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Owing to their excellent characteristics, such as large specific surface area,

favorable biosafety, and versatile application, nanomaterials have attracted

significant attention in biomedical applications. Among them, metal-based

nanomaterials containing various metal elements exhibit significant bone

tissue regeneration potential, unique antibacterial properties, and advanced

drug delivery functions, thus becoming crucial development platforms for bone

tissue engineering and drug therapy for orthopedic diseases. Herein, metal-

based drug-loaded nanomaterial platforms are classified and introduced, and

the achievable drug-loading methods are comprehensively generalized.

Furthermore, their applications in bone tissue engineering, osteoarthritis,

orthopedic implant infection, bone tumor, and joint lubrication are reviewed

in detail. Finally, the merits and demerits of the current metal-based drug-

loaded nanomaterial platforms are critically discussed, and the challenges faced

to realize their future applications are summarized.

KEYWORDS

metal-based nanocarriers, drug deivlery, bone disease, bone regeneration, tissue
engineering

1 Introduction

To achieve superior bone repair effects, the development of strategies to treat different

bone diseases, such as bone defects, bone infections, fractures, osteoarthritis, osteoporosis,

and bone tumors, has become a major public health issue (Chindamo et al., 2020). Bone is

the hardest connective tissue in body, and its diseases can lead to restricted movements or

even death (Hou et al., 2020). However, there are still many challenges in the diagnosis

and treatments of bone diseases. Some bone diseases such as early-stage bone tumors are

difficult to be detected by conventional diagnostic methods. It usually requires large doses

to reach bone tissue for drugs given by mouth or bolus (Carbone et al., 2017). In addition,

the healing cycle of bone tissue is long. Therefore, strict requirements about the release

kinetics of therapeutic molecules are necessary for treating bone infection, inflammation

or defect. A few emerging technologies, including tissue engineering material

transplantation (Liu J. Y. et al., 2021), stem cell technology (Shang et al., 2021), and

nanomedicine (Qiao K. et al., 2022), are potential means to promote the treatment of

complex bone diseases. In particular, nanomedicine, based on various nanobiomaterials

has significantly accelerated the diagnosis research, treatment, and regeneration of bone
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diseases, and has obtained numerous achievements (Chen et al.,

2020; Hagaman et al., 2021). There are a wide variety of

nanobiomaterials, including carbon-based, metal-based, virus-

based, lipid-based, polymer-based, liposomes, cubes, micelles,

exosomes, and cell membrane coatings (Sharma et al., 2021).

Nanobiomaterials exhibit numerous excellent properties:

nanoscale, large specific surface area, adjustable volume,

favorable biocompatibility, and abundant modifiable surfaces

(Eivazzadeh-Keihan et al., 2020b; Anastasio et al., 2021).

Therefore, they have various applications such as nano-

delivery systems (Vangijzegem et al., 2019; Hu S. et al., 2021),

biomaterial modification (Liu et al., 2020d; Zhong et al., 2020;

Xue Y. et al., 2021), biosensors (Fiorani et al., 2019; Singh et al.,

2022), in vivo tracking, and imaging agents (Liu Y. et al., 2021;

Kalva et al., 2022), gas storage (Wang X. et al., 2021; Zhu et al.,

2022), and chemical catalysis (Fang et al., 2021; Khalil et al.,

2021). Owing to these excellent properties, nanobiomaterials,

particularly nanodelivery platforms, are attractive for the

diagnosis and treatment of bone diseases as well as tissue

repair. -The characteristic diagnosis and treatment of bone

diseases by nanomaterials is particularly attractive.

Nanomaterials have large comparative area and surface

activity, so can achieve flexible bone-targeting binding, in vivo

imaging and other functions through physical or chemical

modification. Combing nanomaterials with either computed

tomography, magnetic resonance imaging (MRI), and/or

photoluminescence imaging for specific localization in vivo is

helpful for the early diagnosis of bone disease (Wang S. et al.,

2020). Nanomaterials have excellent loading capacity for

bioactive factors, antibacterial agents, antitumor drugs,

antibiotic drugs, gene molecules, etc. Required for the

treatment of bone diseases (Kumar and Madhumathi, 2016; Li

et al., 2019a; Zhao et al., 2020; Halim et al., 2021). More

importantly, nanomaterials play a prominent role in reducing

drug toxicity, increasing bioavailability, and improving

pharmacokinetics and biodistribution, thus providing great

potential for new breakthroughs in bone disease treatment

(Liu G. et al., 2021; Li et al., 2022).

