al.,
2019a). Ptosis, which is also called “lazy eye,” is described as
the falling or dropping of the upper eyelid (Finsterer, 2003).
Similar malfunctioning of the motoric system (“motor blocks”)
can sometimes result from either short- or long-term L-DOPA
treatment of Parkinson’s disease (Giladi et al., 1992; Dewey and
Maraganore, 1994; Goshima et al., 2019a). Since L-DOPA
induced ptosis in both WT and GPR143-KO mice, the authors
suggest that there may be GPR143-dependent and independent
mechanisms for inducing ptosis (Ueda et al., 2016; Goshima et al.,
2019a).

In 2017 De Filippo et al. used a high throughput screening
(HTS) approach to identify new pharmacological tools for further
investigation of GPR143 signaling (De Filippo et al., 2017a). Due to
the intracellular localization of GPR143 a mutant was created,
which localized to the plasma membrane (Piccirillo et al., 2006), in
order to ensure that concerns about test compounds permeating
into the cells and reaching the receptor were addressed. The β-
Arrestin recruitment assay was chosen as a suitable assay for HTS
screening since GPR143 showed high constitutive activity, while
the melanin assay was chosen to validate potential candidates.
Pimozide, niclosamide and ethacridine lactate were identified as
new inverse agonists for GPR143, however are yet to be
independently confirmed. Pimozide is a dopamine receptor D2R
and D3R-antagonist (Schwinn et al., 1976; Sokoloff et al., 1992),
niclosamide was described as anthelmintic teniacide with
antitumor activity (Pan et al., 2012) and ethacridine lactate as
an antiseptic. In the same study by De Filippo et al. no Ca2+

response following L-DOPA stimulation could be observed in
CHO cells, which is in contradiction to the findings by Lopez

et al. (Lopez et al., 2008; De Filippo et al., 2017a). To further
characterize GPR143 and understand its actions there is a need for
the discovery of new, highly potent compounds as
pharmacological tools.

GPR143 Signaling Pathways
Schiaffino et al. showed that GPR143 associates with several Gα
subunits and Gβ (Schiaffino et al., 1999; Schiaffino and Tacchetti,
2005). Furthermore, Innamorati et al. discovered that GPR143
also associates with β-Arrestin, even in the absence of a ligand
(Innamorati et al., 2006). This finding was further confirmed by
De Filippo et al. who also showed ligand-independent β-Arrestin
recruitment in an in vitro assay system (De Filippo et al., 2017a).
Moreover, a study by Lopez et al. who also discovered L-DOPA as
potential ligand for GPR143, observed an influx of intracellular
calcium and recruitment of β-Arrestin, when cells were treated
with L-DOPA at high concentrations (Lopez et al., 2008). McKay
et al. showed that myocilin plays a role in ligand-dependent β-
Arrestin-recruitment to GPR143, which leads to endocytosis
(McKay et al., 2013).

In 2008, a study by Young et al. investigated the relationship
between GPR143 and the Gαi family comprising the closely-
related members, Gαi1, Gαi2, and Gαi3 (Young et al., 2008). The Gαi
proteins also locate to intracellular membranes including Golgi
and endosomal membranes (Gohla et al., 2007; Young et al.,
2008) and were found to be associated with membrane trafficking
and fusion events (Young et al., 2008). In addition, Gαi3 is
expressed in fetal and adult human RPE cells and the inner
neural retina (Jiang et al., 1991; Oguni et al., 1996; Young et al.,
2008). By studying the RPE density and morphology of
melanosomes of Gαi3

−/− and GP143−/− knockout mice, the
authors were able to observe the same phenotype in both mice
genotypes (Young et al., 2008). Furthermore Young and co-
workers investigated routing of the optic tract, which is
established during development and disrupted in ocular
albinism. Both Gαi3

−/− and GP143−/− knockout mice were
found to have the same optic nerve misrouting, which
suggests that GPR143 signaling may be executed through Gαi3
(Young et al., 2008). Hence, it was suggested that a potential
GPR143-Gαi3 signaling cascade is involved in the correct routing
of axons through the optic chiasm and that Gαi3 is part of the
same signal transduction pathway as GPR143, which also
regulates melanosome biogenesis (Young et al., 2008). Besides
Gai3, also Go and Gq were suggested as potential G proteins
partners for GPR143 (Young et al., 2008).

