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Horizontal gene transfer (HGT) of antibiotic resistance genes has received increased

scrutiny from the scientific community in recent years owing to the public health threat

associated with antibiotic resistant bacteria. Most studies have examined HGT in growing

cultures. We examined conjugation in growing and non-growing cultures of E. coli using

a conjugative multi antibiotic and metal resistant plasmid to determine physiochemical

parameters that favor horizontal gene transfer. The conjugation frequency in growing and

non-growing cultures was generally greater under shaken than non-shaken conditions,

presumably due to increased frequency of cell collisions. Non-growing cultures in 9.1mM

NaCl had a similar conjugation frequency to that of growing cultures in Luria-Bertaini

broth, whereas those in 1mM or 90.1mM NaCl were much lower. This salinity effect

on conjugation was attributed to differences in cell-cell interactions and conformational

changes in cell surface macromolecules. In the presence of antibiotics, the conjugation

frequencies of growing cultures did not increase, but in non-growing cultures of

9.1mM NaCl supplemented with Cefotaxime the conjugation frequency was as much

as nine times greater than that of growing cultures. The mechanism responsible for

the increased conjugation in non-growing bacteria was attributed to the likely lack of

penicillin-binding protein 3 (the target of Cefotaxime), in non-growing cells that enabled

Cefotaxime to interact with the plasmid and induce conjugation. Our results suggests

that more attention may be owed to HGT in non-growing bacteria as most bacteria

in the environment are likely not growing and the proposed mechanism for increased

conjugation may not be unique to the bacteria/plasmid system we studied.

Keywords: conjugation, horizontal gene transfer, antibiotic resistance, salinity, β-lactam antibiotics, non-growing

bacteria

INTRODUCTION

Antibiotic resistance has become a serious public health issue (de Kraker et al., 2011; Smith and
Coast, 2013) and the spread of antibiotic resistant genes (ARG) via horizontal gene transfer (HGT)
is a topic that has received increased scrutiny by the scientific community in recent years. There
is a growing concern that the presence of antibiotics in the environment can act as a stressor
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to induce HGT of ARG. Varying concentrations of antibiotics
have been shown to be prevalent in the environment (Ohlsen
et al., 2003; Karthikeyan and Meyer, 2006; Sarmah et al., 2006;
Martínez-Carballo et al., 2007; Guerra et al., 2014) and numerous
studies have correlated the use (and misuse) of antibiotics in
agriculture and medicine with an increase in antibiotic resistant
bacteria (Khachatourians, 1998; Smith et al., 2002; Cabello, 2006;
Centers for Disease Control Prevention, 2013; Ventola, 2015).
Antibiotics have also been shown to induce HGT of ARG in both
field and laboratory based studies (Barr et al., 1986; Hinnebusch
et al., 2002; Licht et al., 2003; Ohlsen et al., 2003; Maiques et al.,
2006; Pontiroli et al., 2009; Stecher et al., 2012; Zhang et al., 2013;
Kim et al., 2014; Schuurmans et al., 2014; Jutkina et al., 2018).

Despite the abundant number of studies examining HGT
of ARG via conjugation, the results (and methods) from
these studies vary greatly. Some studies have reported that
subinhibitory concentrations of antibiotics are capable of
inducing HGT (Barr et al., 1986; Licht et al., 2003; Maiques et al.,
2006; Kim et al., 2014; Jutkina et al., 2016, 2018), while other
studies report they are not (Ohlsen et al., 2003; Lopatkin et al.,
2016) and still other studies report that antibiotic concentrations
above the minimum inhibitory concentration are necessary to
promote HGT (Schuurmans et al., 2014; Moller et al., 2017).
Rarely are the same methods used by investigators to assess
conjugation. For example, some studies have chosen to shake
cultures (Zhang et al., 2013; Händel et al., 2015), while other
studies have chosen not to shake cultures (Hayashi et al., 1988;
Fernandez-Astorga et al., 1992; Muela et al., 1994; Beuls et al.,
2012; Sandegren et al., 2012; Lopatkin et al., 2016). Some studies
have examined conjugation in liquid cultures (Barr et al., 1986;
Fernandez-Astorga et al., 1992; Sandegren et al., 2012; Zhang
et al., 2013; Schuurmans et al., 2014; Händel et al., 2015; Lopatkin
et al., 2016), while others have examined conjugation using the
filter plate method (Kim et al., 2014; Jutkina et al., 2016, 2018;
Moller et al., 2017). Many studies have examined conjugation at
37◦C (Khalil and Gealt, 1987; Hayashi et al., 1988; Fernandez-
Astorga et al., 1992; Sandegren et al., 2012; Zhang et al., 2013;
Moller et al., 2017), while many other investigators have utilized
other temperatures for their experiments (Fernandez-Astorga
et al., 1992; Muela et al., 1994; Beuls et al., 2012; Jutkina et al.,
2016; Lopatkin et al., 2016; p. 74; Jutkina et al., 2018).

One area of methodological agreement appears to be the
use of growing bacterial cultures in conjugation experiments.
There is good evidence that conjugation increases with bacterial
growth (Muela et al., 1994; Schuurmans et al., 2014; Händel
et al., 2015; Lopatkin et al., 2016) and the vast majority
of conjugation studies are conducted on growing bacterial
populations or populations exposed to growth media during
conjugation (e.g., Barr et al., 1986; Hayashi et al., 1988;
Fernandez-Astorga et al., 1992; Beaber et al., 2004; Beuls et al.,
2012; Sandegren et al., 2012; Zhang et al., 2013; Kim et al.,
2014; Schuurmans et al., 2014; Händel et al., 2015; Jutkina et al.,
2016, 2018; Lopatkin et al., 2016; Matsumoto et al., 2016; Moller
et al., 2017). However, just because conjugation has been shown
to increase with bacterial growth does not mean that it does
not occur in non-growing bacteria. To our knowledge, there
has been relatively little work on conjugation with non-growing

bacteria, this is likely in part due to the perception that bacteria
must be in an environment suitable for bacterial growth for
conjugation to occur (van Elsas and Bailey, 2002; Aminov,
2011). Studies of conjugation in nutrient depleted natural and
artificially created environments have been conducted (Grabow
et al., 1975; Gowland and Slater, 1984; O’Morchoe et al., 1988;
Jones et al., 1991; Sandt and Herson, 1991; Goodman et al.,
1993; Dahlberg et al., 1998; Coombs and Barkay, 2004) and have
demonstrated that conjugation can occur under these (perceived)
less than favorable conditions. However, these studies tended
to only examine conjugation at the physiochemical conditions
that existed in the natural environment (or artificially created
environment designed to mimic the natural environment) to
determine if conjugation was occurring, not determine the
optimal conditions for it to occur. It has been suggested that
the factors promoting conjugation in growing bacteria may be
different than those in non-growing bacteria (Goodman et al.,
1994), thus an examination of the physiochemical parameters in
which conjugation occurs in non-growing bacteria is warranted.

