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Fatty liver disease, characterized by excessive inflammation and lipid deposition, is
becoming one of the most prevalent liver metabolic diseases worldwide owing to the
increasing global incidence of obesity. However, the underlying mechanisms of fatty liver
disease are poorly understood. Accumulating evidence suggests that hepatic
macrophages, specifically Kupffer cells (KCs), act as key players in the progression of
fatty liver disease. Thus, it is essential to examine the current evidence of the roles of
hepatic macrophages (both KCs and monocyte-derived macrophages). In this review, we
primarily address the heterogeneities and multiple patterns of hepatic macrophages
participating in the pathogenesis of fatty liver disease, including Toll-like receptors
(TLRs), NLRP3 inflammasome, lipotoxicity, glucotoxicity, metabolic reprogramming,
interaction with surrounding cells in the liver, and iron poisoning. A better
understanding of the diverse roles of hepatic macrophages in the development of fatty
liver disease may provide a more specific and promising macrophage-targeting
therapeutic strategy for inflammatory liver diseases.
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INTRODUCTION

Fatty liver disease was proposed by Schaffner et al. in 1986 (1), characterized by the over-deposition
of cytoplasmic triglycerides (TGs), as lipid droplets, in the liver. Initially, fatty liver disease is
classified into two categories: alcoholic fatty liver disease and non-alcoholic fatty liver disease
(NAFLD). With the improvement of living standards and changes in dietary habits in recent years,
risk factors, including but not limited to overweight, type 2 diabetes, and a sedentary lifestyle, have
facilitated the occurrence of NAFLD as one of the most prevalent chronic liver diseases in the world,
affecting 20–30% of the general population (2). Recently, NAFLD has been renamed as a consensus
and appropriate nomenclature for metabolically associated fatty liver disease (MAFLD) (3),
characterized by cytoplasmic TG vacuole deposition exceeding 5% of hepatocytes in the absence
of other recognized sources of fatty liver (eg., drugs and viral infection) (4). MAFLD represents a
broad term encompassing a spectrum of pathological conditions. The first stage is steatosis, as the
most common type, and may progress from steatohepatitis to advanced liver fibrosis, cirrhosis, and
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ultimately hepatocellular carcinoma. Without external
intervention, fatty liver disease is becoming the leading
determinant of liver transplantation, liver-related morbidity,
and mortality (5). Recently, the “multiple hits” hypothesis,
which includes hits coming from the liver, adipose tissue
adipocytokines, and gut microbiota, provides a more accurate
explanation of the pathogenesis of fatty liver disease (6). In this
process, hepatic macrophage-derived inflammatory mediators
play key roles in the pathogenesis of fatty liver disease. However,
the biochemical events involved in fatty liver disease have not
been well explored due to an incomplete understanding of the
complicated pathogenesis. Thus, it is important to elucidate and
explore the precise pathogenesis of fatty liver disease, which may
provide macrophage-targeting immune therapeutic strategies for
the intervention of fatty liver disease.

The liver is not only a central organ of energy metabolism, but
it also acts as an immune organ, which is rich in multiple
immune cells; thus, macrophages are abundantly found in the
liver. Innate immunocytes and related effector factors play an
indispensable role in the development of fatty liver disease.
Immunoregulation in the liver mainly occurs at the hepatic
sinusoid capillary junction of the hepatic portal vein and
hepatic artery branches (7), where Kupffer cells (KCs) are in
close contact with hormones, bacterial endotoxins, metabolites,
and immune complexes carried from the hepatic circulation.
Macrophages form a highly active, dynamic, and complex
immune network system that plays various vital roles in fatty
liver disease progression. Three major distinct origins of
macrophage subpopulations exist in the liver: yolk sac-derived
tissue-resident macrophages–KCs, monocyte-derived
macrophages (MDMs)/myeloid-derived mononuclear
macrophages, and liver capsular macrophages (LCMs).
Although the sources of hepatic macrophages show obvious
heterogeneity in the liver, it is difficult to distinguish these
populations based on the existing techniques. Moreover, a
consensus has not been reached on classification markers, and
MDMs sometimes are known to switch to KCs under
pathological conditions; therefore, in this review, we have not
distinguished them strictly, and most hepatic macrophages are
referred to as KCs.

Over the past few years, several reviews (Baffy G. J Hepatol.
2009; Lanthier N. World J Hepatol. 2015; Lefere S et al. JHEP
Reports 2019; Chen J et al. Int J Biol Sci. 2020) have summarized
the key roles of macrophages in fatty liver disease in different
ways, including the heterogeneity, recruitment of macrophages,
and crosstalk between macrophages and metabolic stimuli, etc.
(8–11). Since hepatic macrophages contribute to both
inflammation and tissue homeostasis, this review provides a
comprehensive update of hepatic macrophages in fatty liver
disease, mainly focusing on the origins, heterogeneities, and
pathways of hepatic macrophages in the pathogenesis of fatty
liver disease. We expect that this review will broaden the
understanding of the association between hepatic macrophages
and fatty liver disease, which would shed new light on the
potential application of macrophages in the intervention of
fatty liver disease.
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THE ORIGINS AND PHENOTYPE SWITCH
OF LIVER MACROPHAGES

Hepatic macrophages, consisting of resident KCs, MDMs, and
LCMs, display a remarkable heterogeneity (Table 1). The origins
of liver macrophages differ greatly, and MDMs can switch to
KCs. KC was named by the German anatomist Karl Wilhelm von
Kupffer. In 1997, Naito et al. found that KCs originated almost
exclusively from yolk sac-derived erythromyeloid progenitors in
the liver of mice during the first 9.5–12.5 days after the start of
embryogenesis (12, 13). These findings were confirmed by using
the cell tracer technique (14). As a subpopulation of liver-
resident macrophages, KCs possess self-renewal properties
depending on M-CSF signaling and exert strong phagocytosis
and efferocytosis (15). The recruited monocytes rapidly
differentiate into pro-inflammatory M1-like macrophages in
high-fat diet (HFD)-fed mice (16).