Compared with organic nanomaterials such as micelles,

lipid-based and polymer-based, the metal-based nano-delivery

platforms (MNPs) have unique features and advantages due to

the inclusion of various metal elements. Considering the

important role of metal ions in the metabolism and operation

of the human body, particularly the physiological activities of

bone tissues, the MNPs have exhibited considerable application

potential in bone tissue engineering repair as well as the field of

bone disease diagnosis and treatment (Fardjahromi et al., 2022).

Metal elements exhibit excellent antibacterial and anti-oxidative

stress effects (Makvandi et al., 2020), thereby facilitating

synergistic anti-bone infection and osteoarthritis effects to the

delivered components (Luo et al., 2021); however, a few other

metal elements can also endow nano-delivery systems with

special targeted delivery (Niculescu and Grumezescu, 2022),

photodynamic therapy (PDT) (He et al., 2022),

thermodynamic therapy (Boroushaki et al., 2022), bioimaging

(Zhong et al., 2021), and stimuli-responsive (Hu et al., 2022)

functions, which are more conducive to the efficient diagnosis

and treatment of bone diseases or promote bone regeneration,

and decrease the simple systemic side effects of drug use. A few of

researchers reported that metal nanoparticles (NPs) can be used

as nano-antibiotics because of their favorable antibacterial

activities and significant potential to combat antibiotic

resistance (Cheng et al., 2022). In addition, studies have

demonstrated that metal-based nanomaterials possess excellent

mechanical properties as well as the intrinsic ability to

significantly promote osseointegration, osteoconductivity, and

osteoinduction, which has become crucial factors for bone

regeneration (Sobolev et al., 2019; Eivazzadeh-Keihan et al.,

2020a). Moreover, MNPs can help achieve the controlled

release of drugs or active molecules through various stimuli

responses, including pH-triggered release systems (Duan et al.,

2021), redox reactions (Duan et al., 2018), external thermal

effects (Khodaei et al., 2022), magnetic field control

(Dehghani et al., 2020), and ultrasonic dynamic stimulation

(Li S. et al., 2020), or by the external activation of optical/

mechanical stimuli (Feng et al., 2019).

In recent years, increasingly advanced methods have been

attempted to use MNPs for the maintenance of bone tissue

health. Komal et al. (Rao et al., 2018) placed Hesperidin into

gum acacia-stabilized green silver (Ag)NPs for combating

rheumatoid arthritis and achieved favorable results. Additional

to loading an active ingredient, the co-encapsulation and

simultaneous or sequential release of two or more active

ingredients can be achieved using MNPs. For example, Yan

(Jiang et al., 2021) used the Zn-based zeolitic imidazole

framework (ZIF-8) as a carrier to deliver bone morphogenetic

protein 2 (BMP-2) and cisplatin, thus defining different spatial

distributions and environment-adaptive release patterns of

osteogenic growth factors and anti-cancer drugs. In addition,

metal-based nanomaterials can serve as bridges for integrating

diagnostic and therapeutic components into a single platform. In

a study (Wang et al., 2016b), the authors developed a novel

core–shell PB@MIL-100(Fe) metal-organic frameworks

(d-MOFs) NPs, which could serve as a contrast agent for

MRI. Then the (d-MOFs) NPs was reported acting as an

imaging agent for fluorescence optics as well as for achieving

targeted tumor therapy in pH-responsive manner, and finally

synergistically play the role of photothermal and chemotherapy

(CT) for ablating tumors in mice. However, although the MNPs

have been demonstrated to have significant potential in bone

tissue engineering and related disease diagnosis and treatment,

numerous questions regarding MNP have been posed. Titanium

dioxide NPs have been reported to induce potential cytotoxicity

(oxidative stress), genotoxicity, and immunotoxicity (Di

Giampaolo et al., 2021). A few scholars have also proposed

that the drug loading capacity of MNPs is predominantly
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unsatisfactory, and the high production costs limit the clinical

translation process (Liu et al., 2020c). For oral administration,

penetrating the mucus gel layer barrier to the absorption

membrane is a significant test for MNPs to exert their

efficacy, and MNPs within the 10–150 nm size range are

considered to be the most favorable choice for enhancing

permeability and exerting their effects (Murugan et al., 2015).

