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Signal transducer and activator of transcription 3 (STAT3) is a transcription factor
(TF) that regulates a variety of biological processes, including a key role in mediating
mitochondrial metabolism. It has been shown that STAT3 performs this function by
translocating in minute amounts into mitochondria and interacting with mitochondrial
proteins and genome. However, whether STAT3 localizes in mitochondria is still up for
debate. To decipher the role of mitochondrial STAT3 requires a detailed understanding
of its cellular localization. Using Percoll density gradient centrifugation, we surprisingly
found that STAT3 is not located in the mitochondrial fraction, but instead, in the
mitochondria-associated endoplasmic reticulum membrane (MAM) fraction. This was
confirmed by sub-diffraction image analysis of labeled mitochondria in embryonic
astrocytes. Also, we find that other TFs that have been previously found to localize in
mitochondria are also found instead in the MAM fraction. Our results suggest that STAT3
and other transcriptional factors are, contrary to prior studies, consolidated specifically
at MAMs, and further efforts to understand mitochondrial STAT3 function must
take into consideration this localization, as the associated functional consequences
offer a different interpretation to the questions of STAT3 trafficking and signaling in
the mitochondria.

Keywords: STAT3, MAM, transcription factors, mitochondrial localization, ER

INTRODUCTION

STAT3 is a TF encoded by the Stat3 gene in mouse. STAT3 has been found to be crucial to regulating
a variety of biological processes such as embryonic development, immunogenic response, and
carcinogenesis (Levy and Darnell, 2002). These processes occur through ligand-mediated activation

Abbreviations: ABCA1, ATP-binding cassette transporter; ACSL4, long chain fatty acyl-CoA synthetase 4; AKT, protein
kinase B; AMPK, AMP-activated protein kinase; CTNNB1, catenin beta 1; CypD, cyclophilin D; ER, endoplasmic reticulum;
GAPDH, glyceraldehyde 3-phosphate dehydrogenase; GRP78, glucose-regulated protein 78; HSP60, heat shock protein 60;
IP3R, inositol trisphosphate receptor; MAM, mitochondria-associated endoplasmic reticulum membrane; MAPK, mitogen-
activated protein kinase; mTOR, mammalian target of rapamycin; NDUFA13, NADH:ubiquinone oxidoreductase subunit
A13; RELA, NF-κB p65 subunit; STAT3, signal transducer and activator of transcription 3; TF, transcription factor; VDACs,
voltage-dependent anion channels.
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of STAT3 such as through cytokines and growth factors.
Structurally, STAT3 oligomerizes into homo- or hetero-dimers,
translocating into the nucleus where it acts as a transcription
activator in this form (Zhong et al., 1994; Levy and Darnell, 2002;
Stark and Darnell, 2012).

Over the last decade, it has been reported that STAT3 can
translocate into mitochondria, where it promotes mitochondrial
respiration by interacting with various mitochondrial proteins,
as well as the mitochondrial genome (Wegrzyn et al., 2009;
Macias et al., 2014; Carbognin et al., 2016; Xu et al.,
2016; Meier et al., 2017). Despite these findings, whether
STAT3 localizes in mitochondria is still up for debate, and
underlies further questions on how STAT3 can regulate
mitochondrial metabolism.

In this report, we provide evidence that STAT3 does not
exist in mitochondria but instead, localizes in MAM in the
mouse brain, lung, and liver. MAM is a cellular structure
formed by non-covalent protein interactions between the ER and
mitochondria, which has broad implications in mitochondrial
bioenergetics and reactive oxygen species production (Theurey
and Rieusset, 2017; Rieusset, 2018). This suggests that STAT3
might regulate mitochondrial metabolism via MAM function. In
addition, we show that other transcriptional factors that were
previously reported to be in mitochondria only exist within
the MAM fraction.

RESULTS

STAT3 Does Not Localize to Pure
Mitochondria
To determine the localization of STAT3 in mitochondria,
we first sought to isolate mitochondria from primary neural
progenitor cells by sucrose gradient centrifugation (Figure 1A).
STAT3 protein was detected in the mitochondria fraction,
consistent with previous reports (Figure 1B). However, the
presence of ER markers (GRP78 and ABCA1) and cytosol
markers (GAPDH) suggests contamination by the MAM
fraction (Figure 1B).