Infiltrating MDMs are derived from circulating monocytes.
Two major populations of circulating monocytes exist in mice:
lymphocyte antigen 6C+ (Ly6C+) high (Ly6Chi)-expressing
monocytes are present in the bone marrow, and Ly6C low
(Ly6Clo)-expressing monocytes are derived from the spleen
(17, 18). Recent evidence shows that CD11b+F4/80+

macrophages originate from infiltrating monocytes, while
CD11bloF4/80hi macrophages are derived from resident KCs
and mature monocytes (19, 20).

The monocytes in mice are marked with Ly6Chi and CC-
chemokine receptor 2hi (CCR2hi) (21). Several studies have
suggested that infiltrated Ly6Chi monocytes in early murine
steatohepatitis are mainly identified by chemokine receptors,
pattern recognition receptors (PRRs), and cytokine secretion
(22). Ly6Clo monocytes are characterized by their scavenger
receptors (23). Recently, single-cell RNA sequencing has
suggested that KCs are characterized by increased C-type lectin
domain family 4 member F, V-set and Ig domain-containing 4,
and T-cell immunoglobulin- and mucin-domain-containing
molecule, whereas MDMs are mainly identified by high
lysozyme 2 in the liver of murine steatohepatitis (24).

Another liver-resident macrophage subset is the LCM;
distinct from KCs ontogenetically and phenotypically, LCMs
are replenished from blood monocytes and are identified as F4/
80+MHCIIhiCX3CR1hi, which detects peritoneal bacteria and
promotes neutrophil recruitment to the capsule (25). However,
there is no consensus on the specific marker of hepatic
macrophages; thus, further investigation is required to clarify
the sources of macrophages.

Although KCs and MDMs show controversial markers, it
should be noted that KCs and MDMs in the liver are not
immutable. Under severe hepatic damage, MDMs can
differentiate into KCs when KCs are depleted (26). In the livers
of Western diet-induced MAFLD mice, the recruited monocytes
could also be differentiated into a distinct population of KCs
termed hepatic lipid-associated macrophages, characterized by
osteopontin expression and a similar capacity of lipid
metabolism to that in adipose tissue (27). At the early stage of
liver injury, CC-chemokine ligand 2 (CCL2), which is secreted by
December 2021 | Volume 12 | Article 708978
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KCs, triggers circulating Ly6Chi monocytes with CCR2
recruitment into the liver, and the recruited MDMs
further secrete pro-inflammatory cytokines and fibrogenic
cytokines, accelerating the progression of fibrosis (28). In the
later phase of liver injury, the improved phagocytic activity of
macrophages facilitates Ly6Chi macrophage differentiation into
the Ly6Clo macrophage subset and induces extracellular matrix
degradation by matrix metalloproteinases (MMPs) (29).
However, another study demonstrated contrasting results that
Ly6Clo macrophages are derived from the spleen and are not
switched from Ly6Chi (23). In addition, peritoneal macrophage
infiltration is also manifested in liver injury (30). However, the
mechanisms of peritoneal macrophage recruitment remain
poorly understood.

Monocytes in humans can be identified by CD14 and CD162
(31). In humans, the surface markers of MDMs and KCs are
CLEC5A and CD163L, respectively (32). In patients with fatty
liver disease, a marked increase in the number of hepatic
macrophages occurs gradually with the aggravation of steatosis
and inflammation (15), which is mainly attributed to the
extensive infiltration of CD11b+Ly6C+ monocytes into the liver.
POLARIZATION OF LIVER
MACROPHAGES

Macrophages are the most plastic cells in the hematopoietic
system and show great functional diversity. Liver macrophages
can switch their phenotype towards pro-inflammatory
(classically activated macrophages, designated M1-like
macrophages) or anti-inflammatory (alternatively activated
macrophages, designated M2-like macrophages) in response to
various signals, such as cytokines, fatty acids, endotoxins,
metabolites, and danger-/pathogen-associated molecular
Frontiers in Immunology | www.frontiersin.org 3
patterns (DAMPs/PAMPs) (Table 2). Thus, liver macrophages
may display a variety of or even completely opposite roles in
different diseases and even in different stages of the same disease.

In vitro, hepatic macrophages are skewed towards M1, similar
to that of macrophages exposed to lipopolysaccharide (LPS), IL-
12, IFN-g, TNF-a, or GM-CSF. Activated M1-like macrophages
produce a set of pro-inflammatory mediators (e.g., IL-1b, IL-12,
TNF-a, CCL2, and CCL5) and increased reactive oxygen species
(ROS) and nitric oxide (NO) intermediates, displaying an IL-
12hiIL-23hiIL-10lo phenotype, and exert pro-inflammatory, anti-
tumor, and anti-bacterial effects. In contrast, M2-like
macrophages, which are primed by IL-4, IL-13, IL-33, or IL-14,
release IL-10, IL-4, IL-13, and TGF-b cytokines, displaying an IL-
12loIL-23loIL-10hi phenotype, triggering an anti-inflammatory
response and tissue repair.

In the microenvironment of fatty liver disease, cytokines and
various kinds offatty acids regulatemacrophagedifferentiation.The
saturated fatty acid palmitic acid (PA) induces pro-inflammatory
M1-likemacrophagepolarization throughhypoxia-inducible factor
1a, identifiedby increasedTNF-a and IL-6production,whereas the
unsaturated fatty acid oleic acid (OA) promotes anti-inflammatory
M2-likemacrophage differentiation, characterized by the increased
expression of arginase-1, type 2 mannose receptor, and IL-10 (33).
Furthermore, probiotic (eg., Lactobacil lus paracasei)
administration also increases the number of M2-like
macrophages in the liver of murine steatohepatitis and alleviates
steatosis (34). In addition, macrophage polarization differs between
mouse strains. In C57BL/6 mice with fatty liver disease, steatosis
promotes the secretion of IL-1b, which is beneficial for M1-like
macrophagepolarization,whereas inBALB/cmice, steatosismainly
induces M2-like macrophage responses (35).

In vivo, hepatic macrophages are stimulated by endotoxins,
cytokines, lipids, and other metabolites; thus, phenotypes may
change dynamically with the progress and development of fatty
TABLE 2 | Comparison of M1- and M2-like macrophages.