We examined conjugation in growing and non-growing
cultures of E. coli using a conjugative multi antibiotic and metal
resistant plasmid to determine the physiochemical conditions
that most favor the transfer of the plasmid to recipient bacteria.
We found that shaken cultures generally produced much
more conjugation than non-growing cultures. The conjugation
frequency of non-growing cultures suspended in 9.1mM NaCl
was equal to that of growing cultures in Luria-Bertaini (LB)
broth at 37◦C. In the presence of 25µg/ml of Cefotaxime, the
conjugation frequency exceeded the conjugation frequency of
growing cultures in LB by as much as nine times. Only β-lactam
antibiotics increased conjugation frequencies and subinhibitory
concentrations of antibiotics generally resulted in either similar
or less conjugation than non-antibiotic control cultures.

MATERIALS AND METHODS

Bacterial Strains
E. coli K12 ER1793 is a streptomycin resistant and restriction
enzyme deficient strain obtained from New England Biolabs
(Ipswich, MA) and was chromosomally modified to contain
either a blue (mTagBFP2) or yellow (SYFP2) fluorescent gene
and a chloramphenicol resistance gene as described below in the
strain modification section.

E. coli DA28100 and E. coli DA28102 were derived from wild-
type E. coliMG1655 strains and provided by Dr. Erik Gullberg at
Uppsala University, Sweden. E. coli strain DA28100 was modified
(as described in Gullberg et al., 2014) to possess a chromosomal
SYFP2 gene and a chloramphenicol resistance gene. E. coli strain
DA28102 was modified to possess a chromosomal mTagBFP2
gene and a chloramphenicol resistance gene.

pUUH239.2 was provided by Dr. Linus Sandegren at Uppsala
University, Sweden in an E.coli K-12 strain (DA14833). The
plasmid was originally isolated from a Klebsiella pneumoniae
strain associated with a nosocomial outbreak in Uppsala, Sweden.
pUUH239.2 is a 220,884 bp conjugative plasmid that encodes
resistance to multiple antibiotics (e.g., B-lactams, tetracycline,
kanamycin), a variety of heavy metals (e.g., copper, silver) and
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organic biocides (Sandegren et al., 2012). The plasmid has been
fully sequenced and characterized with respect to its ability
to be transferred via conjugation, associated fitness costs, and
antibiotic and metal concentrations necessary to select for the
plasmid (Sandegren et al., 2012; Gullberg et al., 2014).

Antibiotics
Minimum Inhibitory Concentration (MIC) assays of strains
used in conjugation experiments were carried out in Mueller
Hinton broth (Fisher Scientific, Waltham, MA, USA) using
the method similar to European Committee for Antimicrobial
Susceptibility Testing (EUCAST) of the European Society
of Clinical Microbiology, and Infectious Diseases (ESCMID)
(2003) by diluting antibiotics 1:10 from 100 µg to 0.01µg/ml
(Supplementary Table 1). The goal of the MIC assays was not
to determine the actual MIC, but to establish selective and
subinhibitory concentrations of antibiotics for use in conjugation
experiments. Subinhibitory concentrations used in conjugation
experiments were 1/10th of the determined MIC for each
antibiotic. The following antibiotics were used tomaintain strains
and/or used in conjugation experiments: Ampicillin Sodium
Salt (AMP) (Fisher Scientific, Waltham, MA, USA); Cefotaxime
Sodium Salt (CFX) (ACROS Organics, Thermo-Fisher Scientific,
Waltham, MA, USA); Kanamycin Monosulfate (KAN) (Fisher
Scientific, Waltham, MA, USA); Gentamicin Sulfate (GEN)
(Sigma-Adrich, St Louis, MO, USA); Tetracycline HCl (TET)
(RPI, Mount Prospect, IL, USA); and Chloramphenicol (CHL)
(Fisher Scientific, Waltham, MA, USA).

Strain Modification
Creation of E. coli K12 ER1793 galk::mTagBFP2-FRT and
E. coli K12 ER1793 galk::SYFP2-Cat was carried out as
described by Gullberg et al. (2014). Briefly, E. coli K12 ER1793
was transformed with pkD46 (Coli Genetics Stock Center,
Yale University), a 6,329 bp plasmid containing the genes
necessary for lambda red recombination. The recombination
was carried out to insert a fluorescent gene (mTagBFP2 or
SYFP2) and a chloramphenicol resistance gene flanked by Flp
recombination (FRT) sites into the galK (galactokinase) gene
on the chromosome of E. coli K12 ER1793. The insertion site
comprises a region spanning the start codon of galK to 116
bp upstream of the 3’ end of the gene. Chromosomal DNA
of E. coli DA28100 and E. coli DA28102 was extracted using
the QIamp Kit (Qiagen, Germantown, MD) and amplified with
pcr primers (pELgalKEcoF and ColiGalKYFPLinR fromGullberg
et al. (2014)) to generate an approximately 2050 bp fragment
containing a chloramphenicol resistance gene and either a
mTagBFP2 gene or a SYFP2 gene. The fragments were extracted
from a gel using the Wizard SV Gel and PCR Clean-up system
(Promega Corporation, Madison, WI). Approximately 50 µg of
pcr product was transformed into E. coli K12 ER1793//pKD46
via electroporation (2.0 kV, 200 ohms, and 25 µF for∼5mS) and
immediately incubated with 1ml of LB broth for ∼2 h at 37◦C
and ∼200 rpm before plating 100 µl onto LB agar supplemented
with CHL (20µg/ml) overnight at 37◦C. Successful recombinants
were restreaked onto LB agar plates supplemented with CHL
(20µg/ml) and incubated overnight at 42◦C to remove the

pkD46 plasmid. The resulting recombination was then moved
into the wild-type E. coli K12 ER1793 chromosome via P1
transduction using the P1vir phage (Coli Genetics Stock Center,
Yale University) to generate E. coli K12 ER1793 galk::mTagBFP2-
cat and E. coli K12 ER1792 galk::SYFP2-cat (herein referred to
as ER1793_SYFP2-Cat). E. coli K12 ER1793 galk::mTagBFP2-cat
was then transformed with pCP20 (Coli Genetics Stock Center,
Yale University), a 9,497 bp plasmid containing the yeast Flp
recombinase gene. The chloramphenicol resistance gene was
then removed from the strain using the FRT sites to generate E.
coli K12 ER1793 galk::mTagBFP2-FRT. pCP20 was removed by
incubating the strain overnight at 42◦C. The area of the modified
chromosomes of both strains was then sequenced to confirm
successful modification of the chromosomes. E. coli K12 ER1793
galk::mTagBFP2-FRT was then transformed with pUUH239.2 via
electroporation (2.0 kV, 200 ohms, and 25 uF for ∼5mS) to
generate E. coli K12 ER1793 galk::mTagBFP2FRT//pUUH239.2
(herein referred to as ER1793_mTag/pUUH239.2) which was
grown and maintained on LB agar supplemented with CFX
(25µg/ml).