Percoll gradient centrifugation has been shown to be able
to isolate pure mitochondria from those attached to the MAM
(Vance, 1990). Thus, we attempted to use this method to
isolate pure mitochondria fractions in different mouse tissues
including the brain, lung, and liver (Figure 1C). Western blot
results showed that the pure mitochondrial fraction contained
no detectable STAT3 protein in all three tissues, suggesting
that STAT3 does not exist in mitochondria. The absence of
ER and cytosol markers confirmed the successful isolation of
pure mitochondria, while the existence of mitochondrial outer
membrane protein VDAC suggested the integrity of the pure
mitochondria (Figure 1D).

Instead, STAT3 protein was found in the fractions containing
MAM, which was confirmed by the immunoblot of mitochondria
marker, ER marker as well as the MAM enriched protein ACSL4
(Figure 1D). ACSL4 showed different subcellular localization
in different tissues. In brain it was also found in the cytosol
fraction (which also contains membrane compartment such as

ER and plasma membrane), while in lung and liver it also
localized in the pure mitochondria fraction, similar to the
fractionation result of previous publications (Sala-Vila et al.,
2016; Radif et al., 2018).

Mitochondria-associated endoplasmic reticulum membrane
isolated from brain could be contaminated by synaptosome.
Immunoblot of synaptosome marker synaptophysin (SYP)
showed that the MAM fraction might be contaminated by
synaptosomes. That being said, the localization of STAT3 in the
MAM fraction could still be confirmed in other tissues.

Immunofluorescence Confirmed the
Absence of STAT3 in Mitochondria
To further illustrate that STAT3 does not exist in mitochondria,
we performed immunofluorescence studies on primary
astrocytes. Using sub-diffraction image analysis (Zeiss Airyscan),
we found that STAT3 did not colocalize with the mitochondrial
marker HSP60 (Figure 2A). Small amounts of STAT3 were
found to localize near mitochondria, which cannot be resolved
using normal confocal microscopy methods (Figure 2A′,A′′). In
contrast, STAT3 was found to colocalize with the ER (Figure 2B)
as well as the MAM enrich protein ACSL4 (Figure 2C). MAM
also tether to other membrane organelles such as lysosome
and autophagosome (Hamasaki et al., 2013; Atakpa et al.,
2018). Thus, we went on to examine if STAT3 also exists
within lysosome and autophagosome. Results showed that
STAT3 colocalized neither with lysosomal-associated membrane
protein 1 (LAMP1), a lysosome marker, nor with microtubule
associated protein 1 light chain 3 beta (LC3B), an autophagosome
marker (Figures 2D,E). Quantification of colocalization using
the Coloc 2 Image J plugin also showed that the correlation
coefficient between STAT3 and ER, STAT3 and ACSL4 was
higher than that between STAT3 and HSP60, LAMP1, and
LC3B. The latter was similar to that of the negative control
(DAPI and HSP60) (Figure 2F). Together, immunofluorescence
results confirm the absence of STAT3 in mitochondria and its
existence in MAM.

Other Methods to Examine STAT3
Localization in Mitochondria Failed to
Completely Remove MAM
In prior work done by other groups, several pure mitochondria
isolation methods have been used to evaluate the localization of
STAT3 in mitochondria, including trypsinization and sonication.
We sought to examine whether these methods can reliably
dissociate the MAM fractions from the pure mitochondria
fractions, and analyze whether STAT3 localizes with ER/cytosol
markers in these fractions.