Currently, only a few nanomedicines, such as Abraxane®

(albumin-bound paclitaxel NPs) and Doxil (a PEGylated

liposomal doxorubicin (DOX) formulation), have been

approved for clinical use by the US Food and Drug

Administration (FDA) (Barenholz, 2012).

Herein, to comprehensively evaluate the status of MNP in the

bone health maintenance field and interpret the advantages and

disadvantages of such biomaterials for the diagnosis and

treatment of bone diseases as well as tissue repair, it is

urgently required to summarize the applications status of

MNPs targeting bone tissues (Figure 1). This review

summarizes the following four aspects: a complete

classification and description of the MNPs; then, the method

of the MNPs loading active factors is summarized; the

application of MNPs to bone-related diseases is further

introduced. Specific scenarios are discussed in the third

section; the limitations of MNPs at this stage are critically

discussed, and it is believed that this review can provide a

reference for the application of MNPs in bone tissue-related

research in the near future.

2 Classification of MNPs

2.1 MOFs nano-delivery platform for bone
disease and regeneration

MOF nanomaterials are a class of crystalline microporous

materials that include endless lattices constituting metal ions or

clusters and organic ligands connected via strong coordinate

bonds (Fang et al., 2018). Compared with other non-metallic

nanocarriers such as dendrimers, and mesoporous silica

nanoparticles, MOFs have distinct and unique characteristics.

First, different from the rigid structure of mesoporous silica

nanoparticles, MOFs can flexibly adjust their structures by

changing inorganic clusters and organic ligands (length,

volume, bond angle, and chirality). Meanwhile, the pores of

dendrimers and mesoporous silica nanoparticles are

hydrophobic, while the pores of MOFs are amphiphilic

(Sharma et al., 2019; Fernandes et al., 2021). All these features

can ensure that MOFs can be more efficiently carried for different

therapeutic molecules or drugs. Although the metal-free

polymeric or liposomal nanocarriers have better stability and

biocompatibility (Gupta et al., 2021; Liang et al., 2022). Inorganic

metals such as Zn, Ti, Fe, Mg, Cu, Zr, and Co. contained by

MOFs are not only essential elements for body, but also

participating in important life activities such as cell

proliferation, differentiation, and metabolism. More

importantly, these inorganic metal elements can also endow

MOFs with many other attractive functions, such as

antibacterial properties, ionic interaction, magnetism,

photothermal response, pH response, chemical catalysis, and

enzymatic reactivity. The prevalent MOFs in the treatment of

bone disease are classified by metal elements and discussed in the

following (Figure 2).

2.1.1 Zn MOFs nano-delivery platform
Nano ZnMOFs comprises Zn (II) covalently linked with 1,4-

bis(1H-pyrazol-4yL)-2-X-benzene (H2BDP_X; X = H, NO2,

NH2, OH) (He et al., 2021) and possess various pores sizes in

the range of 3.8–28.8 �Å. A major subfamily of Zn nano MOFs is

the zeolitic imidazolate framework (ZIF), in which Zn (II) ions

are connected via imidazolate or imidazole derivatives as organic

ligands (Fardjahromi et al., 2022). Since Jiang et al. (Jiang et al.,

2009) used an MOF as the Au nanoparticle carrier for the first

time, Zn-based MOFs have been widely explored as a nano-

delivery platform, and ZIF-8 application is the most

representative. The ZIF-8 nano-platform for delivery of

biologically active factors or drugs has been used in bone-

related diseases or bone tissue engineering regeneration. ZIF-8

is a space-filling packing with the topology of truncated

octahedrons and a pore size of 11.6 �Å (He et al., 2021). It has

been reported that ZIF-8 can effectively deliver one or more

small-molecule drugs such as alendronate (Ald), DOX (Xue X. H.

