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Liver cancer is the most frequent fatal malignancy. Furthermore, there is a lack of effective
therapeutics for this cancer type. To construct a prognostic model for potential beneficiary
screens and identify novel treatment targets, we used an adaptive daisy model (ADaM) to
identify context-specific fitness genes from the CRISPR-Cas9 screens database,
DepMap. Functional analysis and prognostic significance were assessed using data
from TCGA and ICGC cohorts, while drug sensitivity analysis was performed using
data from the Liver Cancer Model Repository (LIMORE). Finally, a 25-gene prognostic
model was established. Patients were then divided into high- and low-risk groups; the
high-risk group had a higher stemness index and shorter overall survival time than the low-
risk group. The C-index, time-dependent ROC curves, and multivariate Cox regression
analysis confirmed the excellent prognostic ability of this model. Functional enrichment
analysis revealed the importance of metabolic rearrangements and serine/threonine kinase
activity, which could be targeted by trametinib and is the key pathway in regulating liver
cancer cell viability. In conclusion, the present study provides a prognostic model for
patients with liver cancer and might help in the exploration of novel therapeutic targets to
ultimately improve patient outcomes.

Keywords: liver cancer, molecular targeted therapy, CRISPR-Cas9 screens, fitness genes, drug sensitivity,
metabolism, trametinib

1 INTRODUCTION

Liver cancer, mainly hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA),
is the leading cause of cancer-related deaths worldwide, with an estimated incidence of over 1 million
cases by 2025 (Llovet et al., 2018; Villanueva, 2019; Llovet et al., 2021). Infection with hepatitis B and
C viruses, smoking, iron overload, and alcohol-related cirrhosis are well-known risk factors for liver
cancer. Recently, metabolic dysregulation in liver cancers has gained more attention, and the
associated factors, such as obesity, type 2 diabetes, and non-alcoholic fatty liver disease, have been
extensively investigated (Piccinin et al., 2019; Satriano et al., 2019; Faubert et al., 2020).
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Owing to the high heterogeneity in liver cancers, systemic
therapies, including immune checkpoint inhibitors (ICIs) and
tyrosine kinase inhibitors (TKIs), have failed to achieve
satisfactory efficacy, especially for patients with advanced
stages of the disease (Llovet et al., 2008; Bruix et al., 2017;
Kudo et al., 2018; Chen et al., 2019; Bruix et al., 2021; Qin
et al., 2021). Accordingly, novel treatment targets must be
identified, and patients with liver cancer must be precisely
stratified to enable accurate treatment.

Loss-of-function experiments are usually performed during
high-throughput screening (HTS), including RNA interference
(RNAi) screening (for knockdown) and CRISPR-Cas9 screening
(for knockout) for functional genomics and drug discovery
(Moffat et al., 2006; Dietzl et al., 2007; Joung et al., 2017).
Owing to its high efficiency and specificity, CRISPR-Cas9
screening, which mediates double-strand breaks in the target
DNA using guide RNA (gRNA) libraries, is more widely used
than RNAi screening (Morgens et al., 2016). There are two main
sources of CRISPR screening: the dependency map (DepMap)
(Pacini et al., 2021) portal, which is the largest and latest database
integrating three large-scale projects, and the BioGRID ORCS
(Oughtred et al., 2021), which serves as a warehouse for the
published CRISPR screening results. To identify the potential
dependency genes that could be used as therapeutic targets, we
explored liver cancer datasets deposited in the DepMap database.

Various metabolic alterations occur in liver cancers, such as
the upregulation of aerobic glycolysis and nucleotide synthesis,
providing energy and biomacromolecules for tumor development
and progression (Piccinin et al., 2019; Satriano et al., 2019; Huang
et al., 2020). Based on previous studies, metabolic
rearrangements, such as the upregulation of nucleotide
metabolism and downregulation of lipid metabolism,
representing poor prognosis, could also serve as prognostic
markers for HCC (Bidkhori et al., 2018; Pascale et al., 2019).
Furthermore, the liver, which is the major site for carbohydrate
and lipid biosynthesis and amino acid metabolism, is important
for maintaining metabolic homeostasis (Gebhardt, 1992;
Kietzmann, 2017; Piccinin et al., 2019). As a result, evaluating
metabolic rearrangement is essential for understanding liver
cancer onset and progression.

Here, we identified fitness genes that could be used as
therapeutic targets using data from CRISPR-Cas9 screens and
constructed a prognostic model. After evaluating the pathways
and biological processes of these genes, we found that they were
mainly associated with metabolic rearrangements. Thus, robust
targets for liver cancer were identified. Overall, a comprehensive
picture of potential fitness genes that are critical for the survival or
proliferation of liver cancer cell lines is presented herein. These
tumor vulnerabilities could facilitate the development of potential
therapeutic targets and ultimately improve patient outcomes.

2 MATERIALS AND METHODS

Data Sources
The dependence scores of liver cancer cell lines were downloaded
from the Dep|Map dataset (Pacini et al., 2021); the scores were

obtained following a series of loss-of-function genomic
screenings in different cell lines.

The normalized gene-level RNA-seq data and clinical information
for 347 patients in TCGA-LIHC cohorts were downloaded from
UCSC Xena (https://xenabrowser.net/) using the R package,
UCSCXenaTools (Wang and Liu, 2019). Mutation data containing
somatic variants were stored in the Mutation Annotation Format
(MAF) form and downloaded from the Genomic Data Commons
(GDC) (https://portal.gdc.cancer.gov/). To obtain 203 patients in the
LIRI-JP validation set, RNA-seq data and related clinicopathological
data were downloaded from the ICGC website (https://dcc.icgc.org/
projects/LIRI-JP) (Zhang et al., 2019).

Identification of Viability Vulnerability
Anegative score indicates that gene knockout inhibits the survival
of a cell line, whereas a positive score indicates that gene knockout
promotes survival and proliferation. Cutoff values of 0.5 and −1
were used to define growth-suppressing genes and growth-
promoting genes, respectively.

The adaptive daisy model (ADaM) is a semi-supervised
algorithm for computing the fuzzy intersection of non-fuzzy
sets by adaptively determining the minimum number of sets
(Hart et al., 2015; Behan et al., 2019). The ADaM has been used to
discriminate core-fitness/context-specific essential genes in large-
scale CRISPR-Cas9 screens. Only context-specific essential genes
and growth-suppressing genes in liver cancer cell lines were
included in the downstream analysis.

Previously known essential genes were obtained from two
independent large-scale CRISPR screening studies (Hart et al.,
2014; Behan et al., 2019).

Development and Validation of the Tumor
Dependency Signature for Liver Cancer
We selected context-specific essential genes and growth-suppressing
genes based on the ADaM analysis to reduce the impact of
untargetable, common, and essential life pathways. The cases
from TCGA LIHC datasets were used as the training set to
establish the LASSO model. Univariate analysis and log-rank tests
were used to identify the genes with prognostic ability. For genes
with prognostic ability, Cox proportional hazard model (iteration =
1,000) with a lasso penalty was used to identify the best gene model
with the R package, “glmnet” (Friedman et al., 2010). The best gene
model was used to establish the tumor evolution signature.
Thereafter, the concordance (c)-index proposed by Harrell was
applied to validate the predictive ability of the signature in all
datasets using the “survcomp” R package (Haibe-Kains et al.,
2008). A larger C-index indicates a more accurate predictive
ability of the model.

