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Accumulating evidence suggests that abnormal neuronal oscillations in the basal ganglia
(BG) contribute to the manifestation of parkinsonian symptoms. In this article, we
would like to summarize our recent work on the mechanism underlying abnormal
oscillations in the parkinsonian state and discuss its significance in pathophysiology of
Parkinson’s disease. We recorded neuronal activity in the BG of parkinsonian monkeys
treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Systemic administration of
L-DOPA alleviated parkinsonian motor signs and decreased abnormal neuronal oscillations
(8–15 Hz) in the internal (GPi) and external (GPe) segments of the globus pallidus
and the subthalamic nucleus (STN). Inactivation of the STN by muscimol (GABAA
receptor agonist) injection also ameliorated parkinsonian signs and suppressed GPi
oscillations. The blockade of glutamatergic inputs to the STN by local microinjection
of a mixture of 3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (glutamatergic
NMDA receptor antagonist) and 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-
7-sulfonamide (glutamatergic AMPA/kainate receptor antagonist) suppressed neuronal
oscillations in the STN. STN oscillations were also attenuated by the blockade of GABAergic
neurotransmission from the GPe to the STN by muscimol inactivation of the GPe. These
results suggest that cortical glutamatergic inputs to the STN and reciprocal GPe-STN
interconnections are both important for the generation and amplification of the oscillatory
activity of GPe and STN neurons in the parkinsonian state. The oscillatory activity in
the STN is subsequently transmitted to the GPi and may contribute to manifestation of
parkinsonian symptoms.

Keywords: Parkinson’s disease, neuronal oscillation, globus pallidus, subthalamic nucleus, β-band, monkey, basal
ganglia

INTRODUCTION
Parkinson’s disease (PD) is a neurodegenerative disorder affecting
motor and non-motor functions. Motor dysfunction in PD,
including akinesia, tremor and rigidity is largely attributed to
the progressive loss of dopaminergic (DAergic) neurons in the
substantia nigra pars compacta. There are two hypotheses that
explain the pathophysiology of PD. The “firing rate model”
originally proposed that dopamine (DA) depletion reduces tonic
excitation to striatal neurons projecting to the internal segment
of the globus pallidus (GPi) (i.e., direct pathway) and tonic
inhibition to striatal neurons projecting to the external segment
of the globus pallidus (GPe) (indirect pathway) (DeLong, 1990;
Mallet et al., 2006). Both of these changes are thought to increase
average firing rates of GPi and substantia nigra pars reticulata
neurons. This increased activity in the basal ganglia (BG) out-
put nuclei induces decreased activity in thalamic and cortical
neurons, resulting in akinesia. However, recent electrophysiolog-
ical studies using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

(MPTP)-induced PD monkeys have failed to detect an expected
increase in GPi activity (Wichmann et al., 1999; Raz et al., 2000;
Rivlin-Etzion et al., 2008).

The firing rate model has now been largely supplanted by
the “firing pattern model” that emphasizes oscillatory and/or
synchronized activity. Oscillatory and/or synchronized activity
is frequently observed in the BG of patients with movement
disorders and animal models, which may cause the disturbance
of information processing in the BG (Bergman et al., 1998).
Unit activity and local field potentials recorded from PD animals
and patients have shown oscillatory and synchronized activ-
ity in the GPe, GPi and subthalamic nucleus (STN; Bergman
et al., 1998; Levy et al., 2000; Raz et al., 2000; Brown et al.,
2001; Brown, 2007). The frequency bands include the tremor
(4–9 Hz) and β (10–30 Hz) bands. The β-band oscillation
may be a primary cause of akinesia, since the treatment of
akinesia with drugs effectively suppresses the β-band oscillation.
Recent studies also reported β-band synchronized activity in STN
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neurons of PD patients (Moshel et al., 2013), and correlation
between the high β-band activity and freezing gate in PD patients
(Toledo et al., 2014). Deep brain stimulation (DBS), which has
been widely accepted as an effective therapeutic option of PD, is
suggested to improve motor symptoms by activation of efferent
fibers (Hashimoto et al., 2003), changes of oscillatory activity
(Vitek, 2008) and/or decoupling STN-GPi oscillations (Moran
et al., 2012). By contrast, in the course of MPTP-treatment of
monkeys, the appearance of PD motor symptoms preceded that
of oscillatory activity (Leblois et al., 2007), seeming to contradict
the firing pattern model.