et al., 2021), curcumin (Wang Y. T. et al., 2020), risedronate

FIGURE 1
Application of metal-based nano-delivery platform for
treating bone disease and regeneration.
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(Cheng et al., 2020), dexamethasone (Ran et al., 2018), 5-

fluorouracil, and indocyanine green (ICG) (Ting et al., 2022),

and simvastatin (Qiao M. et al., 2022). ZIF-8 has also been

demonstrated to be an effective non-viral vector for delivering

small noncoding RNAs such as microRNAs (miRNAs) in

addition to viral vectors (Feng et al., 2022). Nano ZIF-8 can

also be used to simultaneously transport drugs and proteins

together; for example, Jiang et al. (Jiang et al., 2021) successfully

loaded two substances, BMP-2 and cisplatin, within ZIF-8 to

build MNPs for bone regeneration. Furthermore, drugs and

genes could be co-delivered by Zn-based MOFs, and Rabiee

et al. (Rabiee et al., 2021) had used MOF-5 to simultaneously

carry DOX and pCRISPR. Therefore, nano-ZnMOFs have broad

prospects for delivering active ingredients, such as a variety of

drugs, genes as well as proteins, and can be used as a powerful

reserve to accelerate the treatment of bone tissue diseases and

bone regeneration.

2.1.2 Fe MOFs nano-delivery platform
Fe-based MOFs is an important constituent member of the

Materials of Institute Lavoisier (MIL)-n family (Zhong et al.,

2021). Common Fe-basedMOFs are MIL -53(Fe), MIL-88A (Fe),

MIL-88B(Fe), MIL-100(Fe), and MIL-101(Fe), which are

composed of Fe centers and a terephthalate-based linker (1,4-

dicarboxylic acid) connected by six oxygen atoms (Al Haydar

et al., 2017). Fe-based MIL has been widely studied in biosensing,

bioimaging, antibacterial, and drug delivery owing to its excellent

properties such as low toxicity, biodegradability,

biocompatibility, large pore volume, and surface area with

high drug loading capability (Zhong et al., 2021). Fe-based

MIL has significant potential as a nano-delivery platform. In

particular, except delivering small molecule drugs, such as

methotrexate (Ahmadijokani et al., 2021), protocatecholic acid

(Xiong et al., 2020), curcumin (Faaizatunnisa et al., 2022), Ald

(Golmohamadpour et al., 2018), flurbiprofen (Al Haydar et al.,

2017), artemisinin (Wang et al., 2016b), acetaminophen

(Pattappan et al., 2022), progesterone, and stavudine (Gordon

et al., 2015), MIL family can serve as carrier for the sustained

release of small molecule active metabolites, such as WR-1065

(active metabolite of amifostine), and peptides, such as

glutathione (Cao et al., 2020). Therefore, Fe MOFs are also

functionally rich nano-delivery platforms which can be used

to overcome the challenges of bone regeneration and repair as

well as bone disease diagnosis and treatment.

2.1.3 Zr MOFs nano-delivery platform
Zr MOFs are considered as promising MOFs for bone tissue

engineering and bone disease-related applications owing to their

low toxicity as well as high mechanical, thermal, acidic, and

aqueous stability (Lazaro et al., 2017). In 2008, Cavka discovered

the first Zr MOF, namely Universitetet i Oslo (Uio-66) (Cavka

et al., 2008), which comprises inorganic Zr metal and organic

ligand 1,4-benzene dicarboxylic acid. Additional to UiO-66,

MOF-525, MOF-545 (also known as PCN-222), PCN-221,

PCN-223, PCN-224, PCN-225, and NU-902 are commonly

used Zr-based MOFs (Yu et al., 2021). The size, porosity, and

release behavior of Zr MOFs can be regulated via the synthesis of

different functional groups such as -NH2 and NO2 (Li Z. et al.,

FIGURE 2
Important components of MNPs: classification and advantages of MOFs.
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2019). Zr MOFs can be used to deliver different drugs or active

ingredients when treating different bone diseases. For example,

small molecule drugs can be delivered using UiO-66-NH2 NPs

such as DOX, cisplatin, temozolomide, and curcumin (Ma et al.,

2020; Fytory et al., 2021; Wan et al., 2021; Hu et al., 2022). In

addition, a few single metal atoms (Pt, Au, Cu, Ru) can be

delivered using PCN-222 (Yu et al., 2022). Moreover, it has been

reported that a few immunostimulatory oligonucleotides, such as

cytosine–phosphate–guanosine, can be successfully delivered

using UiO-66 (Pang et al., 2020). Therefore, owing to their

excellent delivery ability, the Zr MOFs nanoplatform is a new

candidate as tissue engineering materials for diagnosing and

treating bone tissue diseases.