Sonication methods resulted in the disruption of not
only MAM but also mitochondria, as shown by a decreased
level of both markers in the pellet (Figure 3A). In contrast,
trypsinization had little deleterious effects on mitochondria
integrity, but only achieved partial removal of MAM despite
long incubations with enzyme of up to 60 min (Figure 3B).
In separate studies, it has been reported that high salt
washes of mitochondria followed by trypsinization can
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FIGURE 1 | Percoll cell fractionation demonstrates that STAT3 does not exist in the mitochondria. (A) Experimental flow-chat for cell fractionation. (B) Western blots
of cell fractionation. STAT3 was mainly found in Cytosol (fraction 1–5) and in crude mitochondria (fraction 13–17). (C) Experimental flow-chart of Percoll density
centrifugation for MAM and pure mitochondria separation. Parentheses highlight fractions only obtained from liver. (D) Western blot of Percoll density centrifugation
fractionation of brain, lung and liver. Pure mitochondria do not contain STAT3. The purity of mitochondria was confirmed by the absence of ER/PM marker. PM,
plasma membrane; Mito.C, crude mitochondrial fraction; Mito.P, pure mitochondrial fraction; Mito.P.L., light pure mitochondria; MAM.H, heavy MAM; MAM.L, light
MAM; Cytosol.F, cytosol fraction that contains fat; NDUFA9/13, NADH:ubiquinone oxidoreductase subunit A9/13; FLOT1, Flotillin-1; PHB1, Prohibitin 1.

disrupt protein interactions and dissociate attached actin
filaments (Boldogh et al., 1998). We attempted to examine
if this method was able to remove the attached MAM from
mitochondria. The results demonstrated that high salt washes
combined with trypsinization was still unable to obtain pure
mitochondria (Figure 3C). Though STAT3 remained in the
mitochondria fractions obtained by all these methods, this may
be explained by the presence of MAM fraction remnants, as
indicated by the contamination of MAM and cytosol markers
(Figures 3A–C).

In conclusion, the aforementioned methods fail to perfectly
isolate pure mitochondria, and thus are unable to confirm
the exclusive localization of STAT3 to mitochondria. At the
same time, these results demonstrate that mitochondria-ER
contacts may be resistant to sonication, trypsinization, and
high salt washing.

STAT3 Does Not Colocalize With
Complex I, and Its Level Correlates With
MAM Level
While we have demonstrated that STAT3 does not exist within
mitochondria, other studies have shown that mitochondrial
STAT3 binds to complex I or to mitochondrial DNA to
modify mitochondrial metabolism (Wegrzyn et al., 2009;
Macias et al., 2014). We attempted to separate mitochondrial
protein complexes via sucrose density centrifugation. This
result demonstrates that STAT3 does not exist within the
complex I fraction (lanes 7, 8; Figure 3D). Meanwhile,
we conducted co-immunoprecipitation assay to pull down
endogenous STAT3 and a complex I subunit NDUFA13
from digitonin solubilized crude mitochondria. Pull down
of STAT3 did not result in co-precipitation of complex I
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FIGURE 2 | Immunofluorescence of primary astrocytes demonstrate that STAT3 does not colocalize with mitochondria. (A) Representative sub-diffraction
maximum-intensity-projection image of immunofluorescence labeling of STAT3 and HSP60 in primary astrocytes (Scale bar: 10 um). (A′) The orthogonal views of the
highlighted areas (Scale bar: 1 um). (A′ ′) Profiling of STAT3 and HSP60 signal intensity along green line in (A′). (B) Representative image of STAT3 and ER-dsRed
(ER) co-labeling (Scale bar: 10 um). (B′) The orthogonal views of the highlighted areas (Scale bar: 1 um). (B′ ′) Profiling of STAT3 and ER signal intensity along green
line in (B′). (C) Representative image of STAT3 and ACSL4 co-staining (Scale bar: 10 um). (C′) The orthogonal views of the highlighted areas (Scale bar: 1 um).
(C′ ′) Profiling of STAT3 and ACSL4 signal intensity along green line in (C′). (D) Representative image of STAT3 and LAMP1 co-staining (Scale bar: 10 um). (D′) The
orthogonal views of the highlighted areas (Scale bar: 1 um). (D′ ′) Profiling of STAT3 and LAMP1 signal intensity along green line in (D′). (E) Representative image of
STAT3 and LC3B co-staining (Scale bar: 10 um). (E′) The orthogonal views of the highlighted areas (Scale bar: 1 um). (E′ ′) Profiling of STAT3 and LC3B signal
intensity along green line in (E′). (F) Spearman correlation coefficients calculated by Coloc2 (N = 2, n ≥ 2). Statistic test was conducted to evaluate the difference
between each group and the negative control (HSP60 vs. DAPI) ****p < 0.0001, ***p < 0.001, **p < 0.005, n.s., not significant; MITO, Mitotracker DeepRed.

proteins (NDUFA9 and NDUFA13). Similarly, pull down
of NDUFA13 achieved co-precipitation of NDUFA9, but
not STAT3, suggesting the lack of interaction between
STAT3 and complex I proteins (Figure 3E). In addition,
our ChIP-qPCR experiments demonstrate that STAT3 does
not bind to mitochondrial DNA in mouse embryonic stem
cells (Figure 3F).