In this article, we would like to summarize our recent
work on the mechanism regulating the abnormal BG oscilla-
tions (Tachibana et al., 2011) and discuss its significance in PD
pathophysiology.

OSCILLATORY ACTIVITY IN THE BG OF PD
The firing properties of BG neurons were compared between
the normal and PD states of macaque monkeys. PD states were
induced by MPTP treatment (2.4–2.5 mg/kg, carotid artery injec-
tion and additional intravenous injections). The average firing
rates of GPe neurons were significantly decreased (normal, 65.2
± 25.8 Hz; PD, 41.2 ± 22.5 Hz) and those of STN neurons were
significantly increased (normal, 19.8 ± 9.7 Hz; PD, 27.6 ± 11.4
Hz) in the PD state, whereas the firing rate of GPi neurons were
not changed (normal, 67.0 ± 24.3 Hz; PD, 63.1 ± 26.9 Hz).
These data contradict the firing rate model. Burst strength (Levy
et al., 2001a; Wichmann and Soares, 2006) was increased in the
GPi/GPe and STN of the PD states. The mean power (Soares
et al., 2004; Rivlin-Etzion et al., 2006) of the 8–15 Hz (low-β)

oscillations was increased in the GPi/GPe and STN, whereas there
were no consistent changes in the 3–8 Hz and 15–30 Hz (high-
β) oscillations. Oscillatory bursts of GPi/GPe and STN neurons
were observed as multiple peaks in the autocorrelograms (e.g.,
Figures 1B1, 2B1, 3B1). The peak frequency with a maximum
power of the oscillatory bursts of GPi/GPe and STN neurons was
around 14 Hz (Figures 1B2, 2B2, 3B2).

DA DEPENDENCE OF BG OSCILLATIONS
We first tested whether the abnormal BG oscillations depend
on DAergic inputs. DA was administrated systemically to PD
monkeys, and the effects on the neuronal activity of GPi/GPe
and STN neurons were examined. The motor disability was
ameliorated within 5 min after intravenous L-DOPA injections
(2.5–3.5 mg/kg, iv). L-DOPA administration decreased 8–15 Hz
oscillations in the GPi/GPe and STN. Approximately 30 min
after L-DOPA injections, the monkeys returned to the PD states,
and the abnormal oscillations reappeared. The overall firing rate
was not changed throughout the injections. These results have
demonstrated that abnormal burst firing and 8–15 Hz oscillatory
activity of GPi/GPe and STN neurons are DA-dependent. They
also suggest that neuronal oscillations in the GPi/GPe and STN,
rather than their spontaneous firing rate changes, may be critical
for PD symptoms, supporting the firing pattern model.

ORIGINS OF ABNORMAL GPi/GPe OSCILLATIONS
Then, the origins of 8–15 Hz GPi/GPe oscillations were examined.
The GPi (Tachibana et al., 2008) and GPe (Kita et al., 2004) receive
glutamatergic inputs from the STN and GABAergic inputs from
the striatum and GPe (GPe-GPe projections via the intranuclear

FIGURE 1 | Effects of subthalamic nucleus (STN) inactivation on
neuronal activity of the internal segment of the globus pallidus
(GPi) under the parkinsonian state. (A) A schematic diagram
showing anatomical connections of the basal ganglia and the
experimental method. Recording from GPi neurons was performed
with muscimol injection into the STN to block STN inputs to the GPi.
Open and filled arrows represent glutamatergic and GABAergic
projections, respectively. Cx, cerebral cortex; GPe, external segment

of the globus pallidus; Str, striatum; Th, thalamus. (B) A
representative GPi neuron showing abnormal oscillations in the
parkinsonian state. (1) Autocorrelograms calculated from a 50-s spike
train and (2) power spectra of the same spike trains are shown.
Gray dashed lines represent a confidence level of P = 0.01. (C)
Muscimol inactivation of the STN decreased the firing rate and 8–15
Hz oscillatory activity of the GPi neuron. Modified from Tachibana
et al. (2011).
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axon collaterals). To determine which inputs contribute to abnor-
mal 8–15 Hz GPi oscillations, each input was selectively blocked.
Firstly, the STN was inactivated by injection of a GABAA receptor
agonist, muscimol (4.4 mM, 0.5–1.0 µL) while GPi neuronal
activity was simultaneously recorded (Figure 1A). Inactivation of
the STN ameliorated PD motor signs, such as bradykinesia and
rigidity, as previously reported (Bergman et al., 1990; Wichmann
et al., 1994; Levy et al., 2001b) and decreased the 8–15 Hz
oscillations (Figures 1B, C) and the firing rate.