Conjugation Experiments
ER1793_mTag/pUUH239.2 and ER1793_SYFP2-Cat were grown
overnight in 10ml of LB broth (Fisher Scientific, Waltham,
MA, USA) supplemented with 150µg/ml CFX and 20µg/ml
CHL, respectively, at 37◦C and ∼200 rpm. One ml of
each overnight culture was then inoculated into 34ml of
LB broth (supplemented with 25µg/ml CFX for ER1793
mTag/pUUH239.2) and grown at 37◦C for approximately 4.5 h
to an OD600 of between 0.400 and 0.600. Cultures were
then centrifuged at 5,100 rpm at 22◦C for 15min and pellets
resuspended in 35ml of 1mM NaCl. The OD600 was then
adjusted using 1mM NaCl to ensure that both cultures were
within an OD600 of 0.01 of one another. 500 µl of each culture
was then inoculated into 9ml of LB, 1, 10, and 100mM NaCl (to
generate 1, 9.1, and 90.1mM NaCl solutions) with and without
antibiotics and incubated at the experimental temperature for
2 h. All experiments were carried out in duplicate. Three
parallel cultures were used to determine concentrations of
bacteria and transconjugants for all experiments. One culture
served as a time (t) equals 0 culture, one culture served as
a t = 2 h non-shaken culture, and the final culture served
as a t = 2 h shaken culture (∼200 rpm). After incubation
at the designated temperature, 250 µl of each culture was
plated onto LB agar plates (Fisher Scientific, Waltham, MA,
USA) supplemented with TET (20µg/ml) and CHL (20µg/ml)
and incubated for ∼40 h at 37◦C. A 1:100 dilution of each
culture was read on an ATTUNE flow cytometer (Thermo-
Fisher, Waltham, MA, USA) to obtain the concentrations
of ER1793_mTag/pUUH239.2 and ER1793_SYFP2-Cat in each
culture. Traditional plate counts were performed to verify flow
cytometry bacterial concentrations. In instances where plate
counts and flow cytometry numbers were not in good agreement,
the higher of the two bacterial counts was used in order
to produce a more conservative conjugation frequency. This
situation occurred only once in an experiment involving AMP at
25µg/ml. In this experiment, the concentrations determined by
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the flow cytometer were∼40% of the concentrations determined
by plate counts. Potential transconjugants that grew on the LB
agar plates supplemented with TET and CHL were confirmed by
restreaking onto separate LB agar plates supplemented with AMP
(100µg/ml), KAN (50µg/ml), CFX (25µg/ml), TET (20µg/ml),
CHL (20µg/ml), TET (20µg/ml) + CHL (20µg/ml), and GEN
(25µg/ml). Successful transconjugants were able to grow on all
plates except the LB agar plates supplemented with GEN. Any
potential transconjugant that failed to grow on all plates except
GEN was regarded as not being a transconjugant.

Conjugation frequency (Fc) was determined by dividing the
average number of transconjugants by the total number of
bacteria:

Fc =
CTC

CD + CR + CTC
(1)

where CTC (N L−3; N and L denotes the number of microbes
and unit of length, respectively) is the concentration (number
per volume) of transconjugants, CD (N L−3) is the concentration
of donor bacteria (ER1793 mTag/pUUH239.2), and CR (N
L−3) is the concentration of recipient bacteria (ER1793 SYFP2-
Cat). The formula used to calculate conjugation frequency
varies in the literature (e.g., Lopatkin et al., 2016 vs. Moller
et al., 2017 vs. Jutkina et al., 2018). We chose a more
conservative formula that was based on the total population
of the bacterial culture, while many papers use a formula
which only takes into account recipient bacteria (Muela et al.,
1994; Zhang et al., 2013; Matsumoto et al., 2016; Moller
et al., 2017; Jutkina et al., 2018). Conjugation requires both a
donor and a recipient and omitting the donor (or recipient)
population, particularly if the initial inoculate contains more
donor or recipient bacteria, artificially inflates conjugation
frequencies.

Similar to other authors (e.g., Schuurmans et al., 2014;
Lopatkin et al., 2016), we found a high level of variability
in Fc between experiments, particularly among our non-
antibiotic controls. Standard deviations for Fc are presented
in Table 1. In theory, the non-antibiotic control cultures used
in each experiment (i.e., LB Broth, 1mM NaCl, etc.) are
identical and should yield a similar number of transconjugants
in each experiment, but in reality this was not the case.
This variability between experiments has been attributed by
other investigators to differences in bacterial growth among
different cultures (Lopatkin et al., 2016), and we strongly
suspect this to be the case in our experiments. Despite our
best efforts to attempt to control these factors, we were
not always successful. As a result, we decided to pool the
data for cultures with the same solution chemistries from
experiments conducted on different days, particularly the non-
antibiotic control cultures. The downside is that this generated
very large standard deviations and resulted in less statistical
significance in the data, but it did allow for more consistent
comparisons with cultures supplemented with antibiotics and
in the end, the large scale trends were still statistically
significant.

Statistics
Two sample T-test assuming unequal variances (two-tailed) were
carried out using Microsoft Excel 2010 (Microsoft, Redmond,
WA, USA) and corrected for multiple comparisons using the
Bonferroni correction. p < 0.003 were considered significant.

RESULTS

Shaken vs. Non-shaken Cultures
Shaken cultures had higher conjugation frequencies than non-
shaken cultures in non-antibiotic cultures (Figure 1). The
observation was also generally true for cultures supplemented
with antibiotics with the notable exception of non-shaken
cultures in 9.1mM NaCl supplemented with 25µg/ml of
CFX which had much higher conjugation frequencies (Table 1,
Figures 2, 3).

Temperature
Conjugation frequency increased with temperature. Most
conjugation occurred at 37◦C. There was no conjugation
in any cultures at 4◦C and very little conjugation at 22◦C
(Table 1). At 22◦C, conjugation only occurred in LB cultures
without antibiotics, LB supplemented with 25µg/ml of CFX,
and in the 9.1mM NaCl shaken cultures without antibiotics
(Table 1).