GPR143 may also play a role in melanomagenesis and
melanoma progression. Stimulation of the RAS/RAF/mitogen
activated protein kinase (MEK)/extracellular signal-regulated
kinase (ERK) pathway by the Epidermal Growth Factor (EGF)
and Platelet Derived Growth Factor (PDGF), which play a role in
proliferation and survival of tumor cells, resulted in enhanced
GPR143 expression and migration of the melanoma cells (Bai
et al., 2014).

Expression and Localization of GPR143
GPR143 is most abundantly expressed in pigment producing cells
in the skin and eyes. The pigment produced by these cells is
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melanin, which plays a central role in protecting human skin and
eyes from the deleterious effects of ultraviolet light (UV). Pigment
cells andmelanin are also required for normal development of the
optic system and function of the eye (Williams, 2018). Pigment
cells in the skin and eyes are continually subjected to
environmental stimuli including UV, visible light and
chemotoxins. These stimuli can instigate cellular changes that
lead to tumorigenesis (Gilchrest et al., 1999) and age-related
macular degeneration (Xia et al., 2019).

Epidermal melanocytes produce melanin in the skin and hair,
and RPE in the eye. RPE are required for photoreceptor function
and formation of the blood–retinal barrier (Strauss, 2005).
Melanocytes are also found in mucosal tissues, the inner ear,
eyes and brain (Yamaguchi and Hearing, 2014).

Melanin is produced in membrane-bound organelles called
melanosomes. Melanosome biogenesis is a de novo process
involving four stages of maturation (Seiji et al., 1963).
Melanosomes originate from endolysosomal structures
(Raposo et al., 2001) and share a lineage with lysosomes
(Orlow, 1995). In melanocytes, GPR143 localizes to the
melanosomal membrane. When expressed exogenously in
non-pigmented cells GPR143 localizes to lysosomes, e.g. in
CHO, COS7 or HeLa cells (Schiaffino et al., 1999; Shen et al.,
2001; Piccirillo et al., 2006; De Filippo et al., 2017b). However, the
intracellular localization was questioned by McKay et al. in a
commentary in relation to the paper by De Filippo et al. (De
Filippo et al., 2017b; McKay et al., 2017). McKay at al. claimed
that intracellular localization was only due to tyrosine present in
culture media and that lack of Ca2+ response was also due to
presence of tyrosine which acts as a weak antagonist (McKay
et al., 2017). De Filippo et al. presented, in an author response,
further data that supported their finding of intracellular
localization even in tyrosine-free medium, as well as lack of
Ca2+ response in medium without tyrosine (De Filippo et al.,
2017c). Intracellular localization in heterologous systems was also
shown by other groups as stated above (Schiaffino et al., 1999;
Shen et al., 2001; Piccirillo et al., 2006).

Aside from the lack of defined function for GPR143, the
expression profile of the receptor in different tissues, apart
from the skin and eyes, is also poorly delineated. Fukuda et al.
showed in mice, GPR143 is highly expressed in several regions of
the brain including pyramidal neurons in the cerebral cortex
(Fukuda et al., 2015). By using RT-PCR, GPR143 mRNA was
detected in the central nervous system, olfactory bulb, corpus
striatum, hypothalamus, hippocampus, midbrain, cerebellum
and lower brain stem. While the highest expression was
observed in the cerebral cortex and hypothalamus; moderate
expression was shown in the olfactory bulb, hippocampus,
midbrain and lower brain stem and lastly, low expression was
seen in the corpus striatum and cerebellum (Fukuda et al., 2015).
The receptor was also found to be expressed in the habenular
nucleus, substantia nigra, medulla oblongata and NTS (Fukuda
et al., 2015). In addition, Masukawa et al. performed an
immunohistochemical analysis of GPR143 expression in the
adult rat brain (Masukawa et al., 2014). GPR143-
immunoreactive cells were found in the hippocampus, cerebral
cortex, cerebellum cortex, striatum, substantia nigra,

hypothalamic median eminence and supraoptic nucleus, NTS
and caudal ventrolateral medulla and rostral ventrolateral
medulla, medial habenular nucleus and olfactory bulb. Outside
the brain GPR143 was found in the lungs, heart, kidneys, spleen
and liver. The expression of the receptor in the kidney was most
abundant and comparable to expression in the cerebral cortex
and hypothalamus (Fukuda et al., 2015).