Survival Analysis
Kaplan–Meier (K–M) survival curves were generated to
graphically demonstrate the overall survival (OS) of the high-
and low-risk groups, which were stratified by the liver cancer
dependency signature. The curves were also used to evaluate the
prognostic differences between tumor cell clusters. The R
package, “survival,” was used for the survival analysis.
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Bioinformatics Analyses
2.1.1 Gene Set Variation Analysis
Gene set variation analysis (GSVA) with a collection of expert-
annotated vascular-related gene sets was used to identify
pathways and cellular processes that were enriched in different
samples. Hallmaker signatures were collected from the Molecular
Signatures Database (MSigDB version 5.2, http://bioinf.wehi.edu.
au/software/MSigDB/), and a list of metabolic pathways was
obtained from the KEGG database (Kanehisa et al., 2021).

2.1.2 Enrichment Analysis
We used significant positive correlation and negative
correlation metabolic genes, which were obtained from the
Metabolic Atlas (Robinson et al., 2020), with a risk score for
the enrichment pathway analysis performed with the
functional annotation tool, clusterProfiler (Yu et al., 2012).
Gene Ontology (GO) (Ashburner et al., 2000; The Gene
Ontology Consortium et al., 2021) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) (Kanehisa et al., 2021) terms
were identified with a strict cutoff of p < 0.01 and a false
discovery rate (FDR) of <0.05.

2.1.3 Genome Variation Analysis
The Maftools package was used to illustrate the respective
mutation profiling of the two risk group levels via a waterfall
plot. Differentially mutated genes were identified using the
“mafCompare” function, where genes mutated in greater than
5% of the LIHC samples in the TCGA cohort were considered
(Mayakonda et al., 2018).

2.1.4 Oncogenic Dedifferentiation Stemness Features
Analysis
The mRNAsi index used to match TCGA LIHC cancer datasets
was obtained from previous studies (Malta et al., 2018). The risk
score of TCGA samples was correlated with the corresponding
mRNAsi using the R package, ggstatsplot (Patil, 2021).

2.1.5 Drug Sensitivity Analysis
Information on 90 drug-response matrices and the transcriptome
matrix of 81 liver cancer cell models were obtained from the
LIMORE database (Qiu et al., 2019). The cell line and drug
information can be found on the website (https://www.picb.ac.cn/
limore). Spearman’s correlation was used to assess the correlation
between drug sensitivity and risk score.

Statistical Analysis
The “Pheatmap” R package was used to generate heatmaps.
Survival analysis was performed using the Kaplan–Meier
method, and the prediction performance of the risk model was
evaluated using receiver operating characteristic (ROC) and the
“time-ROC” R package. Multivariate COX regression analysis
was used to investigate the prognostic value of the risk score.
Hazard ratios (HRs) and 95% confidence intervals (CIs) were also
calculated for each variable. p < 0.05 was considered statistically
significant at p < 0.05. All analyses were conducted using R
software version 4.0.2 (https://www.r-project.org/).

The entire process for the data analysis is outlined in Figure 1.

3 RESULTS

Identification of Context-Specific Fitness
Genes in Liver Cancer Cell Lines
To identify the cancer cell fitness genes (i.e., gene required for cell
growth or viability), we performed an integrative analysis of 22 liver
cancer cell lines from the DepMap database (Supplementary Table
S2). Genes with a dependence score less than−1.0 in at least one liver
cancer cell line were defined as fitness genes, while genes with a
dependence scoremore than 0.5 in at least three liver cancer cell lines
were defined as suppressor genes. A total of 1.818 fitness genes
(Supplementary Figure 1A,B) and 38 suppressor genes were
included in the subsequent analysis. Distributions and cumulative
distributions of the number of fitness genes were observed in a fixed
number of cell lines across 1,000 randomized versions of the
depletion scores for the liver cancer cell lines (Supplementary
Figure 1C,D).

Fitness genes, which are only required for specific molecular or
histological contexts, were defined as context-specific fitness
genes. In contrast, fitness genes involved in the essential
processes of all cells, which had a greater toxicity to normal
tissues, were defined as core fitness genes (Figure 2A). To reduce
the side effects and select ideal drug targets, context-specific
fitness genes must be distinguished from core fitness genes.
The ADaM algorithm revealed that the minimum number of
dependent cell lines required for a gene to be classified as a core
fitness gene is 18. The results were verified using data from the
study by Traver Hart et al. and Fiona M. Behan et al., with cover
rates of 52 and 63%, respectively, indicating the reliability of our
model (Supplementary Figure 1E,F). Genes involved in
pathways essential for cell survival were excluded, and
404 context-specific fitness genes were finally obtained for
downstream analysis.

To explore the underlying biological functions, functional
enrichment analysis was performed. Suppressor genes were
found to be enriched in pathways, such as the regulation of
cellular response to stress, negative regulation of cell population
proliferation, apoptotic signaling pathways, and RHO GTPase
effectors (Supplementary Table S1), whereas core fitness genes
were enriched in pathways essential for cell survival, such as
ribonucleoprotein complex biogenesis, processing of capped
intron-containing pre-mRNA, mRNA splicing, RNA transport,
DNA replication, and regulation of chromosome organization
(Supplementary Table S1). Owing to their lethal side effects,
these genes or pathways could not be used as therapeutic targets.

Construction of the 25-Gene Prognostic
Model
To identify survival-related genes and construct a prognostic
model, TCGA LIHC data were employed as the training cohort,
and ICGC data were employed as the validation cohort. A total of
404 context-specific fitness genes and 38 suppressor genes were
used for univariate Cox regression analysis and Kaplan–Meier
(K-M) analysis (with p < 0.01), respectively, and 202 survival-
related genes were initially identified. LASSO Cox regression
analysis was used to evaluate the contribution of gene
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combinations in the training cohort, which revealed a 25-gene
signature (Supplementary Figure 1G–I). Based on this signature,
samples in the training and validation cohorts were used to
calculate the risk scores. Thereafter, patients were divided into
high-risk (red) and low-risk groups (green). The OS of the high-
risk group was remarkably lower than that of the low-risk group,
suggesting a poorer prognosis for the high-risk group
(Figure 2B,C). The candidate genes that could be therapeutic
targets in this signature is shown in the heatmap (Figure 2B,C).

Evaluation of the Prognostic Model in the
Training Cohort and Validation Cohort
To evaluate the prognosis-predicting efficacy of this 25-gene
signature, K-M analysis, C-index, and time-dependent ROC
(tROC) analysis were performed using TCGA and ICGC
cohorts. K-M analysis revealed that patients in the high-risk
group had significantly shorter OS than those in the low-risk
group in the two cohorts (Figure 3A,B). C-index was performed
to validate the credibility of this 25-gene signature, with a value of
0.80 for the TCGA cohort and 0.71 for the ICGC cohort
(Figure 3E). The area under the ROC curve (AUC) values for
1-year, 3-year, and 5-year OS were 0.862, 0.885, and 0.875,
respectively, for the TCGA cohort, and 0.689, 0.764, and
0.831, respectively, for the ICGC cohort (Figure 3C,D). These
findings indicate the high sensitivity and specificity of this 25-
gene signature for survival prediction.

Risk scores and clinical parameters, such as sex, age, stage,
vascular invasion, fibrosis, alcohol consumption, and smoking
history, were included in the multivariate Cox regression analysis.
Stage IV and risk scores were identified as independent
prognostic factors for OS (Figure 3F). In fact, risk scores were
identified to have significant predictive efficacy, with HR of 4.040,
95% CI of 2.946–5.539, and p < 0.001 in the TCGA cohort, and

HR of 1.918, 95% CI of 1.163–3.164, and p < 0.001 in the ICGC
cohort.