Salinity
In control cultures (not supplemented with antibiotics), the
conjugation frequency in the growing LB culture exceeded all
non-growing cultures (both shaken and non-shaken cultures)
except 9.1mM NaCl. The non-growing culture in 9.1mM NaCl
had a similar conjugation frequency in both shaken and non-
shaken cultures (p = 0.398, p = 0.3419 respectively) (Figure 1).
The optimal salinity for conjugation in non-growing cultures
was found to be 9.1mM NaCl, especially when supplemented
with CFX at 25µg/ml in both shaken and non-shaken cultures
(Figures 2,3).

Antibiotic Type and Concentration
In our study, donor and recipient bacteria did not possess
resistance to GEN and only donors and transconjugants
possessed resistance to AMP, CFX, and KAN. No conjugation
was observed in cultures supplemented with GEN (25µg/ml)
or KAN (50µg/ml). At subinhibitory concentrations of GEN
(1µg/ml), conjugation occurred in LB at a lower frequency
than the control culture in both shaken and non-shaken
cultures (p = <0.0001) (Figures 4, 5, Table 1). At subinhibitory
concentrations of KAN (1µg/ml), the conjugation frequency
in LB was similar to the control in both non-shaken
cultures (p = 0.003) and shaken cultures (p = 0.748). At
subinhibitory concentrations of CFX (0.1µg/ml) and AMP
(1µg/ml), the conjugation frequencies of the CFX and AMP
supplemented cultures were similar to one another in all
solutions in both shaken and non-shaken cultures (Figures 4,
5, Table 1.). At high concentrations of AMP (100µg/ml), the
conjugation frequency was generally less than cultures containing
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TABLE 1 | Conjugation frequencies at various physicochemical parameters.

Solution Temperature (C) [Antibiotic]

(ug/ml)

Agitation Conjugation

Frequency

Standard

Deviation

LB 37 0 Non-Shaken 1.36E-06 1.13E-06

LB+CFX 37 0.1 Non-Shaken 8.29E-07 2.26E-07

LB+CFX 37 25 Non-Shaken 1.73E-07 7.02E-08

LB+AMP 37 1 Non-Shaken 8.65E-07 2.39E-07

LB+AMP 37 25 Non-Shaken 2.67E-06 7.87E-07

LB+AMP 37 100 Non-Shaken 4.04E-07 1.56E-07

LB+KAN 37 1 Non-Shaken 6.53E-07 2.40E-07

LB+KAN 37 50 Non-Shaken 0.00E+00 0.00E+00

LB+GEN 37 1 Non-Shaken 1.95E-07 1.26E-07

LB+GEN 37 25 Non-Shaken 0.00E+00 0.00E+00

LB 37 0 Shaken 5.70E-06 4.64E-06

LB+CFX 37 0.1 Shaken 4.85E-06 1.34E-06

LB+CFX 37 25 Shaken 1.83E-06 4.03E-07

LB+AMP 37 1 Shaken 5.40E-06 1.45E-06

LB+AMP 37 25 Shaken 6.55E-06 1.40E-06

LB+AMP 37 100 Shaken 1.31E-06 2.18E-07

LB+KAN 37 1 Shaken 4.80E-06 1.53E-06

LB+KAN 37 50 Shaken 0.00E+00 0.00E+00

LB+GEN 37 1 Shaken 1.64E-06 5.63E-07

LB+GEN 37 25 Shaken 0.00E+00 0.00E+00

LB 22 0 Non-Shaken 1.63E-07 1.30E-07

LB+CFX 22 25 Non-Shaken 6.53E-08 1.21E-07

LB 22 0 Shaken 2.79E-07 1.43E-07

LB+CFX 22 25 Shaken 9.06E-08 1.28E-07

LB 4 0 Non-Shaken 0.00E+00 0.00E+00

LB+CFX 4 25 Non-Shaken 0.00E+00 0.00E+00

LB 4 0 Shaken 0.00E+00 0.00E+00

LB+CFX 4 25 Shaken 0.00E+00 0.00E+00

1mM NaCl 37 0 Non-Shaken 1.92E-07 2.90E-07

1mM NaCl+CFX 37 0.1 Non-Shaken 1.28E-07 2.03E-07

1mM NaCl+CFX 37 25 Non-Shaken 1.47E-07 1.56E-07

1mM NaCl+AMP 37 1 Non-Shaken 2.17E-07 2.24E-07

1mM NaCl+AMP 37 25 Non-Shaken 2.29E-07 1.65E-07

1mM NaCl+AMP 37 100 Non-Shaken 9.06E-07 5.87E-07

1mM NaCl+KAN 37 1 Non-Shaken 0.00E+00 0.00E+00

1mM NaCl+KAN 37 50 Non-Shaken 0.00E+00 0.00E+00

1mM NaCl+GEN 37 1 Non-Shaken 0.00E+00 0.00E+00

1mM NaCl+GEN 37 25 Non-Shaken 0.00E+00 0.00E+00

1mM NaCl 37 0 Shaken 6.05E-07 9.12E-07

1mM NaCl+CFX 37 0.1 Shaken 4.21E-07 2.11E-07

1mM NaCl+CFX 37 25 Shaken 9.68E-08 1.67E-07

1mM NaCl+AMP 37 1 Shaken 5.67E-07 2.84E-07

1mM NaCl+AMP 37 25 Shaken 1.94E-06 5.13E-07

1mM NaCl+AMP 37 100 Shaken 1.24E-06 4.33E-07

1mM NaCl+KAN 37 1 Shaken 0.00E+00 0.00E+00

1mM NaCl+KAN 37 50 Shaken 0.00E+00 0.00E+00

1mM NaCl+GEN 37 1 Shaken 0.00E+00 0.00E+00

1mM NaCl+GEN 37 25 Shaken 0.00E+00 0.00E+00

1mM NaCl 22 0 Non-Shaken 0.00E+00 0.00E+00

1mM NaCl+CFX 22 25 Non-Shaken 0.00E+00 0.00E+00

(Continued)
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TABLE 1 | Continued

Solution Temperature (C) [Antibiotic]

(ug/ml)