At the cellular level, GPR143 was found in cell bodies of
pyramidal neurons, also excitatory neurons and various nuclei
such as the NTS can express the receptor. Regarding non-
neuronal expression of GPR143, Fukuda et al. discovered
GPR143-positive cells in the convoluted tubules in the
kidney, in the splenic capsule and red pulp of the spleen,
hepatocytes around the hepatic vein of the liver, alveolar
epithelial cells and bronchial tubes of the lung, smooth
muscle cells around the respiratory bronchiole as well as in
the basal lamina and connective tissues in their
immunostaining experiments. Interestingly, expression of
GPR143 throughout the body overlaps, in most parts, with
the expression pattern of dopamine, angiotensin and
adrenergic receptors, which are all involved in sympathetic
signaling (Fukuda et al., 2015).

GPR143 AND DISEASES

GPR143 Role in Melanocytes and Ocular
Albinism
Albinism refers to a group of genetic conditions associated with
hypopigmentation (Bassi et al., 1995). The disorder can affect the
skin, hair and eyes (oculocutaneous albinism) or only the eyes
(ocular albinism). Several forms, defined by the mutated gene,
exist, among them Ocular Albinism Type 1 (OA1) (Bassi et al.,
1995; Shen et al., 2001). OA1, also called X-linked ocular albinism
of the Nettleship-Falls type has a prevalence of 1–9/1 000 000 and
an estimated birth prevalence of 1/60 000 to 1/150 000 live male
births (https://www.orpha.net/consor/cgi-bin/OC_Exp.php?
Expert=54&lng=EN, accessed 3 January 2022). Since OA1 is
inherited in an recessive X-linked manner it affects mostly
males. Heterozygous females can manifest a less severe
phenotype (Falls, 1951; Lang et al., 1990; Preising et al., 2001;
Shen et al., 2001). The OA1 phenotype is defined by significant
reduction of visual acuity, nystagmus, strabismus, marked
photophobia and loss of stereoscopic vision due to misrouting
of the optic tract (Creel et al., 1990; Kriss et al., 1992; Bassi et al.,
1995). In addition, iris translucency, foveal hypoplasia and
hypopigmentation of the retina (O’Donnell et al., 1976; Bassi
et al., 1995) is evident upon ophthalmologic examination of OA1
patients. Nystagmus, which is observed at around 6 months after
birth, can be the first indication of ocular albinism (Liu et al.,
2007; Mao et al., 2021). Female carriers display a mosaic pattern
of ocular (hypo)pigmentation as a result of the inactivation of the
affected X chromosome (Falls, 1951; Lang et al., 1990).

At the cellular level, the most prominent feature of OA1 is
the formation of macromelanosomes (O’Donnell et al., 1976;
Garner and Jay, 1980; Wong et al., 1983; Yoshiike et al., 1985).
Consequently, OA1 can be seen as a systemic disorder affecting

Frontiers in Molecular Biosciences | www.frontiersin.org April 2022 | Volume 9 | Article 8737776

Bueschbell et al. GPR143, an Atypical Intracellular Receptor

https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Expert=54&lng=EN
https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Expert=54&lng=EN
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


the biogenesis of melanosomes (Traboulsi, 2012). Despite
affecting melanosome morphology, effects of OA1 mutations
on the skin appear to be mild (Bassi et al., 1995).