Comparison of Genomic Variations in
Different Risk Groups
The top 20 genes with high genomic mutation frequency in the
high-risk and low-risk groups were obtained using Maftools.
Furthermore, TP53 was identified as the most recurrently
mutated gene in the high-risk group (45%), while CTNNB1
was the most recurrently mutated gene in the low-risk group
(30%) (Figure 4A,B). To analyze the discrepancy between the
high- and low-risk groups, the differentially mutated gene type
and frequency were compared using Fisher’s exact test. Most
differentially expressed genes were found to be upregulated in the
high-risk group, except forCOL4A5 (high-risk vs. low-risk: 1% vs.
9%),MYT1L (3% vs. 12%),DYNC2H1 (3% vs. 12%),HECW2 (1%
vs. 8%), and CENPF (1% vs. 8%) (Figure 4C,D).

Stemness is defined as the potential for differentiation from
the cell of origin. Stemness is involved in cancer progression,
increases the possibility of metastasis and resistance, and results
in a poor prognosis. By assessing the degree of oncogenic
dedifferentiation in the two risk groups using a one-class
logistic regression machine learning algorithm (OCLR), we
found that the stemness index was significantly higher in the
high-risk group than the low-risk group (Figure 4E).
Furthermore, a strong positive correlation was found between
the stemness index and risk scores (Figure 4F), indicating higher
malignancy in the high-risk group than the low-risk group.

Exploration of the Biological Processes of
This 25-Gene Signature With GSVA
To further explore the underlying biological processes of this 25-
gene signature, GSVA was performed with TCGA data. In the

FIGURE 1 | Flowchart of the entire analysis. Flowchart outlining the steps involved in fabricating robust prognostic models from liver cancer context-specific fitness
genes.
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Molecular Signature Database (MSigDB) “hallmark” collection of
major biological categories, the upregulated genes in the high-risk
group were mainly enriched in tumor-promoting and
proliferation pathways, such as DNA repair, Myc targets, E2F
targets, G2M checkpoint, mitotic spindle, and PI3K/AKT mTOR
signaling pathway. Metabolic rearrangement, which plays a
pivotal role in oncogenesis, was also found to be significant.
Several pathways associated with normal liver function were
downregulated, such as oxidative phosphorylation, heme

metabolism, bile acid metabolism, peroxisome, adipogenesis,
fatty acid metabolism, and xenobiotic metabolism
(Supplementary Figure S2A).

Considering the importance of metabolic rearrangement in
liver cancers, GSVA was used to explore the KEGG metabolic
processes associated with the risk signature. Most functional
metabolic pathways in normal livers were found to be
downregulated with the risk score (Supplementary Figure
S2B, Supplementary Table S3).

FIGURE 2 | Identifying context-specific fitness genes in liver cancers using the ADaM. (A) ADaM distinguished context-specific fitness genes from core fitness
genes to select potential targets for liver cancers. (B,C) The top graphs show the distribution of risk scores, the center graphs show the survival status of patients in the
training and validation cohorts, and the bottom graphs show the expression patterns of the 25 genes. (B) TCGA training cohort and (C) ICGC validation cohort.

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 8635365

Yu et al. Liver Cancer Fitness Gene Model

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


FIGURE 3 | Evaluating the prognosis-predicting efficacy of this 25-gene signature. (A,B) Kaplan–Meier plot of TCGA (A) and ICGC (B) cohorts. (C,D) tROC curve
of the 25-gene signature in TCGA (C) and ICGC (D) cohorts. (E) C-index of the 25-gene signature was 0.8 in the TCGA cohort and 0.71 in the ICGC cohort. (F)
Multivariate Cox regression analysis of clinical parameters and risk scores for OS.
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FIGURE 4 | Analysis of genomic variations in the high-risk group and low-risk group. (A,B)Oncoplot displaying the somatic landscape of the high-risk (A) and low-
risk (B) groups. Genes were arranged according to their mutation frequencies. The Y-axis represents the gene name, and the abscissa represents the sample name.
Different colors represent different mutation types. (C) Forest plot showing differentially mutated genes between the high- and low-risk groups. The adjacent table
includes the number of samples in the high- and low-risk groups with mutations in the highlighted gene. p-value indicates significance threshold: (***) p < 0.001, (**)
p < 0.01, Fisher’s exact test. (D)Cobar plots show the most recurrently mutated genes in the high- and low-risk groups. (E)mRNA stemness index of the low-risk group
was lower than that of the high-risk group. (F) mRNA stemness index was positively correlated with risk scores.
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The 25-Gene Signature-Related Metabolic
Rearrangement
To further confirm the role of the 25-gene signature in metabolic
rearrangements of liver cancers, metabolism-associated genes
were employed from the Metabolic Atlas (Robinson et al.,
2020) and 3,625 genes were included for further analysis. A
total of 571 genes that were most relevant to the 25-gene
signature (Spearman |R| > 0.3, p < 0.05) were extracted to
generate the heatmap. Of these genes, 282 were significantly
positively correlated with the risk scores and 289 were
significantly negatively correlated with the risk scores
(Figure 5A).

In the GO biological process analysis, the metabolic genes that
had a positive correlation with risk scores were mainly enriched
in pathways associated with amino acid metabolism and
nucleotide metabolism, such as purine-containing compound
metabolic process, ribose phosphate metabolic process,
ribonucleotide metabolic process, and nucleotide biosynthetic
process (Figure 5B). Furthermore, the negatively correlated
metabolic genes were mainly enriched in pathways associated
with xenobiotic biodegradation metabolism and lipid
metabolism, such as small-molecule catabolic processes,

organic acid catabolism, and fatty acid metabolic processes
(Figure 5C).

Analysis of Potential Drug Targets With
LIMORE
Based on the risk scores, a drug sensitivity analysis was performed
using data from LIMORE (Qiu et al., 2019), a pharmacogenomic
landscape of human liver cancers. The two drugs with significant
correlation—sorafenib, which was negatively correlated with risk
scores, and trametinib, which was positively correlated with risk
scores—are shown in Figure 6.

Sorafenib, a multi-kinase inhibitor, was the most effective single
drug agent for patients with liver cancers for decades; however, this
drug only provided survival benefits for 3months relative to the
placebo (Llovet et al., 2008). Consistent with the clinical manifestation,
the effect of sorafenib decreased as the risk scores increased, indicating
a poor effect in a higher malignancy (Figure 6A).

Consistent with the GO analysis results, which confirmed the
serine/threonine kinase activity as the most significant positive
correlation pathway, trametinib, a MEK inhibitor mainly used by
patients with V600E mutated metastatic melanoma (Robert et al.,

FIGURE 5 | Validating the metabolic rearrangements associated with the prognostic model. (A) Differentially metabolic genes in the high-risk group and low-risk
group. The heatmap shows that tumor stage and OS were positively correlated with the risk score, while vascular invasion and gender had no relationship with the risk
score. (B) GO enrichment analysis of the metabolic genes that are positively correlated with risk scores. (C) GO enrichment analysis of the metabolic genes that are
negatively correlated with risk scores.

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 8635368

Yu et al. Liver Cancer Fitness Gene Model

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


2012; Reuters, 2013), was identified as the most positively
correlated drug, indicating strong potency in the high-risk
group (Figure 6B). However, the underlying mechanisms
require further investigation.