Agitation Conjugation

Frequency

Standard

Deviation

1mM NaCl 22 0 Shaken 0.00E+00 0.00E+00

1mM NaCl+CFX 22 25 Shaken 0.00E+00 0.00E+00

1mM NaCl 4 0 Non-Shaken 0.00E+00 0.00E+00

1mM NaCl+CFX 4 25 Non-Shaken 0.00E+00 0.00E+00

1mM NaCl 4 0 Shaken 0.00E+00 0.00E+00

1mM NaCl+CFX 4 25 Shaken 0.00E+00 0.00E+00

10mM NaCl 37 0 Non-Shaken 1.40E-06 1.20E-06

10mM NaCl+CFX 37 0.1 Non-Shaken 2.30E-07 2.30E-07

10mM NaCl+CFX 37 25 Non-Shaken 1.24E-05 4.56E-06

10mM NaCl+AMP 37 1 Non-Shaken 9.45E-08 1.22E-07

10mM NaCl+AMP 37 25 Non-Shaken 5.10E-07 2.67E-07

10mM NaCl+AMP 37 100 Non-Shaken 1.54E-07 1.54E-07

10mM NaCl+KAN 37 1 Non-Shaken 0.00E+00 0.00E+00

10mM NaCl+KAN 37 50 Non-Shaken 0.00E+00 0.00E+00

10mM NaCl+GEN 37 1 Non-Shaken 0.00E+00 0.00E+00

10mM NaCl+GEN 37 25 Non-Shaken 0.00E+00 0.00E+00

10mM NaCl 37 0 Shaken 6.02E-06 5.02E-06

10mM NaCl+CFX 37 0.1 Shaken 1.90E-06 4.42E-07

10mM NaCl+CFX 37 25 Shaken 9.70E-06 4.45E-06

10mM NaCl+AMP 37 1 Shaken 1.68E-06 7.23E-07

10mM NaCl+AMP 37 25 Shaken 2.57E-06 6.64E-07

10mM NaCl+AMP 37 100 Shaken 3.76E-07 3.61E-07

10mM NaCl+KAN 37 1 Shaken 0.00E+00 0.00E+00

10mM NaCl+KAN 37 50 Shaken 0.00E+00 0.00E+00

10mM NaCl+GEN 37 1 Shaken 0.00E+00 0.00E+00

10mM NaCl+GEN 37 25 Shaken 0.00E+00 0.00E+00

10mM NaCl 22 0 Non-Shaken 0.00E+00 0.00E+00

10mM NaCl+CFX 22 25 Non-Shaken 0.00E+00 0.00E+00

10mM NaCl 22 0 Shaken 4.50E-08 1.19E-07

10mM NaCl+CFX 22 25 Shaken 0.00E+00 0.00E+00

10mM NaCl 4 0 Non-Shaken 0.00E+00 0.00E+00

10mM NaCl+CFX 4 25 Non-Shaken 0.00E+00 0.00E+00

10mM NaCl 4 0 Shaken 0.00E+00 0.00E+00

10mM NaCl+CFX 4 25 Shaken 0.00E+00 0.00E+00

100mM NaCl 37 0 Non-Shaken 7.20E-08 1.69E-07

100mM NaCl+CFX 37 0.1 Non-Shaken 7.68E-08 9.94E-08

100mM NaCl+CFX 37 25 Non-Shaken 3.76E-07 2.79E-07

100mM NaCl+AMP 37 1 Non-Shaken 1.23E-07 1.36E-07

100mM NaCl+AMP 37 25 Non-Shaken 2.08E-08 5.50E-08

100mM NaCl+AMP 37 100 Non-Shaken 0.00E+00 0.00E+00

100mM NaCl+KAN 37 1 Non-Shaken 0.00E+00 0.00E+00

100mM NaCl+KAN 37 50 Non-Shaken 0.00E+00 0.00E+00

100mM NaCl+GEN 37 1 Non-Shaken 0.00E+00 0.00E+00

100mM NaCl+GEN 37 25 Non-Shaken 0.00E+00 0.00E+00

100mM NaCl 37 0 Shaken 2.90E-07 3.24E-07

100mM NaCl+CFX 37 0.1 Shaken 4.82E-07 3.43E-07

100mM NaCl+CFX 37 25 Shaken 1.28E-06 5.09E-07

100mM NaCl+AMP 37 1 Shaken 3.44E-07 1.72E-07

100mM NaCl+AMP 37 25 Shaken 1.46E-07 1.55E-07

(Continued)
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TABLE 1 | Continued

Solution Temperature (C) [Antibiotic]

(ug/ml)

Agitation Conjugation

Frequency

Standard

Deviation

100mM NaCl+AMP 37 100 Shaken 0.00E+00 0.00E+00

100mM NaCl+KAN 37 1 Shaken 0.00E+00 0.00E+00

100mM NaCl+KAN 37 50 Shaken 0.00E+00 0.00E+00

100mM NaCl+GEN 37 1 Shaken 0.00E+00 0.00E+00

100mM NaCl+GEN 37 25 Shaken 0.00E+00 0.00E+00

100mM NaCl 22 0 Non-Shaken 0.00E+00 0.00E+00

100mM NaCl+CFX 22 25 Non-Shaken 0.00E+00 0.00E+00

100mM NaCl 22 0 Shaken 0.00E+00 0.00E+00

100mM NaCl+CFX 22 25 Shaken 0.00E+00 0.00E+00

100mM NaCl 4 0 Non-Shaken 0.00E+00 0.00E+00

100mM NaCl+CFX 4 25 Non-Shaken 0.00E+00 0.00E+00

100mM NaCl 4 0 Shaken 0.00E+00 0.00E+00

100mM NaCl+CFX 4 25 Shaken 0.00E+00 0.00E+00

FIGURE 1 | Conjugation frequencies in shaken and non-shaken cultures at 37◦C without antibiotics. Red-Shaken Cultures, Blue-Non-shaken cultures. Error bars

represent standard deviation.

25µg/ml AMP or similar (i.e. not statistically significant)
(Table 1).