Subsets Stimulators Phenotypes Secretors Functions

M1 LPS, IL-12, IFN-g, TNF-a, or
GM-CSF, PA

IL-12hiIL-23hiIL-10lo, iNOS IL-1b, IL-12, TNF-a, IL-6, CCL2, and
CCL5, NO, ROS

Pro-inflammatory, anti-tumor, and
anti-bacterial

M2 IL-4, IL-13, IL-33, IL-14, OA,
probiotic

IL-12loIL-23loIL-10hi, Arg-1, type 2
mannose receptor

IL-10, IL-4, IL-13, and TGF-b Anti-inflammatory response, tissue
repair
December
LPS, lipopolysaccharide; IL, interleukin; IFN, interferon; TNF, tumor necrosis factor; GM-CSF, granulocyte–macrophage colony-stimulating factor; PA, palmitic acid; OA, oleic acid; iNOs,
inducible nitric oxide synthase; ROS, reactive oxygen species; TGF, transforming growth factor.
TABLE 1 | Characteristics of the liver macrophage subsets.

Subsets Origins Phenotypes Properties Receptors Functions

KCs Yolk sac-derived erythromyeloid
progenitors

CD11bloF4/80hi

(mice)
Self-renewal CLEC4F Strong phagocytosis and efferocytosis

CD163L (human) VSIG4
TIM-4

MDMs Circulating monocytes CD11b+F4/80+ (mice) Differentiate into
KCs

High
lysozyme 2

Secrete pro-inflammatory cytokines and fibrogenic
cytokinesCLEC5A (human)

LCMs Blood monocytes F4/
80+MHCIIhiCX3CR1hi

Detects peritoneal bacteria and promotes neutrophil
recruitment
KCs, Kupffer cell; MDMs, mononuclear-derived macrophages; LCMs, liver capsular macrophages; CLEC4F, C-type lectin domain family 4 member F; VSIG4, V-set and Ig domain-
containing 4; TIM-4, T cell immunoglobulin- and mucin-domain-containing molecule.
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liver disease (36). In methionine- and choline-deficient (MCD)
diet-induced murine steatohepatitis, a phenotypic switch is
observed from M1- to M2-like macrophages, accompanied by
a shift in cytokine levels (37). Some studies have also shown that
hepatic macrophages seem to express biomarkers of both M1-
and M2-like macrophages simultaneously in the process of liver
injury (38). The evidence mentioned above suggests that
macrophage polarization is a highly plastic physiological
process in the progression of fatty liver disease.

Several studies have revealed that M1-like macrophages
promote hepatocyte steatosis and insulin resistance (IR),
whereas M2-like macrophages show the opposite effect (39).
Compared with BALB/c mice, C57BL/6 mice fed an MCD diet
display more severe lipid deposition and inflammation in the
liver, while M2-like macrophage polarization induced by
pharmaceuticals partially inhibits lipid deposition and
apoptosis in hepatocytes (40). Moreover, Arg-2-/- mice develop
steatosis spontaneously and exhibit the characteristics of
steatohepatitis without HFD induction (41). In murine fatty
liver disease, M1-like macrophages promote TG synthesis by
increasing the activity of diacylglycerol (DAG) transferase (19),
promoting liver inflammation through vascular cell adhesion
molecule-1, intercellular adhesion molecule-1 (ICAM-1), and
TNF-a (42) and by inhibiting fatty acid oxidation by peroxisome
proliferator-activated receptor a (PPARa) (43). Notably, IL-10
secreted by M2-like macrophages leads to the apoptosis of M1-
like macrophages and senescence of hepatocytes (40). A study of
HFD-induced fatty liver disease in mice showed that
macrophages with cytokine deficiency (IL-4, IL-10, and IFN-g)
are prone to polarization to the M2-like phenotype, which
aggravates liver inflammation and fibrosis (44). However, it
has also been reported that, in patients with steatohepatitis,
differentiated M2-like macrophages increase the risk of liver
fibrosis but do not promote liver tissue repair (23).

These data together highlight that the regulatory roles of M1-
and M2-like macrophages are not uniform in fatty liver disease.
ROLES OF HEPATIC MACROPHAGES IN
FATTY LIVER DISEASE

Normally, KCs contribute to maintaining tissue homeostasis by
expressing low levels of major histocompatibility complex II
molecules and co-stimulatory molecules (45), high levels of
programmed cell death ligand 1, and inhibitory cytokines IL-
10 and TGF-b. KCs promote regulatory T cells to facilitate
immune tolerance in the liver (46, 47). In contrast, KCs also
recognize extrinsic antigens to induce immune responses
through PRRs and complements (48). KC depletion by treatment
with clodronate-encapsulated liposomes or gadolinium chloride
rapidly alleviated steatosis and inflammation in fatty liver disease,
probably due to the decreased expression of inflammatory cytokines
and fibrosis-related genes, and diminished insulin resistance in
hepatocytes (43). However, Clementi AH et al. found that, in a
diet-induced obese mice model, KC ablation increased hepatic
steatosis, STAT3 signaling, and additional hepatic TG
accumulation (49).
Frontiers in Immunology | www.frontiersin.org 4
Hepatic macrophages play various roles in the different stages
of fatty liver disease. In the early stage of hepatic injury, Ly6Chi

inflammatory monocytes and neutrophils are recruited to the
liver by KCs and differentiate into CD11b+F4/80+ M1-like
macrophages. During acute inflammation, KCs can degrade
the extracellular matrix and repair tissue injuries. During the
repair period, macrophages selectively differentiate into the M2-
like phenotype, which promotes fibrosis progression by secreting
IL-13 and TGF-b. In summary, these findings highlight that KCs
play a complex role and show functional plasticity in the
progression of fatty liver disease.
PATTERNS OF HEPATIC MACROPHAGES
PARTICIPATING IN THE PATHOGENESIS
OF FATTY LIVER DISEASE