4 DISCUSSION

Given the global burden of liver cancers and themodest outcomes
of current therapeutics, there is a critical need for precise stratified
strategies, especially novel comprehensive therapeutic options for
patients with liver cancers. In this study, we used the ADaM to
identify context-specific fitness genes from DepMap and
constructed a 25-gene prognostic model that divided patients
into high- and low-risk groups. GSVA and GO analyses revealed
significant metabolic rearrangements associated with this
signature. Furthermore, a drug sensitivity analysis was
performed using data from LIMORE. Genes included in this
signature are mainly involved in the life cycle of tumor cells rather
than normal cells, suggesting their potential as ideal therapeutic
targets with minimal side effects. To date, no studies have
systemically explored the role of fitness genes in the treatment
of liver cancers. Furthermore, our prognostic model had better
predictive power than previous models.

Mutations or dysregulation of transcription factors, essential
kinases, and signaling receptors represents a unique class of drug
targets that mediate aberrant gene expression, including blocking
differentiation and cell death gene expression programs as well as
hallmark properties of cancer (Bushweller, 2019). Owing to the
cascade amplification effect, minimal perturbations of these
upstream molecules can induce significant downstream
changes and are at the heart of the overall tumor signaling
network (Sever and Brugge, 2015). The differential expression
of these core proteins cannot be directly captured using high-
throughput analysis. In fact, in conventional transcriptome
differential analysis, a minimum threshold of 2-fold expression
difference is usually used, and most of the core proteins cannot
reach such significant differences. Numerous studies have been

conducted on large-sample transcriptome cohorts, such as
TCGA, to screen for hub genes (Wang et al., 2021). Owing to
the reasons mentioned previously, many upstream core proteins
were excluded due to their lower expression and insignificant
differential expression. Therefore, a better strategy is needed to
identify core proteins that play essential roles in tumors.

The emergence of CRISPR screening technology is an ideal
solution to these problems. By performing a large-scale genomic-
level lethal gene screen within hundreds of cell lines, the DepMap
project could identify core proteins dependent on the growth of
tumor cell lines (Pacini et al., 2021). Furthermore, the ADaM was
used to select context-specific fitness genes with drug target
potential. These genes are proteins that have been validated at
a practical level and play a central role in tumor survival. By
limiting our targets to these genes, we can effectively avoid the
effect of significant signals caused by cascade amplification
effects. Combined with the TCGA/ICGC database and
DepMap data, targets with both prognostic and therapeutic
significance can be effectively screened.

Two problems cannot be avoided if the TCGA database alone
is used. First, there is no guarantee that every gene has a
significant biological function and may be screened for
passenger genes: participants with significant expression
changes, but not tumor prognostic differences. Second, the
TCGA database may include screening for genes that
indirectly affect tumor prognosis, such as PDCD1. Although
such genes can also be used as therapeutic targets, this study
focused on targeting HCC cells themselves as a killing
mechanism.

Of note, only targets with a combination of efficacy and low
toxicity are ideal drug targets. Genes that are essential for tumor
cell survival but not for the survival of normal tissues should be
ideal therapeutic targets with high effectiveness and minimal side
effects. Thus, it is particularly important to distinguish context-
specific fitness genes from core fitness genes. To explore the
genomic effect in improving cancer patient clinical outcomes and
accelerate the development of new cancer therapies, CRISPR
technologies based on gRNAs have been used to study gene

FIGURE 6 | Correlation between drug sensitivity and risk scores was assessed using data from LIMORE. (A) The sensitivity of sorafenib had a negative correlation
with risk scores. (B) The sensitivity of trametinib had a positive correlation with risk scores.
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function and identify cellular fitness genes (defined as genes
essential for cell growth or viability).

This 25-gene signature based on context-specific fitness genes
not only serves as a prognostic model but also provides novel
treatment strategies for patients with liver cancer. Most of the
genes involved in this signature can be used as therapeutic targets
with mild toxicity to normal tissues. Centrosomal P4.1-associated
protein (CPAP, also called CENPJ), which is positively correlated
with recurrence and vascular invasion in HCC and contributes to
sorafenib resistance (Chen et al., 2020), could be a therapeutic
target for inhibiting angiogenesis and treating metastatic HCC.
Some genes are associated with metabolic processes, such as
glucose transporter 1 (SLC2A1, also known as GLUT1), which
encodes a key rate-limiting factor in glucose transport into cancer
cells, and thioredoxin reductase 1 (TXNRD1), which is the
cytosolic subunit and key enzyme of the thioredoxin system.
According to previous studies, inhibition of GLUT1 could impair
the growth and migratory potential of HCC cells and reduce
glucose uptake and lactate secretion, whereas inhibition of
TXNRD1 hinders the proliferation of HCC cells and induces
apoptosis in vitro (Amann et al., 2009; Lee et al., 2019). Auranofin
(AUR), a pharmacological inhibitor of TXNRD1, can effectively
suppress the growth of HCC tumors in animal models and
sensitize HCC cells to sorafenib (Lee et al., 2019). Two genes
that were negatively correlated with risk scores, UDP-glucose
pyrophosphorylase 2 (UGP2) and argininosuccinate synthase
(ASS1), could serve as potential therapeutic targets. In a
previous study, the downregulation of UGP2, a key enzyme in
glycogen biosynthesis, was revealed to be associated with the
occurrence and development of various cancer types and poor
survival of HCC, while the downregulation of ASS1, a key enzyme
in the conversion of nitrogen from ammonia and aspartate to
urea, was confirmed to support cancerous proliferation via the
mammalian target of the rapamycin (mTOR) pathway
(Rabinovich et al., 2015; Li et al., 2018; Hu et al., 2020).

Although most therapeutic targets are inhibitors of oncogenes,
tumor suppressor genes are more frequently mutated in cancers
than oncogenes. With the development of functional genomics
and pharmacology, strategies targeting tumor suppressor genes
or associated pathways have received increasing attention. Thus,
we included the suppressor genes in our analysis. This 25-gene
signature could reveal more potential treatment targets for
patients with liver cancer.

By evaluating drug sensitivity using data from LIMORE in the
present study, we found a positive correlation between the risk scores
and the efficacy of trametinib, an MEK inhibitor. A previous study
confirmed the potent single-agent antitumor activity of MEK
inhibitors in animal models (Huynh et al., 2010; Schmieder et al.,
2013). Based on the heterogeneity of liver cancers, the ability of our
model to identify the benefits of trametinib is important. These
findings indicate that high-throughput drug screens in LIMORE
could assess the variable effects of drugs and provide opportunities
for pharmacogenomic analysis in liver cancers.

Owing to the high cost of molecularly targeted agents and ICIs,
systemic chemotherapy is still an indispensable option, despite its
well-known modest efficacy in liver cancers. To reduce side
effects, this signature provides a strategy to distinguish the

beneficiaries of chemotherapy. GEMOX, based on gemcitabine
(GEM) (Mini et al., 2006), an anti-metabolic drug, is a common
choice for patients with liver cancer. However, metabolic
rearrangement not only promotes the growth and metastasis
of tumor cells but also induces GEM resistance. Increasing
evidence suggests that gemcitabine resistance is related to the
metabolism of glucose, amino acids, and lipids. In this study, the
upregulation of GLUT1 promoted glucose uptake and increased
glycolysis, resulting in resistance to GEM. In this process,
increased glycolytic flux converts glucose intermediates into
the pentose phosphate pathway (PPP) and increases pyridine
biosynthesis to elevate the intrinsic levels of deoxycytidine
triphosphate (dCTP), which competes with the effective levels
of GEM (Gu et al., 2021). In addition to the upregulation of
GLUT1, increased glycolysis and pyridine biosynthesis
metabolism have been confirmed via biological analysis. ASS1
is a rate-limiting enzyme involved in arginine synthesis. Owing to
a deficiency of ASS1, cancer cells become addicted to external
arginine and resistant to GEM (Prudner et al., 2019). Therefore,
the high-risk group with significantly higher metabolic
rearrangements would be prone to chemoresistance.