Conjugation in the presence of CFX and AMP at 25µg/ml at
37◦C generally produced opposing results (i.e., when conjugation
frequencies in CFX supplemented cultures were high, AMP
supplemented cultures were low and vice-versa in both shaken
and non-shaken cultures) (Figures 2, 3). In growing cultures,
the conjugation frequency in the presence of AMP was nearly
double that of controls in non-shaken cultures (p = 0.0023)
and similar to that of the control in shaken cultures (p =

0.339), while in CFX supplemented cultures, the conjugation
frequency was lower than the control (p = <0.0001) (Figures 2,
3, Table 1). However, in 9.1mM NaCl the conjugation frequency
in the presence of CFX (25µg/ml) was 8.8 times higher
than the 9.1mM NaCl control (p = <0.0001) and 9.1 times

higher than the conjugation frequency of the LB control (p =

<0.0001) (Figure 2). In shaken cultures, the trend was similar,
but, not statistically significant (the conjugation frequency
was 1.6 times higher than the 9.1mM NaCl control (p =

0.0189) and 1.7 times higher than the LB culture (p =

0.0106) (Figure 3, Table 1). Cultures supplemented with AMP
at 25µg/ml were lower than the non-antibiotic control in
9.1mM NaCl in both non-shaken (p = <0.0001) and shaken
(p = <0.0001) cultures. The conjugation frequency was 3.2
times higher than the control (p = <0.0001) in 1mM NaCl
shaken cultures supplemented with 25µg/ml AMP. Shaken
CFX supplemented cultures in 90.1mM NaCl had higher
conjugation frequencies (4.4 times higher) than the controls,
but were not statistically significant (p = 0.04) (Figure 3,
Table 1).
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FIGURE 2 | Conjugation frequencies at 37◦C in the presence of antibiotics, Non-shaken cultures. Blue control cultures (no antibiotics). Red-CFX(25µg/ml),

Orange-AMP(25µg/ml). Black star= not statistically significant relative to control culture of same solution chemistry. See Materials and Methods section for

description of antibiotic abbreviations. Error bars represent standard deviation.

FIGURE 3 | Conjugation frequencies at 37◦C in the presence of antibiotics, Shaken cultures. Blue control cultures (no antibiotics). Red-CFX(25µg/ml),

Orange-AMP(25µg/ml). Black star= not statistically significant relative to control culture of same solution chemistry. See Materials and Methods section for

description of antibiotic abbreviations. Error bars represent standard deviation.

DISCUSSION

The increasing prevalence of ARG in pathogenic bacteria
necessitates that the mechanisms and conditions in which
antibiotic resistance is spread via HGT in bacteria be studied in
more detail. While there has been much written in the literature

in regards to the presence of antibiotics in the environment
increasing rates of HGT, few studies have examined non-growing
cultures. We examined the frequency of conjugation in both
growing and non-growing bacteria cultures and found that in
certain solution chemistries, most notably 9.1mM NaCl, the
frequency of conjugation in non-growing E. coli exceeded that of
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FIGURE 4 | Conjugation frequencies in the presence of sub-inhibitory concentrations of antibiotics at 37◦C, Non-shaken cultures. Blue-Control cultures (no

antibiotics), Red-CFX(0.1µg/ml), Orange-AMP(1µg/ml), Green-KAN(1µg/ml), Purple-GEN(1µg/ml). Black star=not statistically significant relative to control culture of

same solution chemistry. See Materials and Methods section for description of antibiotic abbreviations. Error bars represent standard deviation.

FIGURE 5 | Conjugation frequencies in the presence of sub-inhibitory concentrations of antibiotics at 37◦C, Shaken cultures. Blue-Control cultures (no antibiotics),

Red-CFX(0.1µg/ml), Orange-AMP(1µg/ml), Green-KAN(1µg/ml), Purple-GEN(1µg/ml). Black star=not statistically significant relative to control culture of same

solution chemistry. See Materials and Methods section for description of antibiotic abbreviations. Error bars represent standard deviation.

growing cultures, especially in the presence of CFX at 25µg/ml.
While the results from our experiments are to a large degree
a reflection of the plasmid and bacterial strain we utilized, the
general trends we observed related to solution chemistry and
β-lactam antibiotics likely hold true for other plasmid/bacteria
systems as well. However, additional research is warranted to
confirm that these observations also apply for other non-growing
bacteria and environmental conditions, The experimental setup
we utilized was an optimal scenario for successful conjugation

of pUUH239.2 and E. coli ER1793 since the bacterial strain
is restriction enzyme deficient. It should be noted that the
conjugation frequency for pUUH239.2 in Klebsiella pneumoniae
(the species from which the plasmid was originally isolated) has
been reported to be much higher than that of E. coli (Sandegren
et al., 2012). Though we have not tested, we would expect that the
trends reported in this paper to be similar to that in Klebsiella
pneumoniae and any other bacteria that the plasmid can be
transmitted to via conjugation.

Frontiers in Microbiology | www.frontiersin.org 9 September 2018 | Volume 9 | Article 2122

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Headd and Bradford Conjugation in Non-growing Bacteria

Optimal Physiochemical Conditions
In general, we found that physiochemical parameters that
favored growth enhanced conjugation in both growing and
non-growing cultures. We found that conjugation occurred
most frequently in cultures that were shaken at 37◦C. This
temperature is likely reflective of the optimal growth temperature
for E. coli (and many other human pathogens). Other studies
have also reported varying degrees of increased conjugation
with increasing temperature (Khalil and Gealt, 1987; Fernandez-
Astorga et al., 1992). Other studies have found increased
conjugation in growing bacteria in the exponential phase
(Muela et al., 1994; Händel et al., 2015; Lopatkin et al.,
2016). It is important to note that we harvested our bacteria
during exponential phase prior to re-suspending them in NaCl
solutions. The average time from the beginning of harvesting
to inoculation of cultures at t = 0 was 30–45min during
which time the bacteria were primarily suspended in 1mM
NaCl. Presumably, the bacteria shifted from exponential to
stationary phase during this time, but it is unclear how long
it takes bacteria to make the transition or to what extent this
may have impacted the conjugation results in the non-growing
cultures.

Bacterial cultures are commonly shaken to ensure proper
aeration, nutrient availability, and to prevent aggregation and/or
biofilm formation. Our results clearly demonstrate that shaking
at ∼200 rpm does not prevent donor and recipient cells
from contacting one another or subsequent conjugation from
occurring. Increased aeration via shaking cultures generally
leads to more growth in E. coli cultures and other studies
have reported conjugation in shaken cultures at 200 rpm
(Händel et al., 2015). In addition to aeration, shaken cultures
can have improved access to nutrients and removal of waste
which can lead to higher bacterial concentrations, even in
the absence of oxygenation (Juergensmeyer et al., 2007). In
our study, there was generally more conjugation in shaken
cultures than non-shaken cultures (the non-shaken 9.1mM
culture supplemented with CFX had a higher conjugation
frequency relative to its shaken counterpart, but it was not
statistically significant (p = 0.0276)). Presumably, in non-
growing cultures the primary advantage of shaking could be
oxygenation, but we were unable to obtain oxygen concentrations
for our shaken and non-shaken cultures to verify this assumption
and/or conclude that increased conjugation in shaken cultures
was due to increased oxygenation. We are not aware of
a study examining an association of shaking (or any other
variable) with increased conjugation in non-growing bacterial
cultures.