Hepatic macrophages are interacted with other cells and
reprogrammed under pathologic conditions. In fatty liver
disease, distinctly heterogeneous populations of macrophages
can recognize extracellular stimuli through PRRs, including
membrane-bound Toll-like receptors (TLRs) and cytoplasmic
nucleotide-binding oligomerization domain-like receptors
(NLRs), resulting in the secretion of a large amount of
inflammatory cytokines, chemokines, and other reactive
molecules such as ROS and NO (50). In addition, macrophages
could also participate in the progression of fatty liver disease
through lipotoxicity, glucotoxicity, and iron poisoning (Figure 1).
Crosstalk Between Hepatic Macrophages
and Surrounding Cells in Fatty
Liver Disease
KCs are located in the center of hepatic sinusoids; therefore, it is
possible that KCs are in intimate contact with the surrounding
immune and parenchymal cells in the liver (51). KCs affect lipid
metabolism in hepatic parenchyma cells through cell–cell
crosstalk. In patients with fatty liver at an early stage, an
increase in portal macrophages in liver biopsy sections was the
earliest change detected (52). In an HFD-induced murine fatty
liver disease, IL-1b released from KCs promotes hepatic steatosis
by inhibiting PPARa activity in hepatocytes (47). The released
TNF-a activates Caspase-8 in hepatocytes and triggers
hepatocyte apoptosis by binding to TNF receptor 1 (53). The
increased circulating IL-6 contributes to the development of
obesity-associated IR in hepatocytes (54). Additionally, KCs
can engulf apoptotic hepatocytes via efferocytic clearance
triggered by phosphatidylserine (PS) signals. Recently, our
group reported that the PS receptors T cell immunoglobulin
mucin domain-containing molecule 3 (Tim-3) and Tim-4 are
elevated in liver macrophages in murine steatohepatitis, and
their knockout leads to an increased production of ROS, IL-1b,
and IL-18 in macrophages, with aggravation of steatosis and
inflammation. However, the underlying mechanisms of
macrophage-mediated efferocytosis in fatty liver disease require
further exploration (55, 56).
December 2021 | Volume 12 | Article 708978
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KCs can also regulate hepatic stellate cell (HSC) activation by
cytokines and chemokines. A co-culture system of macrophages
and hepatocytes suggests that macrophages activate the NF-kB
signaling pathway in HSCs via the increased secretion of IL-1b,
TNF-a, and IL-6 and the upregulated expression of the tissue
inhibitor of metalloproteinase 1 in HSCs, which promotes the
progression of hepatic fibrosis (57). Activated KCs display a
strong acceleration of CC chemokine-induced HSC migration
Frontiers in Immunology | www.frontiersin.org 5
and recruitment through CCL2 and CCL5 production (58). KCs
also activate HSCs through TGF-b and platelet-derived growth
factor (PDGF), which increases the expression of collagen and
accelerates fibrosis progression by trans-differentiating HSCs
into myofibroblast phenotype (59–61).

In murine steatohepatitis models, KC secretion of the
chemokines CCL2, CXCL10, and TNF-related apoptosis-
inducing ligand (TRAIL) is upregulated to recruit monocytes
FIGURE 1 | Crosstalk with other cells and reprogramming of hepatic macrophages. Under pathologic conditions, hepatic macrophages are interacted with other
cells and reprogrammed. HCC, hepatocellular carcinoma; HSCs, hepatic stellate cells; KCs, Kupffer cells; MDMs, mononuclear-derived macrophages.
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and to trigger monocyte differentiation into KCs. This process is
characterized by the over-expression of MMP-12, MMP-13, and
insulin growth factor 1 to ameliorate liver injury and fibrosis by
degrading the matrix (62, 63). The ability of KCs from HFD-
induced mice to recruit CD4+ T lymphocytes and B cells is
increased (64). Hepatic macrophages promote neutrophil
adhesion to liver sinusoidal endothelial cells (LSECs) via TLR4
(65) and increase neutrophil recruitment via chemokines, such as
CXCL1, CXCL2, and CXCL8 (66). KCs can also affect the number
and activation of natural killer T (NKT) cells in various ways. KC-
derived chemokine CXCL16 recruits CXCR6-expressingNKT cells
to accentuate inflammation and fibrosis in the liver (46). The
interaction between Tim-3+ KCs and Gal-9 promotes NKT cell
proliferation by IL-15 secretion in an HFD-induced murine fatty
liver disease (67). In addition, IL-12 released by KCs is associated
with the reduction of hepatic NKT cells in the liver of choline-
deficient diet-induced mice (68). In addition, PA exposure-
activated macrophages present exogenous antigens to NKT cells
through CD1d, resulting in excessive activation and apoptosis of
NKT cells in HFD-fed mice (69).

It is evidenced that KCs can regulate the function of other
cells in the liver. However, they are also influenced by
hepatocytes and surrounding cells in the microenvironment of
fatty liver disease. Hepatic macrophages internalize extracellular
vesicles (EVs). Lipotoxic hepatocyte-derived EVs are enriched
with CXCL10, which induces the hepatic recruitment of
monocytes, depending on JNK and mixed lineage kinase 3
pathway, in addition to ceramide-containing EVs (70, 71).
Moreover, lipotoxic hepatocytes can release active integrin b1-
containing EVs to mediate monocyte adhesion to LSECs and
inflammation in murine steatohepatitis (72). The injured
hepatocytes can also release HMGB1-containing EVs, which
mediate mitochondrial damage through the TLR4-JNK pathway
and induce inflammation by activatingKCs (73). In addition,CCL2
released from lipotoxic hepatocytes recruits monocytes to the liver
by binding toCCR2 onmonocytes in the process of liver injury (69,
70). The leaked cholesterol crystals from apoptotic hepatocytes can
be engulfed byKCs and activate theNLRP3 inflammasome inKCs,
causing the production of pro-inflammatory cytokines (74). KC-
mediated clearance of apoptotic bodies formed by hepatocytes
promotes the production of death receptors, including Fas ligand
and TNF-a, which further induces hepatocyte apoptosis,
depending on a positive feedback loop (75). Damaged
hepatocyte-derived mtDNA could be sensed by the stimulator of
IFN genes (STING) inKCs to increase TNF-a and IL-6 production
in MCD and HFD-induced murine steatohepatitis models (76).
ATP released from damaged hepatocytes promotes NLRP3
inflammasome activation and IL-1b and IL-18 release by the
P2X7 receptor on KCs (77). LSECs facilitate the hepatic
recruitment of monocytes through the increased production of
CCL2, and they could also display anti-inflammatory properties to
prevent KC activation in the progression of fatty liver disease (78).
In low-density lipoprotein receptor-deficient mice, increased
myeloperoxidase secreted by neutrophils causes toxicity to
macrophages and aggravates inflammation and insulin resistance
(79). Consistent with this,myeloperoxidase deficiency reduces liver
Frontiers in Immunology | www.frontiersin.org 6
inflammation and improves IR inmurine fatty liver disease (23). In
addition, ROS and growth factors released from neutrophils
enhance the M1-like macrophage function in promoting fibrosis
by activating HSCs (80). Moreover, single-cell RNA sequencing
results showed that activated HSCs regulate the functions of
macrophages via HSC-derived stellakines, such as CCL11, CCL2,
and CXCL2, in the livers of murine steatohepatitis (81).