Mitogen-activated protein kinases (MAPKs) are protein
serine/threonine (Ser/Thr) kinases that convert extracellular
stimuli into various cellular responses, including proliferation,
migration, differentiation, and metabolism (Yang and Liu, 2017).
In the ERK-MAPK signaling pathway, the initiating MAP3Ks are
members of the RAF family, which consists of ARARF, BRAF,
and CRAF, and are activated by the interaction with active GTP-
binding RAS proteins. MAP3K activation leads to the activation
of MEK1 and MEK2, which then activate ERK1 and ERK2
through dual phosphorylation of tyrosine and threonine
residues (Cargnello and Roux, 2011). After activation, ERK1/2
phosphorylates and triggers a variety of nuclear and non-nuclear
proteins that activate proliferative programs and promote the
aerobic glycolytic phenotype. Among these transcription factors,
c-Myc increases the expression of GLUT1 and several enzymes in
the glycolytic pathway, and induces the expression of enzymes
involved in nucleotides, fatty acid synthesis, and glutaminolysis
(Papa et al., 2019). c-Myc promotes glycolytic intermediates in
the PPP, serine, and glycine biosynthesis pathways by inducing
the expression of PKM2 (David et al., 2010). These metabolic
pathways and serine–threonine kinase activity pathways were
found to be upregulated in the high-risk group, indicating a
critical role of the ERK–MAPK signaling pathway in HCC.

Sorafenib, initially discovered as a CRAF(BRAF) inhibitor and
recently identified as a multikinase inhibitor, has been approved
for the treatment of HCC (Llovet et al., 2008). However, the
activation of alternative survival pathways leads to drug resistance
and limits the effectiveness of sorafenib (Zhou et al., 2019). Of
note, the combination of MEK and BRAF inhibitors is better
tolerated than their respective monotherapies (Tolcher et al.,
2015). The combination of trametinib and dabrafenib, a BRAF
inhibitor, was approved for the treatment of BRAF-V600E/
K-mutant metastatic melanoma in 2014. In this study, the
sensitivity to trametinib gradually increased with increasing
risk scores, indicating that direct targeting of MEK to block
MAPK signaling is an effective option for the treatment of
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HCC. Previous studies reported no significant improvement in
the efficacy of trametinib in combination with sorafenib in
patients with unselected HCC, further suggesting the
importance of patient selection (Kim et al., 2020). Altogether,
our model may provide valuable information for patient
selection.

In general, precision medicine could be the only approach
to overcome the heterogeneity of liver cancers. This
biomarker-driven identification would not only improve
therapeutic decision-making but also provide wide
therapeutic targets.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repositories and accession
numbers can be found in section “Materials and Methods.”

AUTHOR CONTRIBUTIONS

SY, HW,WG, and SZ contributed to conception and design of the
study. JG and JS organized the database. LL performed the
statistical analysis. SY and XS wrote the first draft of the
manuscript. HW, ZW, XS, and PW wrote sections of the
manuscript. All authors have contributed to manuscript
revision, and read and approved the submitted version.

FUNDING

This study was jointly supported by the National Natural Science
Foundation of China (No. 81971881) and the Education
Department of Henan Province (20A320014).

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fgene.2022.863536/
full#supplementary-material

Supplementary Figure S1 | Establishment of the 25-gene signature. (A,B)
Number of fitness genes in a fixed number of cell lines. (C,D) Distributions and
cumulative distributions of fitness genes observed in a fixed number of cell
lines across 1,000 randomized versions of the depletion scores for liver
cancer cell lines. (E,F) Analysis of the data from Hart et al. and Behan
et al. was defined as the true-positive rates (blue curve), showing fitness
genes in at least 18 cell lines. The possible values of fitness genes in at least
18 cell lines in our study are depicted via a red curve. (G–I) LASSO regression
analysis was used to determine the 25-gene signature for OS prediction: (G)
Frequency of different gene combination models; (H) cross-validation plot
showing the confidence intervals for each lambda; (I) trajectory of each
independent variable; the horizontal axis indicates the log value of the
independent variable lambda; and the vertical axis represents the
coefficient of the independent variable.

Supplementary Figure S2 | GSVA of gene set enrichment in the high-risk group
and low-risk group. (A) Heatmap of gene set enrichment in the high- and low-risk
groups. Differential genes were mainly enriched in the tumor promoting/proliferation
pathways and metabolism-associated pathways. (B) Heatmap shows metabolic
rearrangements in the two risk groups.

REFERENCES

Amann, T., Maegdefrau, U., Hartmann, A., Agaimy, A., Marienhagen, J., Weiss, T.
S., et al. (2009). GLUT1 Expression Is Increased in Hepatocellular Carcinoma
and Promotes Tumorigenesis. Am. J. Pathol. 174, 1544–1552. doi:10.2353/
ajpath.2009.080596

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., et al.
(2000). Gene Ontology: Tool for the Unification of Biology. Nat. Genet. 25,
25–29. doi:10.1038/75556

Behan, F. M., Iorio, F., Picco, G., Gonçalves, E., Beaver, C. M., Migliardi, G., et al.
(2019). Prioritization of Cancer Therapeutic Targets Using CRISPR-Cas9
Screens. Nature 568, 511–516. doi:10.1038/s41586-019-1103-9

Bidkhori, G., Benfeitas, R., Klevstig, M., Zhang, C., Nielsen, J., Uhlen, M., et al.
(2018). Metabolic Network-Based Stratification of Hepatocellular Carcinoma
Reveals Three Distinct Tumor Subtypes. Proc. Natl. Acad. Sci. U.S.A. 115,
E11874–E11883. doi:10.1073/pnas.1807305115

Bruix, J., Qin, S., Merle, P., Granito, A., Huang, Y.-H., Bodoky, G., et al. (2017).
Regorafenib for Patients with Hepatocellular Carcinoma Who Progressed on
Sorafenib Treatment (RESORCE): a Randomised, Double-Blind, Placebo-
Controlled, Phase 3 Trial. Lancet 389, 56–66. doi:10.1016/S0140-6736(16)
32453-9

Bruix, J., Chan, S. L., Galle, P. R., Rimassa, L., and Sangro, B. (2021). Systemic
Treatment of Hepatocellular Carcinoma: An EASL Position Paper. J. Hepatol.
75, 960–974. doi:10.1016/j.jhep.2021.07.004

Bushweller, J. H. (2019). Targeting Transcription Factors in Cancer - from
Undruggable to Reality. Nat. Rev. Cancer 19, 611–624. doi:10.1038/s41568-
019-0196-7

Cargnello, M., and Roux, P. P. (2011). Activation and Function of the MAPKs and
Their Substrates, the MAPK-Activated Protein Kinases. Microbiol. Mol. Biol.
Rev. 75, 50–83. doi:10.1128/MMBR.00031-10

Chen, X., Zhang, Y., Zhang, N., Ge, Y., and Jia, W. (2019). Lenvatinib
Combined Nivolumab Injection Followed by Extended Right
Hepatectomy Is a Feasible Treatment for Patients with Massive
Hepatocellular Carcinoma: a Case Report. Onco Targets Ther. 12,
7355–7359. doi:10.2147/OTT.S217123