Secondly, GABAergic inputs from the striatum and GPe were
blocked, and the effects on the oscillatory activity of GPi/GPe
neurons were examined. Microinjection of a GABAA receptor
antagonist, gabazine (1 mM, 0.1–0.2 µL) in the vicinity of
recorded GPi/GPe neurons increased the firing rate of GPi/GPe
neurons, and augmented the 8–15 Hz GPi oscillations, but
induced no changes in GPe oscillations. These results suggest
that 8–15 Hz GPi/GPe oscillations are generated by glutamatergic
inputs mainly from the STN, but not by GABAergic inputs from
the striatum and GPe.

ORIGINS OF ABNORMAL STN OSCILLATIONS
Next, the origins of 8–15 Hz STN oscillations were examined.
The STN receives glutamatergic inputs from the cerebral
cortex and the thalamus, and GABAergic inputs from the
GPe. Firstly, ionotropic glutamatergic inputs were blocked,
and the effects on the oscillatory activity of STN neurons
were examined (Figure 2A). Microinjection (0.1–0.2 µL) of a
mixture of an N-methyl-D-aspartate receptor antagonist, 3-(2-
carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP, 1 mM)
and an AMPA/kainate receptor antagonist, 1,2,3,4-tetrahydro-
6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide (NBQX,
1 mM) in the vicinity of recorded STN neurons decreased the
8–15 Hz oscillations (Figures 2B, C).

Secondly, GABAergic inputs from the GPe were blocked, and
the effects on the oscillatory activity of STN neurons were exam-
ined (Figure 3A). Muscimol inactivation (1–2 µL) of the GPe
attenuated the 8–15 Hz STN oscillations (Figures 3B, C) and
increased the firing rate. However, the GPe inactivation induced
no clear behavioral changes. These findings have shown that
the 8–15 Hz STN oscillation are generated by glutamatergic
inputs from the cortex and thalamus and GABAergic inputs from
the GPe.

Previous studies reported the coherence between the elec-
trocorticogram and the STN LFPs/STN unit activity in the
PD state and have suggested that cortical glutamatergic inputs
can drive STN oscillations in frequency bands below 30 Hz
(Magill et al., 2000, 2001; Sharott et al., 2005; Mallet et al.,
2008b). It is hypothesized that cortical β-rhythm is preferen-
tially transmitted to the BG (Brittain and Brown, 2014). This
idea is also supported by an optogenetic study that selective
stimulation of cortico-STN projections ameliorated PD symp-
toms (Gradinaru et al., 2009). The other glutamatergic inputs
to the primate STN may come from the intralaminar thalamic
nuclei (Lanciego et al., 2009). The parafascicular thalamic nucleus
(PF) neurons in PD rats showed oscillatory activity (0.5–2.5
Hz), but PF firings lagged STN firings (Parr-Brownlie et al.,
2009).

Another origin of STN oscillations may be the GABAer-
gic inputs from the GPe (Baufreton et al., 2005a). An in vivo
rat study indicated that 15–30 Hz oscillations between GPe
and STN neurons were developed during DA depletion (Mallet
et al., 2008a). DAergic innervation in the GPe was decreased in
PD monkeys (Schneider and Dacko, 1991), and the GPe-GPe
GABAergic transmission was augmented (Watanabe et al., 2009).
The oscillatory glutamatergic inputs mainly from the cortex and
synchronized GABAergic inputs from the GPe may accelerate the