Mutations or loss of function (LoF) in theOA1 gene (GPR143)
results in OA1 (Shen et al., 2001). Moreover, the severity of OA1
is associated with the degree of skin pigmentation, with
symptoms more severe in individuals whose skin are lightly
pigmented and less severe in individuals with highly
pigmented skin (O’Donnell, 1978; Shiono et al., 1995). The
incidence of ocular albinism also varies between populations
(Zhu et al., 2018). To date, over 300 OA1 point mutations
have been identified and 60 of them were reported to result in
OA1 (Figure 2 and Supplementary SI, Supplementary Table
S1). While most mutations lead to the characteristic OA1-
phenotype (red), three residues were identified which, when
mutated, lead to a mild form of OA1 (blue). Furthermore, two
residues associated with both mild and severe phenotypes were
described (green) (Figure 2). Aside from point mutations several
pathogenic splicing mutations, small insertions and deletions as
well as the deletion of entire exons and other complex mutations
were reported (Supplementary Tables S2–6). We collected over
500 mutations for GPR143 taken from literature, the
gnomAD_v2.1.1 database (Karczewski et al., 2020), the
Albinism database (http://www.ifpcs.org/albinism/oa1mut.html,
accessed 12.01.2022), and the Human Gene Mutation Database

(http://www.hgmd.cf.ac.uk/ac/index.php, accessed 01.02.2022),
however it should be noted that the functional effects of the
mutants is unknown (or benign) and presumably most exist in
the germline of normal populations.

Regarding the pointmutations we identified six specific residues
which were found to be mutated more than twice: P1.20/P4 (4x),
G2.53/G81 (3x), G2.56/G84 (3x), C3.25/C116 (4x), G3.27/G118
(4x), andW292 (ECL3) (5x). Moreover, when comparing the types
of mutated residues we found that glycine and alanine residues
were mutated more than 30 times, while phenylalanine was only
mutated twice (Figure 3A). When mutated amino acids were
sorted by topological domains it becomes obvious that most
mutations occur in the C-terminus, while the least frequently
mutated ones were found in the ICL1 and ICL2 as well as in
the proposed HX8 region (Figure 3B). When comparing the
number of mutations within TMs, particularly TM1 and TM3
were most likely to comprise mutated residues, while residues in
TM7 were the least affected by mutations (Figure 3B). Some of the
mutated residues are highly conserved residues, such as D2.50,
C3.25, P5.50 (Figure 1, residues labeled with an asterisk).

Mutations in the genes coding for GPR143 and FERM domain-
containing 7 (FRMD7), both found on the X-chromosome, have
been linked to congenital nystagmus, one of features of ocular
albinism that can occur as a non-syndromic condition (Han et al.,
2015; Michaud et al., 2019; Wang et al., 2021).

FIGURE 2 | Protein sequence of GPR143 showing pathogenetic point mutations which lead to the OA1 phenotype (red) and mutations which cause a mild variant of
OA1 (blue). For somemutated amino acids, either strong or weakOA1 phenotypeswere reported (green). The snake plot was created using GPCRdb (Kooistra et al., 2021).
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GPR143 and Cardiovascular Actions
GPR143 has recently been shown to play a role in cardiovascular
function through the (NTS) (Goshima et al., 2014; 2019a). The
NTS is a sensory nucleus embedded in the medulla oblongata
(Šimić, 2019) that receives signals from the solitary tract
including facial, taste, gastrointestinal and cardio-respiratory
signals (Geerling and Loewy, 2006; Michael Conn, 2008;
Zoccal et al., 2014; Šimić, 2019; Martinez and Kline, 2021).
Studies by Hiroshima et al. suggest that GPR143 serves as an
L-DOPA receptor for cardiac response in the NTS. When
GPR143 expression was repressed in the NTS, depressor and
bradycardic responses to L-DOPA were suppressed (Hiroshima
et al., 2014). They further demonstrated that L-DOPA, but not
dopamine, produced these cardiovascular effects (Yue et al., 1994;
Goshima et al., 2014; Hiroshima et al., 2014).