Chen, R.-Y., Yen, C.-J., Liu, Y.-W., Guo, C.-G., Weng, C.-Y., Lai, C.-H., et al.
(2020). CPAP Promotes Angiogenesis and Metastasis by Enhancing
STAT3 Activity. Cell Death Differ. 27, 1259–1273. doi:10.1038/s41418-
019-0413-7

David, C. J., Chen, M., Assanah, M., Canoll, P., and Manley, J. L. (2010).
HnRNP Proteins Controlled by C-Myc Deregulate Pyruvate Kinase
mRNA Splicing in Cancer. Nature 463, 364–368. doi:10.1038/
nature08697

Dietzl, G., Chen, D., Schnorrer, F., Su, K.-C., Barinova, Y., Fellner, M., et al. (2007).
A Genome-wide Transgenic RNAi Library for Conditional Gene Inactivation in
Drosophila. Nature 448, 151–156. doi:10.1038/nature05954

Faubert, B., Solmonson, A., and DeBerardinis, R. J. (2020). Metabolic
Reprogramming and Cancer Progression. Science 368, eaaw5473. doi:10.
1126/science.aaw5473

Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization Paths for
Generalized Linear Models via Coordinate Descent. J. Stat. Soft. 33, 1–22.
doi:10.18637/jss.v033.i01

Gebhardt, R. (1992). Metabolic Zonation of the Liver: Regulation and Implications
for Liver Function. Pharmacol. Ther. 53, 275–354. doi:10.1016/0163-7258(92)
90055-5

Gu, Z., Du, Y., Zhao, X., and Wang, C. (2021). Tumor Microenvironment and
Metabolic Remodeling in Gemcitabine-based Chemoresistance of
Pancreatic Cancer. Cancer Lett. 521, 98–108. doi:10.1016/j.canlet.2021.
08.029

Haibe-Kains, B., Desmedt, C., Sotiriou, C., and Bontempi, G. (2008). A
Comparative Study of Survival Models for Breast Cancer Prognostication

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 86353611

Yu et al. Liver Cancer Fitness Gene Model

https://www.frontiersin.org/articles/10.3389/fgene.2022.863536/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2022.863536/full#supplementary-material
https://doi.org/10.2353/ajpath.2009.080596
https://doi.org/10.2353/ajpath.2009.080596
https://doi.org/10.1038/75556
https://doi.org/10.1038/s41586-019-1103-9
https://doi.org/10.1073/pnas.1807305115
https://doi.org/10.1016/S0140-6736(16)32453-9
https://doi.org/10.1016/S0140-6736(16)32453-9
https://doi.org/10.1016/j.jhep.2021.07.004
https://doi.org/10.1038/s41568-019-0196-7
https://doi.org/10.1038/s41568-019-0196-7
https://doi.org/10.1128/MMBR.00031-10
https://doi.org/10.2147/OTT.S217123
https://doi.org/10.1038/s41418-019-0413-7
https://doi.org/10.1038/s41418-019-0413-7
https://doi.org/10.1038/nature08697
https://doi.org/10.1038/nature08697
https://doi.org/10.1038/nature05954
https://doi.org/10.1126/science.aaw5473
https://doi.org/10.1126/science.aaw5473
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.1016/0163-7258(92)90055-5
https://doi.org/10.1016/0163-7258(92)90055-5
https://doi.org/10.1016/j.canlet.2021.08.029
https://doi.org/10.1016/j.canlet.2021.08.029
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Based on Microarray Data: Does a Single Gene Beat Them All? Bioinformatics
24, 2200–2208. doi:10.1093/bioinformatics/btn374

Hart, T., Brown, K. R., Sircoulomb, F., Rottapel, R., andMoffat, J. (2014). Measuring Error
Rates in Genomic Perturbation Screens: Gold Standards for Human Functional
Genomics. Mol. Syst. Biol. 10, 733. doi:10.15252/msb.20145216

Hart, T., Chandrashekhar, M., Aregger, M., Steinhart, Z., Brown, K. R., MacLeod,
G., et al. (2015). High-Resolution CRISPR Screens Reveal Fitness Genes and
Genotype-specific Cancer Liabilities. Cell 163, 1515–1526. doi:10.1016/j.cell.
2015.11.015

Hu, Q., Shen, S., Li, J., Liu, L., Liu, X., Zhang, Y., et al. (2020). Low UGP2
Expression Is Associated with Tumour Progression and Predicts Poor
Prognosis in Hepatocellular Carcinoma. Dis. Markers 2020, 1–10. doi:10.
1155/2020/3231273

Huang, K.-W., Reebye, V., Czysz, K., Ciriello, S., Dorman, S., Reccia, I., et al. (2020).
Liver Activation of Hepatocellular Nuclear Factor-4α by Small Activating RNA
Rescues Dyslipidemia and Improves Metabolic Profile.Mol. Ther. Nucleic Acids
19, 361–370. doi:10.1016/j.omtn.2019.10.044

Huynh, H., Ngo, V. C., Koong, H. N., Poon, D., Choo, S. P., Toh, H. C., et al. (2010).
AZD6244 Enhances the Anti-tumor Activity of Sorafenib in Ectopic and
Orthotopic Models of Human Hepatocellular Carcinoma (HCC). J. Hepatol.
52, 79–87. doi:10.1016/j.jhep.2009.10.008

Joung, J., Konermann, S., Gootenberg, J. S., Abudayyeh, O. O., Platt, R. J.,
Brigham, M. D., et al. (2017). Genome-scale CRISPR-Cas9 Knockout and
Transcriptional Activation Screening. Nat. Protoc. 12, 828–863. doi:10.1038/
nprot.2017.016

Kanehisa, M., Furumichi, M., Sato, Y., Ishiguro-Watanabe, M., and Tanabe, M.
(2021). KEGG: Integrating Viruses and Cellular Organisms. Nucleic Acids Res.
49, D545–D551. doi:10.1093/nar/gkaa970

Kietzmann, T. (2017). Metabolic Zonation of the Liver: The Oxygen Gradient
Revisited. Redox Biol. 11, 622–630. doi:10.1016/j.redox.2017.01.012

Kim, R., Tan, E.,Wang, E., Mahipal, A., Chen, D.-T., Cao, B., et al. (2020). A Phase I
Trial of Trametinib in Combination with Sorafenib in Patients with Advanced
Hepatocellular Cancer. Oncol. 25, e1893–e1899. doi:10.1634/theoncologist.
2020-0759

Kudo, M., Finn, R. S., Qin, S., Han, K.-H., Ikeda, K., Piscaglia, F., et al. (2018).
Lenvatinib versus Sorafenib in First-Line Treatment of Patients with
Unresectable Hepatocellular Carcinoma: a Randomised Phase 3 Non-
inferiority Trial. Lancet 391, 1163–1173. doi:10.1016/S0140-6736(18)30207-1

Lee, D., Xu, I. M. J., Chiu, D. K. C., Leibold, J., Tse, A. P. W., Bao, M. H. R., et al.
(2019). Induction of Oxidative Stress through Inhibition of Thioredoxin
Reductase 1 Is an Effective Therapeutic Approach for Hepatocellular
Carcinoma. Hepatology 69, 1768–1786. doi:10.1002/hep.30467

Li, Y., Zhuang, H., Zhang, X., Li, Y., Liu, Y., Yi, X., et al. (2018). Multiomics
Integration Reveals the Landscape of Prometastasis Metabolism in
Hepatocellular Carcinoma. Mol. Cell Proteomics 17, 607–618. doi:10.1074/
mcp.RA118.000586