Previous studies have found that STAT3 levels in crude
mitochondria increase after serum reintroduction following
serum starvation (Xu et al., 2016). We hypothesized that this
may result from increased MAM levels (Theurey et al., 2016).
We performed serum reintroduction studies on Neuro2A cells.
We found that reintroduction of serum increased the amount
of STAT3 in the mitochondria fraction at as early as 30 min
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FIGURE 3 | Re-examining the existence and function of ‘mitochondrial STAT3.’ (A) Purification of mitochondria by sonication. (B) Purification of mitochondria by
trypsinization. (C) Purification of mitochondria by washing with high concentration of salt combined with trypsinization. GRP78 was used as the ER marker; ATP5A,
NDUFA9, NDUFA13, and VDAC were used as the mitochondrial marker; GAPDH was used as the cytosolic marker. (D) Sucrose density centrifuge of
digitonin-solubilized mitochondria followed by Western blot analysis of STAT3 and mitochondrial complexes protein. (E) Co-immunoprecipitation experiment in
digitonin-solubilized crude mitochondria. (F) ChIP-qPCR detection of STAT3-binding on mitochondrial DNA in mouse embryonic stem cells. (G) Serum reintroduction
experiment in Neuro2A cells. (H) Quantification of Western blot results (G) in three independent experiments. *p < 0.05, n.s. not significant; Ctl, control (washed with
isotonic buffer); SW, salt-washed; Tryp, Trypsinized; CE, control elute; SE, salt-washed elute; Cx I, complex I; Cx II, complex II; Cx V, complex V; Nuc, nuclear
fraction; Mito.C., crude mitochondrial fraction; SR, serum reintroduction.

(Figures 3G,H), accompanied by an increased level of ER marker
GRP78 in the same fraction (Figures 3G,H), suggesting that
increased STAT3 levels may be due to the increase of MAM in
the crude mitochondrial fraction.

Other TFs or Signaling Proteins Are
Present in MAM, but Not in Mitochondria
In addition to STAT3, a number of other TFs or signaling
proteins have been previously found to localize in mitochondria

where they are involved in regulating mitochondrial function,
including STAT1 (Boengler et al., 2010; Bourke et al., 2013),
mitogen-activated protein kinase 1/3 (MAPK1/3) (Poderoso
et al., 2008; Galli et al., 2009), MAPK14 (Jang and Javadov, 2014;
Yamauchi et al., 2014), AMPK (Zhao et al., 2019), AKT (Bijur
and Jope, 2003; Ebner et al., 2017), mTOR (Ebner et al., 2017),
as well as RELA (Cogswell et al., 2003; Johnson et al., 2011). We
wondered whether, like STAT3, they actually localize in MAM
instead of within mitochondria. We examined their localization
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FIGURE 4 | Other TFs or signaling proteins are present in MAM but not in
mitochondria. Western blot analysis of the Percoll density centrifugation
fractions from brain showed that transcription factors including STAT1,
MAPKs, AMPK, AKT, mTOR, and RELA could only be found in the MAM
fractions but not in pure mitochondria. Mito.C., crude mitochondrial fraction;
Mito.P., pure mitochondrial fraction; MAM.H, heavy MAM; MAM.L, light MAM.

in the pure mitochondrial fraction using Western blotting. The
results demonstrate that none of these proteins were detectable
in the pure mitochondria fraction (Figure 4). CTNNB1, which
regulates mitochondrial metabolism but has never been found in
mitochondria (Bernkopf and Behrens, 2018), was also found in
the MAM fraction, suggesting a possible mechanism for MAM to
regulate mitochondrial metabolism (Figures 4).

DISCUSSION

STAT3 has been shown to regulate mitochondrial metabolism
by translocating to mitochondria (Wegrzyn et al., 2009; Macias
et al., 2014). Initially, our study intended to investigate the
functional mechanism of STAT3 in mitochondria. However, our
work demonstrates that STAT3, along with some other nuclear
TFs, are not present in the mitochondria, but instead are found
in MAM. This suggests that STAT3 may regulate mitochondrial
function via other mechanisms yet unknown.