Masukawa et al. proposed a fine-tuning system of
noradrenaline signaling for the regulation of blood pressure
through L-DOPA possibly mediated by GPR143. Disruption of
this regulation might lead to a number of effects including
hypertension, arrhythmia, and other cardiovascular diseases
(Masukawa et al., 2017). In addition, GPR143 may also
interact with the α1b-adrenoceptor. In vitro studies using
HEK293 cells co-expressing the two proteins confirmed that
interaction between GPR143 and α1b-adrenoceptor was
enhanced by L-DOPA (10–20 nM) treatment in
immunoprecipitation assays (Masukawa et al., 2017). They
further showed in Förster Resonance Energy Transfer (FRET)
and in situ proximity ligation assay experiments that GPR143 and
α1b-adrenoceptor form functional heteromers and that GPR143
has a higher affinity for L-DOPA in the heteromer as compared to
the monomeric form (Masukawa et al., 2017). Nakano et al.
suggested that α1b-adrenoceptor and GPR143 may play a role in
the pathology of pulmonary hypertension (Nakano et al., 2022).

GPR143 in the Central Nervous System
GPR143 is widely expressed in neurons in several regions of the
brain (Masukawa et al., 2014; Fukuda et al., 2015) and may play a
role in the etiology of Parkinson’s disease (PD). L-DOPA is the
most effective therapeutic for PD. It was developed as an inactive
precursor for dopamine, which would be delivered to the brain to
compensate for dopamine deficiency (Hornykiewicz, 2006;

Goshima et al., 2019a). L-DOPA is then converted to
dopamine in the brain by aromatic L-amino acid
decarboxylase and alleviates motoric symptoms of PD such as
akinesia, tremor, rigidity and bradykinesia (Xia and Mao, 2012;
Moustafa et al., 2016).

Goshima et al., and others, have presented evidence that
L-DOPA is able to induce independent signaling routes apart
from dopamine, for example in regulating cardiovascular
activity (Goshima et al., 1986, 1988, 2014, 2019a; Kubo et al.,
1992; Yue et al., 1994). Since L-DOPA is a potential ligand for
GPR143, Goshima et al. proposed that L-DOPA itself, rather than
dopamine, may function as a neurotransmitter via this receptor
(Goshima et al., 1988, 2019a, 2019b; Nakamura et al., 1992).
According to their studies, GPR143 colocalized with
phosphorylated α-synuclein in Lewy bodies in the brains of PD
patients (Goshima et al., 2019b). These Lewy bodies are abnormal
protein aggregates and the presence of GPR143 in these inclusion
bodies could alter activity of the receptor and dysregulate L-DOPA
signaling. Alternatively, given the proposed role for GPR143 in
organelle biogenesis in melanocytes, the presence of GPR143 may
be due to its participation in endolysosomal protein trafficking.

Goshima et al. also observed GPR143-immunoreactive signals, in
both control and PD brains, in the entire midbrain region including
the substantia nigra pars compacta (Goshima et al., 2019b), a basal
ganglia structure and contains dopaminergic neurons that produce
neuromelanin (Rabey and Hefti, 1990). The loss of these
dopaminergic neurons is characteristic of PD (Kim et al., 2003).
Taken together, Goshima and co-workers suggest that GPR143 may
be implicated in the pathogenesis of PD and could be targeted for
development of therapeutics (Goshima et al., 2019a).

In a very recent publication Kasahara et al. present evidence
that L-DOPA-induced neurogenesis in the hippocampus of mice
that might be mediated by GPR143 (Kasahara et al., 2022). Lastly,
GPR143 was also found to be upregulated together with other
genes in autism spectrum disorder (Monfared et al., 2021).

GPR143 and Macular Degeneration
Age-related macular degeneration (AMD), a multifactorial
disease, leads to progressive vision loss (Lim et al., 2012;
Mitchell et al., 2018). In early stages, RPE abnormalities are
observed in the macular region of the retina followed by

FIGURE 3 | Mutated amino acids affected by point mutations for G protein-coupled receptor 143 sorted by type (A) and sorted by topological domain (B).
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neovascular changes and finally total blindness (Coleman et al.,
2008; Mitchell et al., 2018). Highly effective anti-neovascular
agents such as vascular endothelial growth factor (VEGF)-
inhibitors, applied by ocular injections, are used to treat AMD
(Coleman et al., 2008; Lim et al., 2012; Bourne et al., 2013).
Development of alternative treatments that require less invasive
administration routes is therefore necessary (Figueroa and
McKay, 2019).