Influence of Salinity on Conjugation
This study was the first to our knowledge to systematically
investigate the influence of solution salinity (1, 9.1, and 90mM
NaCl) on conjugation in non-growing cultures. We chose to
conduct our experiments over this range of NaCl concentrations
because these salinities spanned the range of unfavorable (low
ionic strength) and favorable (high ionic strength) interaction
conditions for bacteria that are typically employed in studies
examining their fate in the environment (Walker et al., 2004;

Torkzaban et al., 2008; Kim et al., 2009). This observed
influence of solution salinity on conjugation under non-growing
conditions is expected to be related to differences in the strength
of cell-cell interactions and changes in the conformation of cell
surface structures. In particular, interaction energy calculations
for bacteria demonstrate that increasing the ionic strength of
monovalent electrolyte solutions tends to diminish the energy
barrier to cell-cell interaction due to a reduction in themagnitude
of the cell surface charge and compression of the double layer
thickness (Rijnaarts et al., 1999). In addition, the cell surface
structures impart nanoscale roughness features that have a large
influence on the energy barrier height and the strength of cell-
cell interactions (Bradford et al., 2017). The morphology of
surface proteins and cell roughness is expected to change with the
solution ionic strength. In particular, a more open conformation
of surface proteins is expected at a lower ionic strength and in
the absence of divalent cations (Kim et al., 2009). As a result, it
might be more difficult for the pilus to extend freely in a 90mM
NaCl solution. In lower salinity solutions such as 1mMNaCl, the
pilus would be free to extend into solution, but the large energy
barrier would be expected to keep bacteria further apart from one
another, possibly impeding conjugation. In a moderate salinity
solution, such as 9.1mM NaCl, the energy barrier would be less,
allowing bacteria to come closer to one another and the pilus
would be free to extend into the solution and conjugation would
be more likely.

A few authors have reported increased conjugation with
increasing salinity in the presence of growth media (Singleton,
1983, 1984; Hayashi et al., 1988; Beuls et al., 2012). However,
all of these studies examined conjugation at much higher
salinities than we examined. Singleton (1983) reported 2.3
times more transconjugants in 100mM NaCl than in his
control cultures of 50mM phosphate buffer. However, Singleton
diluted the donor-recipient mixture in nutrient broth after
5min of mating in phosphate buffer and then let the culture
sit for another 30min. This would have raised the salinity
considerably (possibly by 85mM NaCl, depending on the exact
formulation of the nutrient broth used) and still allowed the
bacteria to grow and/or conjugate. The LB broth used in our
experiments is approximately 171mM NaCl, by comparison
Singleton’s 100mM culture may have been actually closer to
200mM NaCl. While Singleton’s work does show increased
conjugation with increased salinity, his experiments were more
similar to our experiments conducted in LB than in non-
growing cultures. In LB, the effects of the high salinity could
be masked by the presence of organic matter in the form of
yeast extract which could alter surface charges and interaction
energies allowing for more conjugation to occur than in pure
NaCl solutions. Neither Singleton (1983) nor Hayashi et al.
(1988) conducted experiments between 0 and 80mM NaCl,
however both reported declines in conjugation frequency above
approximately 200mM NaCl, suggesting an optimal salinity for
conjugation. Beuls et al. (2012) attributed increased conjugation
at higher salinities (∼855mM NaCl) to B. thuringiensis forming
chains and thus having a more stable contact with neighboring
cells. However, our E. coli did not form chains at the examined
salinities.
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Influence of Antibiotics on Conjugation
We tested different antibiotics to see if conjugation in the
presence of antibiotics was a general response or specific
to the antibiotic used. We found no conjugation in the
presence of selective concentrations of the aminoglycosides
GEN or KAN (25 and 50µg/ml, respectively) and similar or
lower conjugation frequencies to controls in LB cultures at
subinhibitory concentrations (GEN and KAN at 1µg/ml). These
data suggests that exposure to antibiotics in general will not
induce HGT via conjugation. In the plasmid/bacteria system we
utilized it tended to decrease conjugation frequencies. Only in
the presence of β-lactam antibiotics did conjugation increase.
As noted above, conjugation in the presence of CFX and AMP
yielded opposing results. The presence of AMP at 25µg/ml
increased conjugation frequencies relative to the non-antibiotic
controls in LB (non-shaken cultures) and 1mM NaCl (shaken)
cultures, while the presence of CFX at 25µg/ml increased
conjugation frequencies in cultures of 9.1mM non-shaken
cultures) and 90.1mM NaCl (shaken cultures). Higher and
lower (subinhibitory) concentrations did not result in increased
conjugation. Other studies have reported less conjugation at high
concentration of antibiotics (Licht et al., 2003; Händel et al.,
2015) and at subinhibitory concentrations as well (Lopatkin
et al., 2016). Our results suggest that specific antibiotics, in this
case β-lactams, can promote HGT via conjugation under certain
conditions.

β-lactam antibiotics inhibit cell wall synthesis by binding
to penicillin binding proteins (PBPs) which are transpeptidases
responsible for cross-linking peptidoglycan fragments in the
cell wall (Zeng and Lin, 2013). As a result, β-lactams are only
effective against growing bacteria. AMP and CFX selectively
bind to different PBPs. AMP targets the PBPs for peptidoglycan
hydrolysis: PBPs 4, 7, and 8 (PBP8 is a degradation product of
PBP7) (Henderson et al., 1994; Kocaoglu and Carlson, 2015),
while CFX is selective for PBP 3 (Kocaoglu and Carlson, 2015),
which functions in peptidoglycan synthesis. In growing cells,
PBP3 is one of about a dozen proteins that form the septal
ring, which is responsible for forming the septum in dividing
bacteria (Weiss et al., 1999). PBP3 only binds to the septal ring
after the ring forms and after at least three other proteins have
bound to the ring (Weiss et al., 1999; Mercer and Weiss, 2002;
Piette et al., 2004). When CFX binds to PBP3 the septum fails to
form properly and cells continue to elongate into a filamentous
morphology rather than divide. It does this regardless of whether
the cell possesses resistance to β-lactams or not (Kjeldsen et al.,
2015b). Visual analysis of donor (ER1793_mTag/pUUH239.2)
and recipient (ER1793_SYFP2-cat) bacteria showed that growing
cultures supplemented with 25µg/ml CFX took on a filamentous
morphology, while non-growing cells did not. This observation
is consistent with CFX preferentially binding to PBP3 in growing
cultures. By contrast, PBPs 4, 7, and 8 are reported to be
loosely associated with the cytoplasmicmembrane (Sauvage et al.,
2008). Visual analysis of donor and recipient bacteria showed
that growing cultures supplemented with 25µg/ml AMP did
not take on a filamentous morphology (nor did any of the
non-growing cultures, regardless of exposure to CFX or AMP)
and were visually indistinguishable from cells not supplemented

with antibiotics. LB cultures supplemented with CFX (25µg/ml)
formed less transconjugants than the LB controls or cultures
supplemented with AMP (25µg/ml) in both non-shaken and
shaken cultures (as opposed to having no effect like the shaken
AMP culture). It is intriguing to suggest that the morphological
differences associated with growing cultures in CFX compared
to AMP could have impacted the ability of CFX exposed cells
to conjugate. But we can provide no evidence for this assertion
at this time other than the observation that control LB cultures
and LB+AMP cultures with rod shaped bacteria (as opposed to
filamentous shape in CFX) had higher conjugation frequencies
(Figures 2, 3).