Mitochondria-associated endoplasmic reticulum membrane
plays an important role in mitochondrial metabolism, calcium
signaling, lipid transport, and dynamics (Phillips and Voeltz,
2016; Theurey and Rieusset, 2017; Lee and Min, 2018; Rieusset,
2018). It has been reported that STAT3 can be found in
the ER compartment, where it interacts with the IP3R and
controls calcium efflux from the ER (Avalle et al., 2019).

IR3R has also been found to form the MAM contact site by
interacting with VDAC on the mitochondrial outer membrane
(Vance, 2014). Thus, it is possible that MAM-STAT3 may
regulate mitochondrial metabolism through modulating calcium
transport. However, it is also possible that TFs and other
nuclear proteins are only transported to the MAM fraction for
degradation (Ma et al., 2017).

Several questions surrounding the “mitochondria-STAT3”
theory have remained unanswered in the past decade. Firstly,
what is the mechanism of the mitochondrial-import of STAT3
and other nuclear TFs? Protein import into mitochondria
is restricted by the impermeable double membrane of
mitochondria, and only proteins with mitochondrial signaling
peptides can be imported into mitochondria through complex
molecular machinery during translation (Harbauer et al., 2014;
Wiedemann and Pfanner, 2017). However, little evidence
exists that uncovers the mechanism of STAT3 import. It
has been suggested that NDUFA13 is required for STAT3
import to mitochondria (Tammineni et al., 2013), yet the key
mitochondrial channel responsible for this action has not been
identified (Szczepanek et al., 2012). Until further evidence is
uncovered, mitochondrial import of STAT3 is not well-supported
by experimental results.

Secondly, how does “mitochondria-STAT3” regulate
mitochondrial metabolism? Several mechanisms have been
proposed, including its interaction with respiratory complex I/II,
CypD and pyruvate dehydrogenase, as well as its regulation of
the mitochondrial transcription (Wegrzyn et al., 2009; Macias
et al., 2014; Carbognin et al., 2016; Xu et al., 2016; Meier et al.,
2017). However, even if STAT3 was localized in mitochondria,
it is unlikely to influence mitochondrial metabolism through
direct interaction with mitochondrial proteins or genome,
considering the stoichiometric difference between STAT3 (∼102

molecules/cell) and mitochondrial protein (6 × 106 molecules
of complex I or II/cell) or mitochondrial genome (1,000∼5,000
copies/cell) (Bogenhagen and Clayton, 1974; Shmookler Reis
and Goldstein, 1983; Phillips et al., 2010). Proposed mechanisms
of STAT3 activity by other groups are largely based on the
overexpression strategies of “mito-STAT3” (STAT3 fused with
a mitochondrial signaling peptide at the N-terminus) which
employs the assumption that STAT3 localizes to mitochondria
(Wegrzyn et al., 2009; Xu et al., 2016; Meier et al., 2017). These
results may prove to be artificial or artifactual if this assumption
proves to be false.

In summary, our results suggest that STAT3, along with
other TFs or signaling proteins with previously described
mitochondrial localization, actually localize in MAM, contrary
to prior reports. Extra attention must be paid to the localization
of these factors in the future due to the inherent subjectivity of
cell fractionation.

MATERIALS AND METHODS

Animal
Wild type C57BL/6j mice were euthanized by CO2 overdose
before dissection and tissues or embryos collection. All animals
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used in the study were maintained in the Specific-pathogen-
free animal facility. All procedures were performed under the
approval of the Sun Yat-sen University Institutional Animal Care
and Use Committee.

Cell Culture
Primary neural progenitors were isolated from embryonic Day
(E) 14 mouse embryos and cultured in serum-free medium
[Dulbecco’s Modified Eagle Medium/Nutrient Mixture F-12
(DMEM/F12)] with B27 supplement and epidermal growth
factor (EGF)/fibroblast growth factor (FGF). Astrocytes were
isolated from E15 embryos and were cultured in DMEM
with 10% FBS. Mouse embryonic stem cells were maintained
in DMEM supplemented with 15% FBS, GlutaMax, NEAA,
beta-mercaptoethanol and LIF. Neuro2A cells were cultured
and passaged in DMEM with 10% FBS. Serum reintroduction
experiments were performed on Neuro2A cells by subjecting cells
to serum-free culture for 6 h, followed by serum reintroduction at
various time points prior to collection.