An early study by Zhang et al. determined that Pigment
Epithelium-Derived Factor (PEDF) can downregulate VEGF
since decreased PEDF levels in the retina were shown to
increase VEGF expression (Zhang et al., 2006). It was later
discovered that there is extensive crosstalk between VEGF and
PEDF that contributes to a neuroprotective effect (Falk et al.,
2010).

PEDF was also found to be highly expressed in the RPE of
young adults, with expression rapidly decreasing with onset of cell
senescence (Tombran-Tink et al., 1995). In a study by Lopez et al.,
RPE cells were treated with high concentrations of L-DOPA and
were shown to increase PEDF expression, which was attributed to
GPR143 activity (Lopez et al., 2008). Furthermore, a retrospective
study analyzing the medical history of AMD-patients found that
those whowere or had been on an L-DOPA regimen formovement
disorders showed a later onset of AMD than those who had not
received similar medication (Brilliant et al., 2016). If modulation of
GPR143 could be employed to increase PEDF expression and
thereby downregulate VEGF, the receptor has potential as a new
target for the treatment of AMD (Falk et al., 2012).

GPR143 and Cancer
In 2020, around 10 million deaths were accounted for from
cancer worldwide and with an estimation of 11.4 million
deaths in 2030, cancer is a leading cause of death
(O’Callaghan, 2011; Ferlay et al., 2021). Several GPCRs have
been linked to different cancers and their role in regulating
tumorigenesis, proliferation, invasion and metastasis is slowly
being defined. GPR143 has also been associated with multiple
cancers including melanoma, non-melanoma skin cancer, breast
cancer, uveal carcinoma, colorectal cancer (Bassi et al., 1995;
Uhlén et al., 2015; Uhlen et al., 2017). In a recent bioinformatic
analysis investigating unilateral and bilateral retinoblastoma
microarrays, GPR143 was identified as a potential biomarker
for the cancer (Zhao et al., 2021).

Melanoma and Skin Cancer
Malignant melanoma is one of the most aggressive cancers, with a
highly metastatic potential and a predilection for developing
resistance to therapies (Bai et al., 2014). Furthermore, in the
US, melanoma is the sixth most common cancer type (Borden
et al., 2021). Despite substantial efforts to develop targeted
therapies, long-term success remains challenging (Li et al.,
2011; Kozar et al., 2019; Alvarez-Artime et al., 2020; Berge
et al., 2020; Cherepakhin et al., 2021).

GPR143 expression has been shown to correlate with
prognosis in cutaneous melanoma and is a reliable biomarker
for identifying immune infiltration (Xing et al., 2021). In
addition, when Bai et al. used lentivirus constructs to express

exogenous GPR143 in human melanoma cells, the amount of
vector transfected was positively correlated with cell migration
(Bai et al., 2014). This effect could be inhibited by siRNA-
mediated GPR143 knockdown (Bai et al., 2014). GPR143
expression increased with progression towards metastasis
(Fernandez et al., 2009; Bai et al., 2014). In addition, the study
revealed that GPR143-induced melanoma cell metastasis
activated the RAS/RAF/MEK/ERK signaling pathway (Bai
et al., 2014). Bai et al. concluded from their findings, that
GPR143 may serve as a metastasis-promoting gene in the
progression of melanoma (Bai et al., 2014). Some
melanosome-related proteins have been correlated with
melanoma chemoresistance (Kottschade et al., 2016), for
example the microphthalmia-associated transcription factor
(MITF) was expressed at significantly higher levels in
dacarbazine/temozolomide-resistant tumors when compared to
sensitive tumors (Kottschade et al., 2016). Upregulation of
GPR143 in chemoresistant melanoma may thus be due to
upregulation of MITF, since MITF directly controls GPR143
expression (Vetrini et al., 2004; Kottschade et al., 2016).