Taken together, these findings indicate that macrophages
participate in fatty liver disease by regulating the liver
parenchymal cells, HSCs, and recruitment of monocytes and
NKT cells. Conversely, infiltrating neutrophils and damaged
hepatocytes also activate macrophages by secreting factors,
which further aggravates the progression of fatty liver disease.

Metabolic Reprogramming of Hepatic
Macrophages in Fatty Liver Disease
In fatty liver disease, macrophages require metabolic
reprogramming to meet the demands for energy and
biosynthesis during the process of activation, while changes in
metabolic patterns could switch the phenotype of macrophages.
A glucose metabolic shift occurs during macrophage
polarization. When exposed to LPS and IFN-g, macrophages
are polarized into the M1 phenotype, accompanied by enhanced
glycolysis, increased lactic acid production, and activation of the
pentose phosphate pathway (PPP). When stimulated by IL-4, IL-
13, IL-10, or glucocorticoids, macrophages differentiate into the
M2 phenotype and secrete the anti-inflammatory factor IL-10,
which results in augmented oxidative phosphorylation (82, 83).
A lipid metabolic shift also occurs during macrophage
polarization. In vitro studies have shown that IL-4 treatment
increases the fatty acid intake and fatty acid oxidation of
macrophages; however, IFN-g and LPS stimulation decreases
fatty acid uptake and fatty acid oxidation (84).

In fatty liver disease, the regulation of lipid metabolism
determines the macrophage phenotype. Saturated fatty acids
promote macrophage differentiation toward the M1 phenotype
by activating the NF-kB pathway and increase lipid synthesis by
activating sterol regulatory element binding protein-1c (SREBP-1c)
in fatty liver disease (85, 86). Fatty acids can regulate lipid
metabolism by activating the nuclear transcription factor PPARs.
Myeloid-specific PPARd knockout mice display increased IR and
the occurrence of hepatitis by inhibiting macrophage transition to
theM2phenotype (87). Recent evidence shows that hepatic retinoic
acid receptor-related orphan receptor-a (ROR-a) promotes
macrophage differentiation to the M2 phenotype through
kruppel-like factor 4. Moreover, ROR-a-specific knockout
macrophages aggravate lipid deposition in HFD-fed mice (88).
Increasing evidence indicate that metabolic reprogramming can
ameliorate steatosis by switching macrophages to the M2
phenotype (Figure 1).

Hepatic Macrophages Participate in Fatty
Liver Disease Progression Through TLRs
TLRs mainly recognize bacterial products derived from
components of intestinal bacteria, such as LPS and
peptidoglycan. The microenvironment of fatty liver disease
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upregulates TLR4 expression, increases intestinal permeability,
and leads to a significant increase in serum LPS. These events
lead to the activation of the MyD88-NF-kB signaling pathway
and promote inflammatory cytokine secretion in both humans
and mice with fatty liver disease (89–91). Moreover, KCs isolated
from HFD-fed mice are more sensitive to LPS-induced
activation (92).

High-mobility group protein B1 (HMGB1) can trigger TLR4
signaling pathway by promoting p38 phosphorylation, NF-kB
translocation, TNF-a release, and polarization of M1-like
macrophages (93, 94). The abundance of free fatty acids
(FFAs) in the microenvironment of fatty liver disease activates
inflammatory signaling pathways in KCs in a TLR2- and TLR4-
dependent manner (95–97). Moreover, FFAs can also activate
KCs by binding to TLR4 indirectly via fetuin-A (98, 99). The
knockout ofMyD88 attenuates steatosis and hepatitis induced by
a choline-deficient amino acid-defined (CDAA) diet in mice
(100). HFD-induced fatty liver disease in mice with macrophage-
specific IKK-b deficiency displays over-activation of the NF-kB
pathway, insulin resistance, and hepatitis (101). IKK2 inhibition
of the NF-kB pathway alleviates steatosis and inflammatory
responses in murine steatohepatitis (102).

Unlike the surface receptors TLR2 and TLR4, TLR9 is
confined primarily to the endosomes of macrophages. In HFD-
fed mice, an increased level of mtDNA released from damaged
hepatocytes is responsible for the activation of macrophage
populations via TLR9 activation (103). The unmethylated CpG
motif-containing bacterial DNA could also bind to TLR9 in KCs
and promote IL-1b secretion. In CDAA diet-induced murine
steatohepatitis, TLR9 knockout relieves hepatic steatosis,
inflammation, and fibrosis by suppressing IL-1b secreted by
KCs rather than hepatocytes and hepatic stellate cells (100).
TLR9 deficiency also suppresses lipid deposition in HFD-fed
mice (103).

Taken together, these results suggest that lipids activate
macrophages through TLR pathways, thus promoting the
development of fatty liver disease (Figure 2). Therefore,
intervention of the TLR pathway might be an ideal strategy for
the treatment of fatty liver disease in the future.

Hepatic Macrophages Participate in Fatty
Liver Disease Progression Through NLRs,
Especially NLRP3 Inflammasome
NLRs are components of inflammasomes in the cytoplasm, and
the responses to danger signals lead to inflammasome activation
and IL-1b and IL-18 secretion. The NLRP3 inflammasome is
currently the most extensively studied and best-characterized
inflammasome in macrophages. Moreover, KCs are considered
to be the main cell type responsible for NLRP3 inflammasome
activation in the liver. It has been reported that Caspase-1
activity and mature IL-1b levels are significantly increased in
steatohepatitis models (104), and NLRP3 inflammasome
activation aggravates hepatic steatosis, liver inflammation, and
fibrogenesis, supporting the contribution of NLRP3
inflammasome to pathogenesis of fatty liver disease (105).
Accordingly, the inhibition of NLRP3 inflammasome by
Frontiers in Immunology | www.frontiersin.org 7
related gene knockout or specific inhibitors has been proposed
as an effective therapeutic option for fatty liver disease (106, 107).