2.1.4 Cu MOFs nano-delivery platform
In recent years, nano Cu MOFs have been frequently

explored in the field of tissue engineering and nano-drug

loading (Telgerd et al., 2019; Wang T.-L. et al., 2021; Binaeian

et al., 2022). Benzene-1,3,5tricarboxylate linkers and Cu ions are

connected to form Hong Kong University of Science and

Technology-1 (HKUST-1), which is a widely used nano-Cu

MOF (Lin et al., 2012). Owing to their numerous advantages,

Cu MOFs are suitable candidates for the development of nano-

delivery platforms: I) they provide a unique broad-spectrum

antibacterial effect (Lee et al., 2021; Wang Z. et al., 2022); II) they

possess the ability to stimulate endothelial cell proliferation and

differentiation, thereby promoting angiogenesis by simulating

hypoxia (Dang et al., 2020); III) they possess an open skeleton

framework and excellent chemical stability (Liu et al., 2019); IV)

they possess a unique near-infrared (NIR) absorption ability,

which can be used to develop photo-thermal therapy (PTT)

nano-drug system (Weng et al., 2020; Wang L. et al., 2021; Geng

et al., 2022); V) they have a favorable loading capacity and are a

good choice for developing chemodynamic therapy (CDT)

nanocarriers (Hao et al., 2021b). Recently, small-molecule

drugs, such as chlorhexidine (Soltani and Akhbari, 2022),

DOX (Gharehdaghi et al., 2021), 5-fluorouracil (Liu W. et al.,

2020), methotrexate (Nezhad-Mokhtari et al., 2019), diclofenac

sodium, chlorpromazine hydrochloride, amodiaquin

dihydrochloride (Liu et al., 2019), and ibuprofen (Javanbakht

et al., 2019), have been successfully loaded into nano-drug

delivery systems through Cu MOFs. Enzymatically active

molecules, such as horseradish peroxidase and glucose

oxidase, can also be effectively loaded by Cu MOFs and

exhibit superior stabilities than those in the free state (Hao

et al., 2021a; Lin et al., 2021). Therefore, nano-Cu MOFs are

the widely explored nano-drug delivery platform in recent years.

2.1.5 Ti MOFs nano-delivery platform
Owing to the superior biocompatibility and photocatalytic

performance of Ti compared with other metals, Ti MOFs exhibit

significant potential for bone tissue engineering and nano-drug

loading. In 2009, Dan-Hardi et al. (Dan-Hardi et al., 2009) first

reported MIL-125(Ti), which comprises Ti octahedra and

terephthalate dianions with accessible pore diameters of

6.13 and 12.55 Å. MIL-125(Ti) has attracted considerable

attention in nano-drug loading, and it has been demonstrated

to solely load small molecule drugs, such as DOX (Rengaraj et al.,

2017), aspirin (Rojas et al., 2019), and ibuprofen (Xie et al., 2018),

Ag NPs (Arenas-Vivo et al., 2019) as well as carbonmonoxide gas

(Jin et al., 2018). Thus, Ti MOFs are also a favorable choice for

nano-delivery platform materials.

2.1.6 Other metal MOFs nano-delivery platforms
In addition to the several MOFs mentioned above, other

MOF nano-delivery platforms, such as Mg-, Co-, and Ca-based

MOFs have potential applications in the bone tissue engineering

field. Although further research is required to expand the

contents of these MOFs on nano-drug delivery, these MOFs

have been attracting increasing research attention in recent years.

Mg MOFs have been demonstrated to effectively load small

molecule drugs such as icariin (Wang W. et al., 2022), ibuprofen,

curcumin (Lawson et al., 2022), alpha-cyano-4-hydroxycinnamate

(Hu J. Q. et al., 2021), and IL4 cytokines (Zheng et al., 2020).

Additionally, Co. MOFs were used to load drugs, enzymes, and

bioactivemolecules, such as dimethyloxalylglycine (DMOG) (Li J. K.

et al., 2020), olsalazine (Levine et al., 2016), glucose oxidase (Fang

et al., 2020), and 4-chloro-N-cyclohexyl-N-(phenylmethyl)-

benzamide (Sun et al., 2022). Among the metal elements

predominantly present in bone, Ca is also observed to build

MOFs serving as nanocarriers for loading drugs such as 5-

fluorouracil (Li D. et al., 2020), ibuprofen, and guaiacol (Wei

et al., 2017). Overall, further analysis and studies of Mg, Co., and

Ca MOFs are required because of their significant potential

applications in nano-delivery platforms to overcome bone-related

problems.

