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In systems biology, a key topic is the elucidation of the dynamic behavior of biological 

processes that are made up of complex biochemical networks. Statistical modeling is an 

important to capture the dynamics of biochemical networks such as metabolic networks, 

signal transduction pathways, and gene regulatory networks. These biochemical models 

have a set of parameters that represent the physical properties of the systems, such as kinetic 

constants and reaction rates. In general, the development of these models requires two steps: 

model structure construction and parameter estimation. The models are often constructed 

with time derivative expressions, such as ordinary differential equations (ODEs), to describe 

the change of certain quantities of interest over time [1,2]. The model parameters are then 

estimated by simulating the actual processes obtained from experimental analyses [3–5]. 

However, because the differential equation model has many uncertain parameters and 

limited measurement data, parameter estimation is a major bottleneck in the development of 

useful biochemical models [6,7].

Optimization algorithms cannot deal with the high dimensionality of search space due to 

calculation complexity. One way to circumvent this difficulty is to simplify complicated 

systems biology models using model order reduction methods. Model order reduction 

methods reduce the number of states and parameters of dynamical systems that are defined 

by ODEs [8]. Lumping is one model order reduction method in which the original states of 

the model are lumped or merged to a reduced number of pseudo-states, resulting in a fewer 

equations and parameters but with effectively the same or similar input-output behavior. 

Proper lumping is a special case of lumping where each of the original states contributes to 

only one of the pseudostates of the reduced system thereby forming groups that retain a clear 

physical interpretation. With these methods, the reduced systems include less information, 

but are supposed to retain the basic features or properties of the original models. Although 

computational expense is saved, it is highly likely that the simplification loses critical 

information, especially if there is excessive simplification. Another strategy is to use divide-

and-conquer methods, which decompose a large network of interest into smaller sub-

networks [9,10]. For example, Voit and Almeida [11] developed an approach to transforming 

the problem into several sets of decoupled algebraic equations, being processed efficiently in 
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parallel or sequentially, in large genetic network models. Kimura et al. [12] employed a 

cooperative co-evolutionary algorithm with a decomposition strategy to handle large S-

system models with noisy time-series data. When there are no closed loops, Koh et al. [13] 

decomposed the network into small, independent sub-networks and estimated the parameters 

for each sub-network separately under the assumption that signals or mass flow in one 

direction. van Riel and Sontag [14] proposed a different approach to utilizing the modular 

structure of biochemical networks, providing the time courses of the intra-modular 

components that interact with neighboring modules. Those divide-and-conquer strategies, 

however, are not suitable for complex networks consisting of multiple closed or feedback 

loops, because dividing closed loops can change their intrinsic regulatory structures, greatly 

altering their dynamic features and the sensitivity of search parameters. Recently, to handle 

this difficulty, Maeda et al. [5] employed flux module decomposition that separates a 

complex, large-scale dynamic model into multiple flux modules without destroying its basic 

control architectures. However, it assumes that all parameters are necessary without 

accounting for differences in uncertainty of parameters.

To circumvent the aforementioned issues, we propose a divide-and-conquer approach to 

avoiding unnecessary information loss while estimating high-dimensional parameters 

efficiently. To do this, we first divide a large complete system into sub-systems so that each 

subsystem has a smaller, manageable number of differential equations. Then we estimate 

parameters for each sub-system, followed by refinement of the estimates through 

communication among subsystems. The success of the proposed algorithm depends on how 

the complete system is divided into small sub-systems.

We illustrate our proposed approaches with a simple three-compartment model. Its system of 

ordinary differential equations (ODEs) is as follows:

Where (Ka,Kb,Kc) are the parameters to estimate (i.e., Ka,Kb,Kc are the absorption rate, the 

distribution rate, the elimination rate constants, respectively); and (x(t), y(t), z(t))t = 0 = (0, 0, 

0). Its graphical representation is shown in Figure 1a. Using this model, we investigated the 

performance of the proposed approach in a simulation study. We generated 100 simulations 

and estimated the parameters using 1) a conventional approach (ONE) and 2) a divide-and-

conquer approach (DAQ). The brief schematic representation of DAQ can be seen in Figure 

1b.
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As for DAQ, the parameters (Ka, Kb) are first estimated given Kc and then the parameters 

(Kb, Kc) are estimated given Ka. This procedure was repeated until convergence. Table 1 

displays the results of 100 simulation studies with mean squared errors (MSEs) and 

estimates’ bias by three levels of measurement errors. The performance of DAQ is 

comparable to that of ONE, and, in some cases, the biases of DAQ are smaller than these of 

ONE in Table 1.

It is worth noting that, as the whole model is divided into smaller models, the computation 

expense decreases, but the information loss increases. For this reason, it is important to 

ensure that the decomposition is optimal, and future work will further need to find out the 

relationship between the decomposition and the information loss. Overall, as shown in the 

limited simulation study, the proposed approach preserves important properties of the 

original model and thereby increases the quality of the biochemical networks due to the 

property that the proposed approach does not depend on simplification. Furthermore, the 

proposed parameter estimation approach can be easily applied to other high-dimensional 

data such as genomics, transcriptomics, proteomics, and metabolomics. Therefore, the 

proposed work will benefit for many types of high-dimensional studies.
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Figure 1. 
Graphical representation of three compartmental models.
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