FIGURE 2 | Effects of the blockade of ionotropic glutamatergic inputs
to STN neurons under the parkinsonian state. (A) Recording from STN
neurons was performed with intrasubthalamic microinjection of CPP and
NBQX to block glutamatergic inputs to the STN. (B) A representative STN

neuron showing abnormal oscillatory activity under the parkinsonian state.
(C) Intrasubthalamic microinjection of CPP and NBQX decreased 3–8 Hz
and 8–15 Hz oscillations of the STN neuron. Modified from Tachibana et al.
(2011).
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FIGURE 3 | Effects of GPe inactivation on STN neurons under the
parkinsonian state. (A) Recording from STN neurons was
performed with muscimol injection into the GPe to block GABAergic
inputs from the GPe. (B) A representative STN neuron showing

abnormal 8–15 Hz oscillations under the parkinsonian state. (C)
Muscimol inactivation of the GPe decreased the 8–15 Hz oscillations
and increased the firing rate of the STN neuron. Modified from
Tachibana et al. (2011).

oscillatory activity in STN neurons (Shen and Johnson, 2000,
2005; Baufreton et al., 2005b; Baufreton and Bevan, 2008).

BG OSCILLATIONS AND PD PATHOPHYSIOLOGY
Our work shows the following results: (1) The loss of DA
induced abnormal 8–15 Hz oscillations in GPi/GPe and STN neu-
rons; (2) The abnormal 8–15 Hz GPi/GPe and STN oscillations
were reversed by systemic DA administration; (3) The abnormal
8–15 Hz GPi/GPe oscillations were originated from the STN oscil-
lations; and (4) The STN oscillations were driven by glutamater-
gic inputs mainly from the cortex and GABAergic inputs from
the GPe. These findings support the firing pattern model and
suggest the mechanism of BG oscillations: Glutamatergic inputs
to the STN and reciprocal GPe-STN interconnections generate
and amplify the oscillatory activity of STN and GPe neurons in
PD. Such oscillatory activity is subsequently transmitted to GPi
neurons, and finally reaches the thalamus, cortex and brain stem,
contributing to the expression of PD symptoms (Figure 4).

The causal relationship between the BG oscillations and PD
symptoms is a fundamental question. Leblois et al. (2007) have
reported that oscillatory activity of BG neurons does not pre-
cede the appearance of PD motor symptoms in the course of
chronic MPTP treatment of monkeys, questioning such causal
relationship. Moreover, acute disruption of DA transmission did
not develop oscillatory activity, which is distinct from chronically
depleted animals (Mallet et al., 2008b). The BG oscillations may
merely reflect other fundamental activity changes. In PD, the
balance between the cortico-STN-GPi hyperdirect (Nambu et al.,
2000), cortico-striato-GPi direct and cortico-striato-GPe indirect
pathways was lost by the lack of DA in the striatum, and the
“dynamic” network properties of the BG were changed (Nambu
et al., 2005; Kita and Kita, 2011). It is suggested that the imbalance
between the hyperdirect and direct pathways generates the BG

FIGURE 4 | Schematic diagram showing neural circuits involved in the
generation of BG oscillations. Under the parkinsonian sate, glutamatergic
inputs from the Cx (and also from the Th) to the STN and reciprocal
GPe-STN interconnections can cooperatively generate and amplify the
oscillatory activity of STN and GPe neurons. Such oscillatory activity is
subsequently transmitted to the GPi, contributing to the expression of
parkinsonian symptoms. Open and filled circles represent glutamatergic
and GABAergic synapses, respectively. Modified from Tachibana et al.
(2011).

oscillations (Leblois et al., 2006). Further studies are needed to
solve this fundamental question.

In this article, we would like to emphasize a close relationship
between the BG oscillations and PD symptoms. In fact, DAer-
gic medication, STN-DBS, and voluntary movements in human
patients are all reported to decrease the cortico-BG synchro-
nization (Brown et al., 2001, 2004; Cassidy et al., 2002; Levy
et al., 2002; Williams et al., 2002; Silberstein et al., 2005;
Lafreniere-Roula et al., 2010). In a similar manner, the suppres-
sion of 8–15 Hz oscillations in the primate BG may be essential to
ameliorate PD motor symptoms. These findings could shed light
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on the pathophysiology of PD and understanding the mechanisms
of current therapies, and lead us to further rational treatments
of PD.
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