2.2 Metallic and metallic oxide nano-
delivery platform

In recent years, metallic and metallic oxide nanoparticles

have attracted significant attention. Although non-metallic NPs

such as ceramic nanoparticles and polymeric nanoparticles can

load with many therapeutic drugs, growth factors or genetic

materials, metallic and metallic oxide nanoparticles are still

irreplaceable for bone disease treatment. As we all known，
metallic and metallic oxide NPs have unique advantages in the

prevention or treatment of some infectious bone diseases because

not only their good drug delivery ability, but also the excellent

antibacterial properties. Not exactly the same as the antibacterial

mechanism of metal ions from metal inorganic salts, in fact, the

antibacterial properties of metallic andmetallic oxide NPs are not

only owing to the metal ions they release. Nanoscale size,

morphology, and mediated generation of reactive oxide species

(ROS) are all important factors for the antibacterial mechanism of
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TABLE 1 Classification of Metallic and Metallic oxide.

Formula Cargo loading Functions Citations

Ag

Ag/Ag2O Dox Biochemical sensing Zeng et al. (2018)

Protocatechuic acid Chemical reducibility Oh et al. (2016)

Gallic acid Targeted delivery and reduced side effects Muhammad et al. (2016)

Methotrexate Self-disinfection property Raafat et al. (2018)

Propranolol Hcl Extend release time Gilevskaya et al. (2018)

Imatinib Antimicrobial activity Kodoth et al. (2019

Donepezil Antiviral activity Li et al. (2016)

Aman Camptothecin tadine Anti-cancer activity and inhibitory effect on drug resistance related proteins Zhan et al. (2017)

Zanamivir Reverse influenza virus resistance Lin et al. (2017)

Au

Au Alpha-Tocopheryl Succinat, Targeted chemotherapy and computed tomography imaging of cancer cells Zhu et al. (2015)

Ginsenoside Rg3 Magnetic and optical properties and the response to x-ray radiation Zhang et al. (2020)

Vg16krkp peptide Bacteriolytic activity Chowdhury et al. (2017)

Chlorin E6 Tumor suppression Chuang et al. (2020)

Gemcitabine Electrostatic interactions Wang et al. (2018b)

Methotrexate Improve its solubility, stability and biodistribution Bessar et al. (2016)

Insulin molecules Targeted delivery Betzer et al. (2019)

Gentamicin sulfate Amplify antibacterial activity Zou et al. (2020b)

Cu

Cu DOX PH-responsive and real-time cell imaging Li et al. (2021)

Curcumin Efficient antimicrobial enzyme carrier Nor et al. (2021)

Lysozyme Antibacterial activity Targhi et al. (2021)

Rifampicin Antimicrobial properties Wozniak-Budych et al.
(2017)

Zn

ZnO Hesperidin Antiviral activity Attia et al. (2021)

Gentamicin Antibacterial and antibiofilm Hemmati et al. (2020)

Daunorubicin Carrier for various anti-cancerous drugs Kumar and Pal (2019)

Docosahexaenoic acid Carrying active molecules Hussein et al. (2019)

Curcumin PH-responsive Kundu et al. (2019)

Ti

TiO2 DOX Enhancing the anticancer efficacy Chen et al. (2011)

Gentamicin Enhancing cell attachment, proliferation, and differentiation Escobar et al. (2019)

W Sonodynamic, chemodynamic, and GSH-depleting activities Geng et al. (2021)

Strontium Osteogenic activity Han et al. (2021)

Methylthioadenosine nucleosidase
inhibitor

Reduce infection and promote osteogenesis Li et al. (2020e)

(Continued on following page)
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this class of MNPs (Godoy-Gallardo et al., 2021). Besides, metallic

andmetallic oxideNPs have numerous advantages unlike traditional

nanomaterials: excellent physical and chemical properties,

osseointegration ability, cell labeling and imaging, photothermal

response as well as magnetic actuation. Currently, the metallic and

metallic oxides being used in nano-delivery platforms are also

classified by metal elements and discussed in the following

sections (Table 1).