Classical NLRP3 inflammasome activation requires active
Caspase-1. In this process, adenosine triphosphate (ATP) and
P2X purinoceptor 7 (P2X7) receptors on KCs mediate the
assembly of the NLRP3 inflammasome. Once activated, pro-
Caspase-1 permits auto-cleavage and forms an active Caspase-1
p10/p20 tetramer, which cleaves pro-IL-1b and pro-IL-18 to
generate mature IL-1b and IL-18. It has been reported that non-
classical NLRP3 inflammasome activation also exists in KCs,
requiring active Caspase-11. In this process, LPS from the
cytoplasm binds directly to pro-Caspase-11 (108), or LPS binds
to TLR4 in the endosome, which promotes pro-Caspase-11
synthesis through the TRAF3-IRF3-IFN pathway (109),
resulting in the production of active Caspase-11 and Gsdmd.
Active Gsdmd induces KC pyroptosis and promotes the
secretion of IL-1b and IL-18 (108, 110–112). Caspase-1 and
-11 depletion in macrophages attenuate liver inflammation by
reducing the formation of cholesterol crystals and increasing
cholesterol effusion (113). Notably, recent studies have shown
that inflammasomes are released from virus-infected
macrophages, which could provide a novel approach for
preventing chronic inflammation (114).

In addition to TLRs and NLRs, hepatic macrophages are also
regulated by other receptors. Recently, it was reported that bile
acid (a regulator of glycolipid metabolism) inhibits
inflammasome activation by binding to transmembrane G
protein-coupled receptor 5 on KCs and upregulates the
production of anti-inflammatory cytokines (115). In a high-fat-
and high-cholesterol-diet-induced murine fatty liver disease,
dietary advanced glycation end-product (AGE) activates the
MyD88-NF-kB signaling pathway in KCs by upregulating the
receptor for AGE (RAGE) (116). S100 calcium-binding protein
A8 (S100A8) and S100A9 promotes inflammatory responses in
macrophages in both RAGE- and TLR4-dependent manners
(117, 118). Docosahexaenoic acid activates PPARg and
AMPKa by binding to GPCR120 on macrophages and
decreases the expression of pro-inflammatory genes by
suppressing the NF-kB pathway (119–121). Taken together,
these data suggest that activation of the NLRP3 inflammasome
can aggravate hepatic steatosis (Figure 2).

Cytokines From Hepatic Macrophages in
Fatty Liver Disease
Hepatic macrophages participate in the development of fatty
liver disease by secreting multiple pro-inflammatory cytokines,
including IL-1b, IL-6, and TNF-a. In mice with fatty liver
disease, KCs are a major source of IL-1b. Enhanced IL-1b
from activated M1-like macrophages could promote hepatic
inflammation by upregulating ICAM-1 in LSECs to attract
more neutrophils into the liver (122). IL-1b promotes steatosis
by inhibiting fatty acid oxidation via PPARa and promotes TG
synthesis, accumulation and lipid droplet formation in
hepatocytes (43, 123). IL-1b can also promote hepatocyte
apoptosis and aggravate liver fibrosis by activating NF-kB in
HSCs (100). Increased IL-6 levels result in an enhanced risk of
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insulin resistance in patients with fatty liver disease (124). KCs
secrete TGF-b and PDGF, which are potent mitogenic factors of
HSCs and are vital for hepatic fibrosis progression (125). High
levels of TNF-a contribute to inflammasome activation through
the NF-kB pathway and aggravate inflammatory injury, insulin
resistance, and steatosis (126, 127). Under FFA stimulation or an
HFD-induced microenvironment of fatty liver disease, activated
KCs release more TNF-a and IFN-g (128). TNF-a increases
hepatic cholesterol synthesis and suppresses its elimination,
which results in a dramatic increase in LDL cholesterol and a
decrease in HDL cholesterol (129, 130), while a TNF-a blocking
antibody alleviates hepatic steatosis in ob/ob mice that have a
leptin deficiency (131). In patients with fatty liver disease, TNF-a
and IL-8 released from myeloid-derived immune cells, including
KCs, DCs, and neutrophils, are positively correlated with the
severity of fatty liver disease (132). However, clinical evidences
Frontiers in Immunology | www.frontiersin.org 8
show that treatment with a TNF-a-specific blocking antibody-
CDP571 could not alleviate the symptoms of metabolic diseases
(133), which may be related to the multiple sources of TNF-a
from KCs (57), DCs (134), neutrophils (135), and broad effects in
fatty liver disease. The above-mentioned data indicate that a
large number of inflammatory cytokines secreted by activated
KCs participate in the progression of fatty liver disease.

Activated KCs also participate in fatty liver disease by
secreting a variety of chemokines to recruit mononuclear cells
to the liver. Levels of CCL2 and CCL19 are increased in the
serum of patients with fatty liver disease (136). In murine
steatohepatitis, CCL2 binding to CCR2 on Ly6C+ monocytes
(137) or CCL1 binding to CCR8 (10) results in more Ly6C+