In order for β-lactams to reach their target PBPs, they typically
most avoid being hydrolyzed by β-lactamases. Numerous studies
have reported the induction of β-lactamases in growing cells by
fragments of the cell wall, inactivation of PBPs, and antibiotics
(Minami et al., 1980; Moya et al., 2009; Zeng and Lin, 2013;
Kjeldsen et al., 2015b). In growing cells, we would expect some
β-lactamases to be produced, either the chromosomal ampC
and/or the pUUH239.2 encoded blaCTX-M-15. The promoter
for the blaCTX-M-15 gene which codes for the production β-
lactamase on pUUH239.2 is ISEcp1, which has been shown to
be inducible by CFX, particularly in growing cells (Kjeldsen
et al., 2015b). However, the induction of the plasmid encoded
blaCTX-M-1 by CFX was found to produce lower amounts of
β-lactamase when the gene was on a plasmid than when it was
on the chromosome (Kjeldsen et al., 2015a). In growing cells
we hypothesize that CFX binds to PBP3 and/or is hydrolyzed
by β-lactamases to such an extent that CFX does not make it
into the cytoplasm at high enough concentrations to induce
conjugation. AMP also would be expected to be bind to its
respective PBPs, but may not induce as much β-lactamase activity
in E. coli as it is unclear whether AMP can induce blaCTX-M-
15 on pUUH239.2 and chromosomal induction is unlikely given
the lack of an ampR gene in E. coli (Honoré et al., 1986; Zeng
and Lin, 2013). Thus, more AMP might make it to the cytoplasm
where it could interact with chromosome or plasmid and induce
conjugation in growing cells. In non-growing cells it is unclear
whether β-lactamases would be produced at high enough levels
to significantly hydrolyze AMP or CFX. We would expect that
induction β-lactamases in non-growing cells to be less than that
of growing cells due to reduced amounts of cell wall biosynthesis
and a general reduction in the production of β-lactamases in non-
growing E. coli relative to growing E. coli (Jaurin and Normark,
1979; Jaurin et al., 1981). This could allow both AMP and CFX
to penetrate further into the cell in non-growing cultures than in
growing cultures.

It is unclear what the fate of AMP and CFX is in non-growing
cells. Studies examining the binding of β-lactams to PBPs tend to
be conducted on non-growing cells (either extracted membranes
or cells suspended in buffer), suggesting that β-lactams will bind
to their respective PBPs if they are present. AMP has been
reported to diffuse through the outer membrane via porins in
E. coli at nearly double the rate of CFX (Nikaido et al., 1983;
Yoshimura and Nikaido, 1985) and is more hydrophobic than
CFX (Yoshimura and Nikaido, 1985), which might suggest that
AMP would be more likely to penetrate membranes than CFX.
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But both (Kjeldsen et al., 2015a) and Moller et al. (2017) were
able to induce expression of CTX-M-1 on a plasmid in growing
bacteria with CFX, suggesting that CFX is capable of passing
through the membranes and into the cytoplasm. In non-growing
cells, we hypothesize that CFX does not bind to PBP3 in the
plasma membrane because PBP3 is either not produced at all
or produced at much lower levels in non-growing cells. Studies
have found that bacteria in stationary phase produce much less
PBPs than those in exponential phase (Mendelman and Chaffin,
1985; Stevens et al., 1993). We hypothesize that in non-growing
cultures, CFX is making it into the cytoplasm due to a lack of
PBP3 in the cell and decreased production of β-lactamases. It is
unclear to us whether AMP enters the cytoplasm (and at what
concentrations) or if much of it still binds to PBPs 4, 7, and 8 in
the cell membranes.

Beaber et al. (2004) reported that the SOS response can
promote HGT and Maiques et al. (2006) reported that β-lactam
antibiotics could induce the SOS response in S. aureus leading to
an increase in HGT. Recently, Moller et al. (2017) reported that
Tra proteins (transfer proteins) on a plasmid containing CTX-
M-1 were upregulated in the presence of high concentrations
of CFX, but not low concentrations of CFX. The mechanism
by which this occurs is unknown, but it did not make a
difference whether the CTX-M-1 gene was on a plasmid or on the
chromosome (Moller et al., 2017). This suggests that CFX in some
way induces tra genes to increase conjugation. We hypothesize
that in non-growing bacteria, CFX is able to diffuse into the
cytoplasm to a greater extent than AMP and interact with the
plasmid in such a way (possibly the blaCTX-M-15) to induce
conjugation. It is unclear if AMP could induce the same reaction,
but our results suggest it may not be as effective.

While we only examined a few variables associated with
conjugation in this study, the results suggests that conjugation
with pUUH239.2 only occurs over a relatively narrow range
of environmental conditions, most notably temperature. While
conjugation is relatively high in growing cultures, the presence
of antibiotics did not generally increase conjugation frequency

in growing cultures. In non-growing cells, the optimal salinity
for conjugation was 9.1mM NaCl. Thus, we would expect
environments that could maintain a temperature of around
37◦C and promote growth such as animal guts, compost heaps,
manure piles and other nutrient rich environments to be ideal
for pUUH239.2, especially in the absence of antibiotics. In non-
growing cultures, salinity, and antibiotics become a factor in
addition to temperature.

Environments such as thermal waters, some soils and
other nutrient depleted environments that can reach a 37◦C
temperature could enhance transfer of pUUH239.2, especially in
the presence of higher concentrations (∼25µg/ml) of antibiotics
such as CFX. While our data suggests there is an optimal salinity
range for conjugation in non-growing cultures with pUUH239.2,
it is unclear how large the range is, but the mechanisms that
we envision to govern this process would not be expected to be
limited to pUUH239.2 and associated hosts. Further research is
needed to constrain the range of conditions in which conjugation
in non-growing bacteria can occur. Our results also suggests that
HGT of ARG in non-growing cells might be as important a factor
in the spread of ARG as in growing bacteria.
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