Llovet, J. M., Ricci, S., Mazzaferro, V., Hilgard, P., Gane, E., Blanc, J.-F., et al.
(2008). Sorafenib in Advanced Hepatocellular Carcinoma. N. Engl. J. Med. 359,
378–390. doi:10.1056/NEJMoa0708857

Llovet, J. M., Montal, R., Sia, D., and Finn, R. S. (2018). Molecular Therapies and
Precision Medicine for Hepatocellular Carcinoma. Nat. Rev. Clin. Oncol. 15,
599–616. doi:10.1038/s41571-018-0073-4

Llovet, J. M., Kelley, R. K., Villanueva, A., Singal, A. G., Pikarsky, E., Roayaie, S.,
et al. (2021). Hepatocellular Carcinoma.Nat. Rev. Dis. Primers 7, 6. doi:10.1038/
s41572-020-00240-3

Malta, T. M., Sokolov, A., Gentles, A. J., Burzykowski, T., Poisson, L., Weinstein,
J. N., et al. (2018). Machine Learning Identifies Stemness Features Associated
with Oncogenic Dedifferentiation. Cell 173, 338. doi:10.1016/j.cell.2018.
03.034

Mayakonda, A., Lin, D.-C., Assenov, Y., Plass, C., and Koeffler, H. P. (2018).
Maftools: Efficient and Comprehensive Analysis of Somatic Variants in Cancer.
Genome Res. 28, 1747–1756. doi:10.1101/gr.239244.118

Mini, E., Nobili, S., Caciagli, B., Landini, I., and Mazzei, T. (2006). Cellular
Pharmacology of Gemcitabine. Ann. Oncol. 17 (Suppl. 5), v7–v12. doi:10.
1093/annonc/mdj941

Moffat, J., Grueneberg, D. A., Yang, X., Kim, S. Y., Kloepfer, A. M., Hinkle, G., et al.
(2006). A Lentiviral RNAi Library for Human and Mouse Genes Applied to an

Arrayed Viral High-Content Screen. Cell 124, 1283–1298. doi:10.1016/j.cell.
2006.01.040

Morgens, D. W., Deans, R. M., Li, A., and Bassik, M. C. (2016). Systematic
Comparison of CRISPR/Cas9 and RNAi Screens for Essential Genes. Nat.
Biotechnol. 34, 634–636. doi:10.1038/nbt.3567

Oughtred, R., Rust, J., Chang, C., Breitkreutz, B. J., Stark, C., Willems, A., et al.
(2021). TheBioGRIDdatabase: A Comprehensive Biomedical Resource of
Curated Protein, Genetic, and Chemical Interactions. Protein Sci. 30,
187–200. doi:10.1002/pro.3978

Pacini, C., Dempster, J. M., Boyle, I., Gonçalves, E., Najgebauer, H., Karakoc, E.,
et al. (2021). Integrated Cross-Study Datasets of Genetic Dependencies in
Cancer. Nat. Commun. 12, 1661. doi:10.1038/s41467-021-21898-7

Papa, S., Choy, P. M., and Bubici, C. (2019). The ERK and JNK Pathways in the
Regulation of Metabolic Reprogramming. Oncogene 38, 2223–2240. doi:10.
1038/s41388-018-0582-8

Pascale, R. M., Peitta, G., Simile, M. M., and Feo, F. (2019). Alterations of
Methionine Metabolism as Potential Targets for the Prevention and
Therapy of Hepatocellular Carcinoma. Medicina 55, 296. doi:10.3390/
medicina55060296

Patil, I. (2021). Visualizations with Statistical Details: The ’ggstatsplot’ Approach.
JOSS 6, 3167. doi:10.21105/joss.03167

Piccinin, E., Villani, G., and Moschetta, A. (2019). Metabolic Aspects in
NAFLD, NASH and Hepatocellular Carcinoma: the Role of PGC1
Coactivators. Nat. Rev. Gastroenterol. Hepatol. 16, 160–174. doi:10.1038/
s41575-018-0089-3

Prudner, B. C., Rathore, R., Robinson, A. M., Godec, A., Chang, S. F., Hawkins, W.
G., et al. (2019). Arginine Starvation and Docetaxel Induce C-Myc-Driven
hENT1 Surface Expression to Overcome Gemcitabine Resistance in ASS1-
Negative Tumors. Clin. Cancer Res. 25, 5122–5134. doi:10.1158/1078-0432.
CCR-19-0206

Qin, S., Bi, F., Gu, S., Bai, Y., Chen, Z., Wang, Z., et al. (2021). Donafenib versus
Sorafenib in First-Line Treatment of Unresectable or Metastatic
Hepatocellular Carcinoma: A Randomized, Open-Label, Parallel-
Controlled Phase II-III Trial. J. Clin. Oncol. 39, 3002–3011. doi:10.1200/
JCO.21.00163

Qiu, Z., Li, H., Zhang, Z., Zhu, Z., He, S., Wang, X., et al. (2019). A
Pharmacogenomic Landscape in Human Liver Cancers. Cancer Cell 36,
179–193. doi:10.1016/j.ccell.2019.07.001

Rabinovich, S., Adler, L., Yizhak, K., Sarver, A., Silberman, A., Agron, S., et al.
(2015). Diversion of Aspartate in ASS1-Deficient Tumours Fosters De
Novo Pyrimidine Synthesis. Nature 527, 379–383. doi:10.1038/
nature15529

Reuters (2013). GSK Melanoma Drugs Add to Tally of U.S. Drug Approvals.
Available at: https://www.reuters.com/article/us-glaxosmithkline-approvals-
idUSBRE94S1A020130530 (Accessed August 5, 2021).

Robert, C., Flaherty, K. T., Hersey, P., Nathan, P. D., Garbe, C., Milhem, M. M.,
et al. (2012). METRIC Phase III Study: Efficacy of Trametinib (T), a Potent and
Selective MEK Inhibitor (MEKi), in Progression-free Survival (PFS) and
Overall Survival (OS), Compared with Chemotherapy (C) in Patients (Pts)
with BRAFV600E/K Mutant Advanced or Metastatic Melanoma (MM). JCO
30, LBA8509. doi:10.1200/jco.2012.30.18_suppl.lba8509

Robinson, J. L., Kocabaş, P., Wang, H., Cholley, P.-E., Cook, D., Nilsson, A., et al.
(2020). An Atlas of Human Metabolism. Sci. Signal. 13, eaaz1482. doi:10.1126/
scisignal.aaz1482

Satriano, L., Lewinska, M., Rodrigues, P. M., Banales, J. M., and Andersen, J. B.
(2019). Metabolic Rearrangements in Primary Liver Cancers: Cause and
Consequences. Nat. Rev. Gastroenterol. Hepatol. 16, 748–766. doi:10.1038/
s41575-019-0217-8

Schmieder, R., Puehler, F., Neuhaus, R., Kissel, M., Adjei, A. A., Miner, J. N., et al.
(2013). Allosteric MEK1/2 Inhibitor Refametinib (BAY 86-9766) in
Combination with Sorafenib Exhibits Antitumor Activity in Preclinical
Murine and Rat Models of Hepatocellular Carcinoma. Neoplasia 15,
1161–IN24. doi:10.1593/neo.13812

Sever, R., and Brugge, J. S. (2015). Signal Transduction in Cancer. Cold Spring
Harbor. Perspect. Med. 5, a006098. doi:10.1101/cshperspect.a006098