Cell Fractionation by Sucrose Density
Centrifugation
Cells cultured in a 10-cm dish were scraped down in 0.5 ml
isotonic buffer (5 mM HEPES, 250 mM sucrose, 0.1 mM EDTA)
and transferred to an Eppendorf tube. The dishes were then
washed with 0.5 ml isotonic buffer, which was then pooled
together. Cells were homogenized by repeated passes through a
25-gauge needle attached to a 1-ml syringe 15 times. 100 µl of
the homogenate was saved as the whole cell lysate control. The
remaining homogenate was centrifuged at 750 × g for 5 min
to remove intact cells and nucleus. The cytoplasm was collected
from the supernatant, and 100 µl was saved as control. The
cytoplasmic fraction was then layered on a sucrose gradient (7 ml
1.0 M sucrose, 3 ml 1.5 M sucrose, each contained 5 mM HEPES
and 0.1 mM EDTA) in a 14 ml ultracentrifugation tube. The tubes
were then subjected to ultracentrifugation in a SW40Ti rotor at
28,000 rpm for 4 h. The resulting gradient was fractionated and
subjected to Western blot analysis.

Isolation of the Pure Mitochondria and
MAM Fractions by Percoll Density
Centrifugation
The isolation of the pure mitochondria and MAM fractions
from mouse tissue was performed as previously described with
slight modification (Wieckowski et al., 2009; Schreiner and
Ankarcrona, 2017). The same procedure was applied to all three
tissues (brain, liver, muscle). Tissues from one mouse were
used in a single experiment. Briefly, tissues were dissected from
euthanized mice, followed by homogenization. Homogenates
were then centrifuged at 750 × g for 5 min to remove unbroken
cells and nucleus. An aliquot of the cytoplasmic fraction collected
from the supernatant was then centrifuged at 10,000× g for 5 min
to obtain the crude mitochondria fraction (Mito.C).

The rest of the cytoplasmic fraction was layered on 10 ml 30%
Percoll buffer in a 14-ml ultracentrifugation tube and centrifuged
at 96,000 × g for 30 min using SW-40Ti rotor (Beckman). The

resulting gradient was confirmed to contain two yellow/white
bands. The top band (MAM fraction) and the bottom band (pure
mitochondria) were separately collected. The Cytosol fraction
was collected from the clear layer above the top band. In the
liver fractionation experiment, an extra cytosol layer rich in fat
was also collected (Cytosol.F). The cytosol fractions collected in
1.5-ml tube were then centrifuged at 10,000 × g for 10 min to
remove potential MAM contamination.

To remove excess Percoll and further purify the fractions,
both mitochondrial and MAM fractions were diluted with
12 ml mitochondria resuspension buffer (MRB) in 14-ml
ultracentrifugation tubes. The mitochondrial fraction was
centrifuged at 6,000 × g for 15 min, the pellet was collected
as pure mitochondria (Mito.P). Subsequently the supernatant
was centrifuged at 100,000 × g for 60 min, the pellet was
then collected as ‘light’ pure mitochondria (Mito.P.L); this
fraction might represent smaller, lighter mitochondria, and
could be contaminated with MAM. Noted that only from
the liver tissue could we obtain the visible Mito.P.L fraction.
Meanwhile, the MAM fraction was centrifuged at 6,000 × g
for 15 min, the pellet was collected as the ‘heavy’ MAM
(MAM.H), which might contain less ER and is therefore
heavier. The supernatant was centrifuged at 100,000 × g for
60 min and the pellet was collected as the MAM fraction.
All the pellets (Mito.P/MAM fractions) were collected in 1 ml
MRB and transfer to 1.5-ml tube, followed by centrifugation
at 10,000 × g for 10 min. The supernatants were removed
and the pellets were resuspended again with MRB. However,
after centrifugation of the liver MAM fraction, the supernatant
remained cloudy. This fraction was also collected as ‘light’ MAM
fraction (MAM.L).