2.2.1 Ag and Ag oxide nano-delivery platforms
Owing to the powerful bactericidal function, anti-inflammatory

effect, mechanical strength, osteoinductive properties, and

enhancement of cell proliferation rate (Shuai et al., 2018), Ag and

Ag oxide (Ag2O) NPs are promising candidate materials for bone

tissue engineering material coatings (Khan et al., 2020; Nardo et al.,

2021), scaffold fillers (Xu et al., 2016), bactericides (Cao et al., 2018),

and nano-delivery platforms (Raafat et al., 2018). The particle sizes,

morphologies, surface chemistries, aggregation levels, and doses of

Ag and Ag2O NPs affect the cellular response when used as carriers.

Ag and Ag2O NPs can be used as delivery platforms for various

drugs. For example, Zeng et al. used nanographene oxide (NGO)-

coated Ag NPs (Ag@NGO) as a nanocarrier to deliver DOX (Zeng

et al., 2018). Protocatechuic acid, gallic acid (Oh et al., 2016),

methotrexate (Muhammad et al., 2016), propranolol HCl (Raafat

et al., 2018), imatinib (Gilevskaya et al., 2018), donepezil (Kodoth

et al., 2019), amantadine (Li et al., 2016), camptothecin (Zhan et al.,

2017), zanamivir (Lin et al., 2017), and other drugs have been

successfully delivered using Ag NPs.

2.2.2 Au nano-delivery platform
Au NPs with excellent biocompatibility, antibacterial ability,

physicochemical properties, osseointegration ability, and abundant

modifiable surfaces have wide ranging applications such as

biocoatings, antimicrobials against drug resistance, and targeted

drug carriers (Lee et al., 2018). Au NPs are known to be excellent

nano-delivery vehicles for various drug molecules, peptides, proteins,

plasmid deoxynucleic acid (pDNA), small interfering ribonucleic acid

(siRNA), and chemotherapeutic agents (Li et al., 2015; Mallakpour

et al., 2021). Au NPs have attracted considerable attention because of

their excellent properties. Numerous teams have successfully achieved

the delivery of antioxidant alpha-tocopheryl succinate (α-TOS) (Zhu
et al., 2015), ginsenoside Rg3 (Zhang et al., 2020), VG16KRKP

antimicrobial peptide (Chowdhury et al., 2017), chlorin e6

(Chuang et al., 2020), gemcitabine (Wang Z. et al., 2018),

methotrexate (Bessar et al., 2016), insulin molecules (Betzer et al.,

2019), gentamicin sulfate (Zou Y. et al., 2020), as well as various active

molecules or drugs, such as gentamicin and ampicillin, demonstrating

that Au NPs can be used as a reliable nano-delivery platform.

2.2.3 Cu nano-delivery platform
Compared to Au and Ag, Cu is an inexpensive and readily

available metal and among the essential trace elements present in

most living organisms. Simultaneously, Cu has gradually become a

research hotspot owing to its excellent physical, chemical, electrical

and optical properties as well as favorable antibacterial properties. The

stable interactions between Cu NPs and various drugs (DOX,

curcumin, lysozyme, rifampicin) can form nano-delivery systems

TABLE 1 (Continued) Classification of Metallic and Metallic oxide.

Formula Cargo loading Functions Citations

Fe

SIONs/
Fe2O3

Docetaxel Tumor specific targeting Nagesh et al. (2016)

Rifampicin and Tetracycline
hydrochloride

Target the specific site to deliver the drug Prakash et al. (2019)

DOX, cisplatin, artemisinin and
paclitaxel

The wide amount of drug nanocarriers magnetic and biological properties targeting
abilities

Vangijzegem et al. (2019)

Amino-terminal fragment peptide Target specificity and in vivo imaging Yang et al. (2009)

Anti-HER2/neu peptide Tumour targeting Mu et al. (2015)

Anti-CD44 antibody Magnetomechanical and photothermal treatments Alsharif et al. (2020)

Prostate specific membrane antigen PET-CT scan Bandini et al. (2017)

-cyclodextrin Super paramagnetic behavior Sudha et al. (2016)

Pluronic F127 curcumin Chemo-hyperthermia Khodaei et al. (2022)

Pd

Pd DOX Effective drug delivery Shanthi et al. (2015)
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with superior performance (Wozniak-Budych et al., 2017; Li et al.,

2021; Nor et al., 2021; Targhi et al., 2021).