monocyte recruitment into the liver, which further promotes the
progression of hepatitis and liver fibrosis. Therefore, the
infiltration of Ly6C+ monocytes has been identified as a key
FIGURE 2 | Hepatic macrophages participate in the pathogenesis of fatty liver disease in many different patterns. In fatty liver disease, the macrophages can recognize
extracellular stimuli through pattern recognition receptors, including TLRs and NLRs, resulting in the secretion of inflammatory factors. In addition, macrophages could
also participate in the progression of NAFLD through lipotoxicity, glucotoxicity, and iron poisoning. ATP, adenosine triphosphate; ER, endoplasmic reticulum; NLRs,
nucleotide-binding oligomerization domain-like receptors; OA, oleic acid; PA, palmitic acid; P2X7, P2X purinoceptor 7; ROS, reactive oxygen species; S100A8, S100
calcium-binding proteins A8; SR-A, scavenger receptor-A; TLRs, Toll-like receptors; UPR, unfolded protein response.
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factor in the progression of steatohepatitis and hepatic fibrosis in
mice (138, 139). CCR2-/- or CCR2 inhibitor treatment in mice
alleviates steatosis, inflammatory cell infiltration, and fibrosis
(98, 99). It was also confirmed that the proportion of
macrophages in the liver decreased by approximately 80%
following the reinfusion of CCR2-/- monocytes (140). CCL2/
CCR2 has been identified as chemokines that promote monocyte
infiltration into the injured liver; therefore, CCL2/CCR2 is likely
to be applied in clinics in the treatment of fatty liver disease in the
future. In addition to CCL2, TRAIL, which is secreted by KCs, is
also involved in the recruitment of monocytes (141). Monocytes
are also recruited by CXCR3, CXCL10, or ceramide through
sphingosine 1-phosphate in murine steatohepatitis (142–144).

These results indicate that activated KCs secrete many pro-
inflammatory factors that aggravate the development of fatty
liver disease (Figure 2).

Lipotoxicity in Hepatic Macrophages
Under Fatty Liver Disease
Under physiological conditions, lipids are responsible for
maintaining intracellular metabolism, cell communication,
inflammation regulation, and the membrane structural
integrity in fatty liver disease. When the rate of fatty acid
uptake and synthesis exceeds the rate of fatty acid removal,
fatty acids induce cellular stress and lipid toxicity. The term
“lipid toxicity” was proposed by Unger for the first time in 1994
when he described cell damage in the muscle of patients with
type 2 diabetes and metabolic syndrome induced by toxic lipid
molecules (145).

Increased TG levels and the upregulated expression of fatty
acid synthesis-related genes, including carbohydrate response
element binding protein 1 (CHREBP1), PPARg, fatty acid
synthase, fatty acid binding protein 2, fatty acid transporter 5,
and DAG acyltransferase, lead to an excessive accumulation of
lipids in KCs (64). Although TG accounts for the largest
proportion of these over-synthesized lipids, TG is almost a
non-lipotoxic molecule (146, 147). Although lipidomic analysis
revealed that the total accumulation of non-toxic TG in the liver
of HFD mice was significantly higher than that observed in ND
mice, there was no significant difference in the deposition of TG
in KCs. In murine steatohepatitis, TG synthesis inhibition
ameliorates hepatic steatosis but aggravates liver injury and
fibrosis (146).

A relatively small proportion of lipids, including saturated fatty
acids, free cholesterol, DAG, ceramide, lysophosphatidylcholine,
and bile acid, can be lipotoxic to KCs and hepatocytes (148–152).
A sustained toxic lipid accumulation in KCs disrupts the structure
of lipid rafts in the plasma andmitochondrial membrane and results
in oxidative and endoplasmic reticulum (ER) stress. Under toxic
lipid exposure, macrophages are polarized towards the M1
phenotype, with high levels of inflammatory cytokines (such as
TNF-a, IL-6, and IL-1b) and secretion of chemokines (such as
CCL2, CCL5, and CXCL10) (145). The most abundant fatty acids
found in food and fatty liver are saturated fatty acids (PAs) and
monounsaturated fatty acids (OA). The excessive accumulation of
PA and FFAs in KCs activates the inflammatory signaling pathway
Frontiers in Immunology | www.frontiersin.org 9
(95), induces ER stress andmitochondrial injury, and increases ROS
levels (153). However, OA and polyunsaturated fatty acids, such as
omega-3 and omega-6, attenuate inflammation and lipotoxicity
(154, 155). Saturated fatty acid-induced lipotoxicity in KCs
exacerbates the development of fatty liver disease. Short-chain
fatty acids enhance fatty acid oxidation and inhibit steatosis
progression through PPARg (156).

Normally, FFAs can be oxidized in the mitochondria,
peroxisomes, and microsomes to produce ROS. In fatty liver
disease, steatosis increases the efflux of FFAs into the liver,
leading to elevated fatty acid b-oxidation and ROS production
in the mitochondria. However, excessive ROS leads to
mitochondrial dysfunction by reacting with polyunsaturated
fatty acids in the mitochondrial membrane, which results in
mitochondrial membrane injury, superoxide dismutase
inac t i va t ion , mi tochondr ia l DNA muta t ions , and
fragmentation (157, 158). In addition, accumulation of
misfolded proteins in the ER causes dysfunction and ER stress,
which triggers the activation of the unfolded protein response
(UPR). In patients with fatty liver disease, increased ER stress
activates UPR through transducers inositol-requiring enzyme 1,
protein kinase R-like kinase, and activating transcription factor
6, which promotes the expression of p53, release of cytochrome
C from the mitochondria, and the activation of NF-kB, JNK, and
CEBP signaling pathways in KCs, resulting in IR and apoptosis
(159, 160).

In HFD-fed mice, the accumulation of toxic lipids in KCs,
such as free cholesterol, cholesterol ester, DAG, and ceramide, is
much higher than that in ND mice. Accumulating evidence
indicate that lipotoxicity caused by excessive cholesterol
accumulation in KCs leads to foam-like cell formation and
accelerated fatty liver disease development from simple
steatosis to steatohepatitis. Cholesterol uptake by KCs occurs
in two ways: LDL receptor (LDLR)-mediated endocytosis and
modified LDL uptake by scavenger receptors (SRs). The native
LDLs binding to LDLR on KCs promote the lysosomal
degradation of LDL into free cholesterol. Increased levels of
free cholesterol reduce the intake of cholesterol by inhibiting
LDLR and producing lipid-loaded foam-like KCs containing
cholesterol crystals. Modified LDLs, such as ox-LDL, are
ingested by SR-A and CD36 on KCs, resulting in excessive
cholesterol accumulation in lysosomes, NLRP3 inflammasome
activation, and foam-like KCs in NASH (161). Moreover,
intracellular cholesterol does not regulate SR-A expression,
which further increases the number of foam-like KCs and
accelerates the development of fatty liver disease. Foam-like
KCs secrete chemokines to recruit monocytes and neutrophils
and TNF-a and TGF-b to activate hepatic stellate cells, which
transform them into myofibroblasts, resulting in hepatic fibrosis
(162, 163).