The protein concentration from each samples was measured
by the Bradford assay. For Western blot analyses, the same
amount of protein was loaded for all samples except the
cytoplasmic fraction: it was loaded at five times the amount of
the other fractions.

Purification of Mitochondria by
Sonication, Trypsinization and Washing
With High Concentration of Salt
The crude mitochondria were obtained from mouse brain as
described above. Mitochondria from one mouse brain was used
in each experiment.

To purify mitochondria by sonication, the crude mitochondria
were subjected to sonication by the Scientz08-II sonicator
at 50% power for 0 min, 1 min, 3 min, 6 min, 10 min,
and 15 min, respectively. The resulting suspensions were
centrifuged at 10,000 × g for 5 min. The pellet and supernatant
were collected separately. The pellets were washed once and
resuspended in MRB.

To purify mitochondria by trypsinization, 2 µg/ml trypsin was
added to crude mitochondrial fractions. The trypsinization was
stopped at 2 min, 5 min, 10 min, 20 min, 40 min, and 60 min,
respectively by FBS addition (same volume). The resulting
suspensions were centrifuged at 10,000 × g for 5 min and the
pellets were collected and washed once and resuspended in MRB.
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To purify mitochondria by washing with high concentration
of salt, the crude mitochondrial fraction was incubated
in MRB supplemented with 1 M KCl and 2 mM MgCl2
for 15 min on ice, and centrifuged at 10,000 × g for
5 min. The salt-washed mitochondria were recovered
in the pellet, while the eluted protein was recovered in
the supernatant. Subsequently, salt-washed mitochondria
were incubated in 2% trypsin for 30 min. Mitochondria
were then collected by centrifugation, washed once and
resuspended in MRB.

Mitochondrial Complexes Sucrose
Density Centrifugation
The mitochondrial fractionation protocol was adopted
from Shinzawa-Itoh et al. (2016). Mitochondria from
one mouse brain was used in one experiment. The
crude mitochondria were isolated and incubated with 2%
digitonin (detergent:protein = 4:1) on ice for 30 min. The
sample was then centrifuged at 65,000 × g for 10 min
to remove the insoluble fractions. The supernatant was
then loaded onto a sucrose gradient (1.3 M, 1.4 M, 1.5
M, 1.55 M, 1.6 M), and then centrifuged at 105,000 × g
for 24 h. The resulting gradient was then fractionated
from top to bottom.

Co-immunoprecipitation
Crude mitochondria were solubilized by incubation of 2%
digitonin (detergent:protein = 4:1) on ice for 30 min, which was
then diluted five times with MRB. The Protein A/G beads (SCBT)
were incubated on ice for 30 min with STAT3 antibody
(SCBT), NDUFA13 antibody (Invitrogen) and GFP antibody
(SCBT), respectively, then washed once with 1 ml MRB. The
solubilized mitochondria were then added to the antibody-coated
beads and incubated overnight at 4◦C. The beads were then
collected by centrifugation at 100 × g for 1 min, washed for
four times with MRB, then boiled in SDS sample buffer for
Western blot analysis.

ChIP-qPCR
Mouse embryonic stem cells were crosslinked with formaldehyde
at a final concentration of 1% for 10 min followed by quenching
with glycine. Chromatin extracts were fragmented by sonication
and pre-cleared with protein G Dynabeads, then subsequently
precipitated with anti-STAT3 antibody (Santa Cruz), anti-p65
antibody (Santa Cruz), or normal rabbit IgG (Santa Cruz)
overnight at 4◦C. After washing and elution, crosslink reversal
was done by incubating at 65◦C for 8 h. The eluted DNA
was purified and analyzed by qPCR with primers specific
to the predicted STAT3 binding site. qPCR experiment
was carried out using SYBR Green qPCR kit from KAPA
and Applied Biosystems 7500 Real PCR System. Samples
were assayed in duplicate. Primers sequences are: Mt-ChIP-
2F, tggggtgacctcggagaat; Mt-ChIP-2R, cctagggtaacttggtccgt;
Mt-ChIP-13F, ccgcaaaacccaatcacctaag; Mt-ChIP-13R,
ttggggtttggcattaagagga; mNdufb7-F, tctgttaaatgtcacccgtcct;
mNdufb7-R, acttttacacctggtacccaaca.