Colorectal Cancer
Chromosome Xp22.2-22.3, where the OA1 gene is localized, is a
colorectal cancer risk locus (Spatz et al., 2004; Benoît et al., 2007;
McBride, 2016). Colorectal cancer is the second leading cause of
cancer death worldwide with 881 000 estimated deaths in 2018
(Bray et al., 2018; Dolin et al., 2021). This type of cancer is highly
associated with age (Ellison et al., 2018; Siegel et al., 2020; Dolin
et al., 2021). Aside from an unhealthy lifestyle, colorectal cancer
can also develop due to genetic mutations (Munteanu and
Mastalier, 2014). Genome-wide association studies also
identified GPR143 and its neighbor SHROOM2 as
susceptibility genes for cancer (Dunlop et al., 2012; Closa
et al., 2014; Chen Z. et al., 2019). Closa et al. hypothesized
that since GPR143 and SHROOM2 may both play a role in
retinal pigmentation and patients with familial adenomatous
polyposis syndrome can also develop benign RPE lesions
(known as congenital hypertrophy of retinal pigment
epithelium lesions) mutations in the region of Xp22.2 may
increase the risk for developing colorectal cancer (Díaz-Llopis
and Menezo, 1988; Galiatsatos and Foulkes, 2006; Closa et al.,
2014, https://rarediseases.org/rare-diseases/familial-
adenomatous-polyposis/, accessed 4 January 2022).

GPR143 and Nicotine-Induced Behavior
Nicotine administration increases the release of L-DOPA in the
nucleus accumbens of rats and promotes locomotion (walking,
chewing etc.). The effects of nicotine can be suppressed by an
L-DOPA antagonist, thus endogenous L-DOPAmay play a role in
nicotine-induced behavior (Goshima et al., 1996; Izawa et al.,
2006). Since L-DOPA is a potential ligand for GPR143,
Masukawa et al. investigated potential genetic association
between GPR143 polymorphisms and smoking behavior in
Japanese individuals (Masukawa et al., 2020). Their results
pointed to rs6640499, a single-nucleotide polymorphism of
GPR143, which was associated with traits of smoking behaviors
such as number of cigarettes smoked per day (Masukawa et al.,
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2020). Surprisingly, in this study, Masukawa et al. found that
nicotine reduced locomotion in WT mice (contrary to previous
findings). GPR143 KO mice did not show a similar reduction.
When investigating nicotine-induced reward related behavior, a
significant difference was noted between WT and GPR143 KO
mice at low nicotine doses, with reward behavior attenuated in the
mutant mice (Masukawa et al., 2020).

GPR143 INTERACTION PARTNERS

Melanosomal Proteins
The many hypotheses regarding GPR143 and its precise function
may be due to its promiscuity in forming protein-protein-
interactions (PPI) with different partners. GPR143 was initially
shown to interact with melanocyte proteins, potentially while
GPR143 is trafficked to melanosomes through endolysosomal/
melanosomal pathways similar to other melanosomal proteins.
(Winder et al., 1994). For instance the melanocyte protein
melanoma antigen recognized by T-cells (MART-1), also known
as melan-A (Kawakami et al., 1994), was shown to interact with
GPR143 (Giordano et al., 2009). Giordano et al. showed, that
inactivation of MART-1 would lead to a decreased stability of
GPR143 and other defects in premelanosome biogenesis,
suggesting that MART-1 acts as an escort for GPR143 at early
stages of melanosome formation (Giordano et al., 2009).

De Filippo et al. GPR143 found that GPR143 interacts with
tyrosinase, the rate-limiting enzyme of melanin synthesis (De
Filippo et al., 2017b). The interaction may be required to
effectively control melanosome maturation. Earlier in vivo
studies had shown that KO of both GPR143 and tyrosinase
would prevent macromelanosomes formation (Cortese et al.,
2005).

GPR143 was also shown to bind tubulin in a study by
Palmisano et al., where GPR143 knockout mice showed
abnormal melanosome distribution in RPE and melanocytes
(Palmisano et al., 2008). This defect was rescued when GPR143
was re-expressed following transfection suggesting that
melanosomes require GPR143 for microtubule-mediated
distribution from the perinuclear area to the cell periphery
(Palmisano et al., 2008). Since tyrosinase would be expected to
bind GPR143 in the lumen of the melanosome and tubulin in the
intercellular space, GPR143 may interact with proteins/ligands
from both membrane faces (Schiaffino and Tacchetti, 2005).