The storage of cholesterol in the mitochondria is increased in
human steatohepatit is as evidenced by upregulated
mitochondrial cholesterol transporters and steroidogenic acute
regulatory protein, but a small amount of cholesterol is found in
the cell membrane and ER (164). In rats fed a choline-deficient
high-cholesterol diet, mitochondrial function is impaired by the
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accumulation of free cholesterol and increased sensitivity to
TNF-a, leading to Fas-mediated liver injury (165). Cholesterol-
lowering agents, such as 2-hydroxypropyl-b-cyclodextrin, could
further promote cholesterol efflux from lysosomes to alleviate
liver inflammation in murine steatohepatitis (166). In Ldlr−/−

mice, SRA-/-/Cd36-/- bone marrow transplantation partially
alleviated high-fat- and high-cholesterol-diet-induced
inflammation and fibrosis (167). Steatohepatitis induced by an
HFD diet combined with ox-LDL also illustrates the important
role of ox-LDL in the progression of fatty liver disease.
Taken together, the long-term accumulation of toxic lipids in
macrophages accelerates the progression of fatty liver
disease (Figure 2).

Glucotoxicity in Hepatic Macrophages
Under Fatty Liver Disease
Fatty liver disease progression is associated not only with lipids but
also with sugar and glucose transporters (GLUTs), which affect the
activity or phenotype switching of macrophages. Glucose and
fructose are the two most dominant monosaccharides. However,
only fructose ismetabolized in the liver (168) anddisplaysa stronger
lipogenesis effect (10%) than glucose (2%) (169). Compared with
healthy individuals, patients with fatty liver disease have a higher
fructose intake (170). A high-sugar diet could further fuel HFD-
induced fatty liver disease progression. Evidence reveals that
fructose can promote the progression of fatty liver disease by
regulating lipase activity, increasing intestinal permeability and
motility via TLR4 on KCs (171) and enhancing the interaction
with thioredoxin-interacting protein in macrophages. Enhanced
nuclear transcription factor SREBP-1c and CHREBP1 promote the
de novo synthesis of lipids in the liver (172). Thioredoxin is shuttled
into themitochondria tomediateNLRP3 inflammasome activation
and IL-1b, IL-18, and ROS production (173).

In fatty liver disease, increased glucose transporter GLUT1
promotes M1-like macrophage polarization by upregulating the
PPP (174). In addition, hypoxia increases glucose uptake by
GLUT3 in macrophages, which increases the de novo synthesis
and deposition of lipids and promotes the progression of fatty
liver disease (175). In summary, high glucose levels polarize
macrophages to the pro-inflammatory M1 phenotype and
promote the progression of fatty liver disease (Figure 2).

Iron Poisoning of Hepatic Macrophages in
Fatty Liver Disease
Hepatic iron overload contributes to hepatic inflammation by
increasing hepatic cytokine expression in a HFD plus high-iron-
induced rat model (176), while hepatic iron depletion by
deferoxamine treatment in ob/ob mice improved hepatic
steatosis by upregulating lipid metabolism-related genes as well
as reducing free radical formation and pro-inflammatory
cytokines (177). Although iron overload leads to macrophage
polarization toward the M1 phenotype and a significant decrease
in prominent regulators of M2 activation, such as PGC-1b,
PPARg, and KLF4, and reduced phosphorylation of STAT6
(178), iron-overloaded hepatic macrophages activate a novel
signaling pathway partially consisting of MEK1-TAK1-PI3K-
IkB kinase (179).
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In a study of 849 patients with steatohepatitis, more than 34%of
patients displayed high amounts of iron deposition in liver biopsies
(180), and approximately 34% of patients with fatty liver disease
showed a dysfunction in the metabolism of iron overload (181). In
addition, serum transferrin levels are increased inpatientswith fatty
liver disease (182). Abnormal phagocytosis of erythrocytes by
hepatic KCs possibly leads to the accumulation of hemoglobin
iron in the liver and triggers oxidative stress (183).

Collectively, these findings suggest that iron poisoning of
hepatic macrophages is involved in fatty liver disease (Figure 2),
but the mechanisms of iron accumulation in KCs remain unclear
and require further investigation.
DISCUSSION

Several studies in both human and animal models have shown that
hepatic macrophages play a central role in the development and
progression of fatty liver disease. In the microenvironment of fatty
liver disease, any signal of DAMPs, PAMPs, lipotoxicity, or
glucotoxicity could trigger KC activation or polarization through
the TLR or NLR signaling pathways, resulting in the increased
secretion of inflammatory cytokines and chemokines and
imbalanced metabolic reprogramming. The released cytokines
facilitate the communication between KCs and other cells,
including parenchymal cells, HSCs, NK cells, and NKT cells, and
the activation of these cells in the liver, while secreted chemokines
foster more monocyte infiltration into the liver, where they can
differentiate into KCs in a positive loop manner. In addition,
metabolic reprogramming leads to disorders in glycolysis, lipid
synthesis, and ironmetabolism. All these abnormalities collectively
contribute to steatosis, inflammation, and fibrogenesis in the
development of fatty liver disease. The current strategies for
targeting macrophages to treat fatty liver disease mainly include
the inhibition of macrophage activation (e.g., via inhibiting the
inflammasome assembly), regulation of macrophage polarization
(e.g., via promoting polarization into the M2 phenotype through
nanoparticles), inhibition ofmonocyte recruitment and infiltration
(e.g., via suppressing the expression of chemokines like CCL2,
CCL10, or CCL3), and amelioration of toxic lipid accumulation
(e.g., via promoting lipolysis, FFA efflux, and transformation to
nontoxic TG) (184–186). Various medications currently targeting
macrophage for fatty liver disease are under clinical evaluation in
humans. These medications include cenicriviroc, selonsertib,
emricasan, GR-MD-02, IMM-124E, JKB-121, SGM-1019,
tropifexor, GS-0976, GS-9674, and lanifibranor (9, 10). Further
in-depth investigation of hepatic macrophages will help develop
novel strategies for the treatment of fatty liver disease and related
chronic liver diseases in the future.
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