Cell Fractionation by Differential
Centrifugation
After serum reintroduction experiment, cells cultured in a 10-cm
dish were scraped down in 0.5 ml isotonic buffer (5 mM HEPES,
250 mM sucrose, 0.1 mM EDTA) and transferred to an Eppendorf
tube. The dishes were then washed with 0.5 ml isotonic buffer,
which was then pooled together. Cells were homogenized by
repeated passes through a 25-gauge needle attached to a 1-ml
syringe 15 times. The remaining homogenate was centrifuged
at 750 × g for 5 min. The pellet (P1) contained intact cells
and nucleus. The cytoplasm collected from the supernatant
was then centrifuged at 10,000 × g for 5 min, and pellet [the
crude mitochondria fraction (Mito.C)] was washed once with the
isotonic buffer. The supernatant was collected as the cytosolic
fraction. To separate nucleus from the intact cells, P1 was
resuspended in isotonic buffer containing 0.1% NP-40, triturated
and centrifuged at 750 × g for 5 min. The resulting pellet (the
nucleus fraction) was washed in isotonic buffer once.

Western Blotting
Protein samples were lysed in 5 × SDS sample buffer containing
beta-mercaptoethanol, boiled at 95◦C for 10 min and loaded
into each well for SDS-PAGE. Samples were then transferred
to PVDF membrane (Thermo) and immunoblotted using
anti-NDUFA9 (Invitrogen), anti-NDUFS3 (Invitrogen), anti-
NDUFA13 (Invitrogen), anti-ATP5A (Invitrogen), anti-SDHA
(CST), anti-VDAC (CST), anti-HSP60 (CST), anti-PHB1 (CST),
anti-PDH (CST), anti-GAPDH (Sigma), anti-GRP78 (SCBT),
anti-ABCA1 (SCBT), anti-FLOT1 (CST), anti-STAT3 (CST),
anti-STAT1 (SCBT), anti-AMPK (CST), anti-ERK1/2 (CST),
anti-p38 (CST), anti-SYP (Abcam), anti-ACSL4 (Abcam), all
diluted in 5% BSA:TBST at 1:1000, followed by appropriate
HRP-conjugated secondary antibodies (Thermo) incubation
(diluted in 5% non-fat milk:TBST at 1:10,000), and developed
using the SuperSignalTM West Femto Maximum Sensitivity
Substrate (Thermo).

Immunofluorescence
Astrocytes isolated from E15 and cultured on poly-D-lysine-
coated coverslips were stained with 5 µM MitoTracker DeepRed
to label mitochondria. Alternatively, cells were transfected with
ER-dsRed expression vector 1 day prior to fixation to label ER.
Cells were fixed with 4% paraformaldehyde for 15 min and were
then permeabilized by ice-cold methanol for 5 min, followed
by PBS rinse for 10 min. The cells were then blocked with 5%
bovine serum albumin in PBS with 0.3% TritonX-100 for 1 h,
followed by primary antibody [rabbit-anti-HSP60 (CST), rabbit-
anti-LC3B (CST), rabbit-anti-LAMP1 (CST), rabbit-anti-ACSL4
(Abcam), mouse-anti-STAT3 (CST), both diluted at 1:200 in the
blocking buffer] incubation at 4◦C overnight. Then, the cells
were incubated in appropriate secondary antibodies [donkey-
anti-rabbit-AF488, donkey-anti-rabbit-647, donkey-anti-mouse-
488, donkey-anti-mouse-AF568 or donkey-anti-mouse-AF647
(Thermo), all diluted at 1:200 in the blocking buffer] for 1 h
at room temperature. After washing three times in TBST,
the cells on the coverslip was mounted using Prolong Gold
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with DAPI (Thermo) and subjected to confocal microscopy
observation using the Zeiss LSM880 with Airyscan system.
Images were captured using a 63x/1.4NA oil immersion objective.
The colocalization analysis was performed with Fiji software
using the Coloc 2 plugin.

Statistic
Statistical significance was determined by Student’s t-test using
GraphPad Prism 6.01. The p-value < 0.05 was considered
significant. Unless otherwise specified, data were presented as
mean and the standard deviation (mean± SD).
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