The Gene Ontology ConsortiumCarbon, S., Douglass, E., Good, B. M., Unni, D.
R., Harris, N. L., et al. (2021). The Gene Ontology Resource: Enriching a

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 86353612

Yu et al. Liver Cancer Fitness Gene Model

https://doi.org/10.1093/bioinformatics/btn374
https://doi.org/10.15252/msb.20145216
https://doi.org/10.1016/j.cell.2015.11.015
https://doi.org/10.1016/j.cell.2015.11.015
https://doi.org/10.1155/2020/3231273
https://doi.org/10.1155/2020/3231273
https://doi.org/10.1016/j.omtn.2019.10.044
https://doi.org/10.1016/j.jhep.2009.10.008
https://doi.org/10.1038/nprot.2017.016
https://doi.org/10.1038/nprot.2017.016
https://doi.org/10.1093/nar/gkaa970
https://doi.org/10.1016/j.redox.2017.01.012
https://doi.org/10.1634/theoncologist.2020-0759
https://doi.org/10.1634/theoncologist.2020-0759
https://doi.org/10.1016/S0140-6736(18)30207-1
https://doi.org/10.1002/hep.30467
https://doi.org/10.1074/mcp.RA118.000586
https://doi.org/10.1074/mcp.RA118.000586
https://doi.org/10.1056/NEJMoa0708857
https://doi.org/10.1038/s41571-018-0073-4
https://doi.org/10.1038/s41572-020-00240-3
https://doi.org/10.1038/s41572-020-00240-3
https://doi.org/10.1016/j.cell.2018.03.034
https://doi.org/10.1016/j.cell.2018.03.034
https://doi.org/10.1101/gr.239244.118
https://doi.org/10.1093/annonc/mdj941
https://doi.org/10.1093/annonc/mdj941
https://doi.org/10.1016/j.cell.2006.01.040
https://doi.org/10.1016/j.cell.2006.01.040
https://doi.org/10.1038/nbt.3567
https://doi.org/10.1002/pro.3978
https://doi.org/10.1038/s41467-021-21898-7
https://doi.org/10.1038/s41388-018-0582-8
https://doi.org/10.1038/s41388-018-0582-8
https://doi.org/10.3390/medicina55060296
https://doi.org/10.3390/medicina55060296
https://doi.org/10.21105/joss.03167
https://doi.org/10.1038/s41575-018-0089-3
https://doi.org/10.1038/s41575-018-0089-3
https://doi.org/10.1158/1078-0432.CCR-19-0206
https://doi.org/10.1158/1078-0432.CCR-19-0206
https://doi.org/10.1200/JCO.21.00163
https://doi.org/10.1200/JCO.21.00163
https://doi.org/10.1016/j.ccell.2019.07.001
https://doi.org/10.1038/nature15529
https://doi.org/10.1038/nature15529
https://www.reuters.com/article/us-glaxosmithkline-approvals-idUSBRE94S1A020130530
https://www.reuters.com/article/us-glaxosmithkline-approvals-idUSBRE94S1A020130530
https://doi.org/10.1200/jco.2012.30.18_suppl.lba8509
https://doi.org/10.1126/scisignal.aaz1482
https://doi.org/10.1126/scisignal.aaz1482
https://doi.org/10.1038/s41575-019-0217-8
https://doi.org/10.1038/s41575-019-0217-8
https://doi.org/10.1593/neo.13812
https://doi.org/10.1101/cshperspect.a006098
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


GOld Mine. Nucleic Acids Res. 49, D325–D334. doi:10.1093/nar/
gkaa1113

Tolcher, A. W., Khan, K., Ong, M., Banerji, U., Papadimitrakopoulou, V., Gandara, D.
R., et al. (2015). Antitumor Activity in RAS-Driven Tumors by Blocking AKT and
MEK. Clin. Cancer Res. 21, 739–748. doi:10.1158/1078-0432.CCR-14-1901

Villanueva, A. (2019). Hepatocellular Carcinoma. N. Engl. J. Med. 380, 1450–1462.
doi:10.1056/NEJMra1713263

Wang, S., and Liu, X. (2019). The UCSCXenaTools R Package: a Toolkit for
Accessing Genomics Data from UCSC Xena Platform, from Cancer Multi-
Omics to Single-Cell RNA-Seq. JOSS 4, 1627. doi:10.21105/joss.01627

Wang, H., Yu, S., Cai, Q., Ma, D., Yang, L., Zhao, J., et al. (2021). The Prognostic Model
Based on Tumor Cell Evolution Trajectory Reveals a Different Risk Group of
Hepatocellular Carcinoma. Front. Cel Dev. Biol. 9, 737723. doi:10.3389/fcell.2021.737723

Yang, S., and Liu, G. (2017). Targeting the Ras/Raf/MEK/ERK Pathway in
Hepatocellular Carcinoma. Oncol. Lett. 13, 1041–1047. doi:10.3892/ol.2017.5557

Yu, G., Wang, L.-G., Han, Y., and He, Q.-Y. (2012). clusterProfiler: an R Package
for Comparing Biological Themes Among Gene Clusters. OMICS: A J. Integr.
Biol. 16, 284–287. doi:10.1089/omi.2011.0118

Zhang, J., Bajari, R., Andric, D., Gerthoffert, F., Lepsa, A., Nahal-Bose, H., et al.
(2019). The International Cancer Genome Consortium Data Portal. Nat.
Biotechnol. 37, 367–369. doi:10.1038/s41587-019-0055-9

Zhou, X., Zhu, A., Gu, X., and Xie, G. (2019). Inhibition of MEK Suppresses
Hepatocellular Carcinoma Growth through Independent MYC and BIM
Regulation. Cell Oncol. 42, 369–380. doi:10.1007/s13402-019-00432-4

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Yu, Wang, Gao, Liu, Sun, Wang, Wen, Shi, Shi, Guo and Zhang.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums is
permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 86353613

Yu et al. Liver Cancer Fitness Gene Model

https://doi.org/10.1093/nar/gkaa1113
https://doi.org/10.1093/nar/gkaa1113
https://doi.org/10.1158/1078-0432.CCR-14-1901
https://doi.org/10.1056/NEJMra1713263
https://doi.org/10.21105/joss.01627
https://doi.org/10.3389/fcell.2021.737723
https://doi.org/10.3892/ol.2017.5557
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1038/s41587-019-0055-9
https://doi.org/10.1007/s13402-019-00432-4
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	Identification of Context-Specific Fitness Genes Associated With Metabolic Rearrangements for Prognosis and Potential Treat ...
	1 Introduction
	2 Materials and Methods
	Data Sources
	Identification of Viability Vulnerability
	Development and Validation of the Tumor Dependency Signature for Liver Cancer
	Survival Analysis
	Bioinformatics Analyses
	2.1.1 Gene Set Variation Analysis
	2.1.2 Enrichment Analysis
	2.1.3 Genome Variation Analysis
	2.1.4 Oncogenic Dedifferentiation Stemness Features Analysis
	2.1.5 Drug Sensitivity Analysis

	Statistical Analysis

	3 Results
	Identification of Context-Specific Fitness Genes in Liver Cancer Cell Lines
	Construction of the 25-Gene Prognostic Model
	Evaluation of the Prognostic Model in the Training Cohort and Validation Cohort
	Comparison of Genomic Variations in Different Risk Groups
	Exploration of the Biological Processes of This 25-Gene Signature With GSVA
	The 25-Gene Signature-Related Metabolic Rearrangement
	Analysis of Potential Drug Targets With LIMORE

	4 Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