In GPR143 deficient cells, fewer but larger
marcomelanosomes are observed (Sitaram and Marks,
2012). As the precise regulation of melanosome size is not
fully understood, the role of master regulator of melanocyte
differentiation, MITF was investigated in association with
GPR143 (Falletta et al., 2014). It was reported that GPR143
is able to interact with MITF through a feedback loop, being
both a regulator and target. GRP143 may also impact other
genes regulated by MITF (Vetrini et al., 2004; Falletta et al.,
2014). For example, the melanosome scaffold protein (PMEL)
required for melanosome maturation, was functionally linked
to GPR143. Loss of GPR143 function reduced both basal
expression of MITF and α-melanocyte-stimulating

hormone-dependent induction of MITF. Hence, expression
of PMEL was also reduced (Falletta et al., 2014). The authors
concluded that GPR143 modulates melanosome maturation by
enhancing MITF expression and coordinating melansomes
size and number in a quality control-manner (Falletta et al.,
2014).

G Protein-Coupled Receptors
Masukawa et al. determined that α1b-adrenoceptor and GPR143
are able to form functional heteromers that modulate
noradrenaline-mediated regulation of blood pressure through
L-DOPA (Masukawa et al., 2017). In their study, mice were
given an infusion of phenylephrine (an α1b-adrenoceptor
agonist) that caused a transient increase in blood pressure in
wildtype but not GPR143-mutant mice (Masukawa et al., 2017;
Goshima et al., 2019a). Interaction was further confirmed by
colocalization in FRET and in situ proximity ligation assays,
furthermore, the binding affinity between the two receptors was
enhanced in immunoprecipitation assays following
pretreatment with L-DOPA (Masukawa et al., 2017) (see
chapter 4.2. above).

We demonstrated that GPR143 forms functional dimers with
D2R and D3R, which results in significant reduction of D2/3R
response towards dopamine. GRP143 may exert its effect either
by changing DR affinity for dopamine or by delaying the
delivery of the DRs to the plasma membrane (Bueschbell
et al., 2021). The link between the pigmentary system and
dopaminergic signaling may be critical for optic tract
development, since GPR143 function and tyrosinase activity
could facilitate formation of an L-DOPA concentration gradient
that allows for correct nerve projection during development
(Chen et al., 2015; Chagraoui et al., 2019; Bueschbell et al.,
2021).

GPR143 and its effect on DRs may play a role in the pathology
of AMD due to their effect on dopamine in retinal neurons and
RPE where L-DOPA is converted to dopamine (Figueroa and
McKay, 2019).

CONCLUSION AND FUTURE ASPECTS

GPR143, first discovered as the product of the gene mutated in
ocular albinism 1, is an enigmatic receptor that is unusual in
many ways. It is expressed intracellularly and cannot be readily
classified into a particular GPCR family. Neither the signaling
pathways nor the exact functions of the protein have been
defined, particularly with regard to its role in disease
pathophysiology. There are limited pharmacological tools
available to analyze GPR143 pharmacological and biological
functions. The aim of our review therefore was to shine light on
this unique receptor by collecting relevant information about
GPR143, focusing not only on a specific function, but rather
aiming to bring together all facets of the potentially diverse
roles the protein may play. We highlight structural features
which suggest GPR143 is a class A GPCR since it shares only
few features with class B receptors, as well as the involvement
of the receptor in various diseases. GPR143 is on one hand

Frontiers in Molecular Biosciences | www.frontiersin.org April 2022 | Volume 9 | Article 87377710

Bueschbell et al. GPR143, an Atypical Intracellular Receptor

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


important for early development of the eye, causing ocular
albinism type 1, if mutated, and on the other hand implicated
in a variety of degenerative diseases, such as macular
degeneration and Parkinsons disease and potentially even
plays a role in susceptibility and progression of cancers.
GPR143 is not a mainstream receptor in terms of drug
development. Nevertheless, it is a prime example of an
orphan receptor with therapeutic potential. Much more
research is needed to fully understand the (patho)
physiology of GPR143.
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