2.2.4 Zn oxide nano-delivery platform
Zn oxide (ZnO) exists in various forms, such as ZnO

nanospheres, nanosheets, nanorods, and nanowires

(Carofiglio et al., 2020; Wojnarowicz et al., 2020). Zn ions

have been confirmed to effectively promote the

mineralization of the extracellular matrix of bone marrow

mesenchymal stem cells (BMSCs) (Wang Q. et al., 2018),

implant osseointegration (Chen et al., 2017), migration and

tube formation of vascular endothelial cells (Nakamura et al.,

2020), and antibacterial effects (Yang et al., 2020). ZnO is a

high-profile candidate material for bone tissue engineering

material modification, bone regeneration, angiogenesis, as

well as antibacterial and anti-infection effects. In addition,

ZnO has broad prospects as nanocarriers. The loading of ZnO

for various drugs can be realized using simple and quick

methods. Currently, researchers have successfully used ZnO

to load hesperidin (Attia et al., 2021), gentamicin (Hemmati

et al., 2020), daunorubicin (Kumar and Pal, 2019),

docosahexaenoic acid (Hussein et al., 2019), curcumin

(Kundu et al., 2019), and other drugs.

2.2.5 Ti dioxide nano-delivery platform
It is well known that the Ti metal has excellent

biocompatibility and osseointegration ability. Ti or Ti

alloys have been widely used as implant materials in

implants, bone substitute materials, fracture fixation

screws, meshes, etc. Based on the excellent properties of

Ti, Ti dioxide (TiO2) nanomaterials have attracted the

attention of researchers. Numerous nanostructures of

TiO2, such as TiO2 nanotubes, NPs, matrices, rods, and

whiskers, have emerging applications as delivery platforms

for different drugs or active factors. For example, TiO2

nanomaterials can deliver multiple small-molecule drugs,

such as dexamethasone, temozolomide, curcumin,

cisplatin, gambogic acid, valproic acid, DOX, and

daunorubicin, as well as effectively deliver

methylthioadenosine nucleosidase inhibitor, biologically

active protein human recombinant BMP-2 and metal

tungsten, strontium, etc. (Chen et al., 2011; Escobar et al.,

2019; Li et al., 2020c; Geng et al., 2021; Han et al., 2021).

Evidently, TiO2 is a powerful nano-delivery platform and an

extremely promising material for bone health maintenance.

2.2.6 Iron oxide nano-delivery platform
Superparamagnetic iron oxide NPs (SIONs) are

multifunctional nanomaterials of significance in bone disease

diagnosis, targeted delivery, and bone replacement material

modification because of their unique magnetic and biological

properties. Iron oxide NPs have been approved for clinical

applications. Magnetic iron oxide NPs have excellent advantages

as nanocarriers, because they can efficiently load various drugs and

also be imaged or reach target sites in vivo via an external magnetic

force, enhancing the bioavailability of therapeutic compounds.

Studies have demonstrated that SIONs can effectively deliver

cisplatin, curcumin, lauric acid, mitoxantrone, artemisinin,

docetaxel, paclitaxel, dopamine, 10-hydroxycamptothecin,

docetaxel, DOX, rifampicin, tetracycline hydrochloride, and other

drugs (Nagesh et al., 2016; Prakash et al., 2019; Vangijzegem et al.,

2019). In addition, a few peptides, antibodies, or organic small

molecules, such as amino-terminal fragment peptide (Yang et al.,

2009), anti-HER2/neu peptide (Mu et al., 2015), anti-CD44 antibody

(Alsharif et al., 2020), prostate specific membrane antigen (Bandini

et al., 2017), β-cyclodextrin (Sudha et al., 2016), and pluronic

F127 polymer (Khodaei et al., 2022)were conjugated on the SION

surfaces, consequently enhancing the targeting function of the SIONs

delivery system, increasing the specificity and therapeutic effect.

2.2.7 Palladium nano-delivery platform
Palladium is a precious metal material with high mechanical

strength, high porosity, as well as anti-microbial, anti-oxidation,

and anti-cancer properties. It is a worthy target for various

applications including medical biomaterials, nano-delivery

carriers, and bone disease treatment. Palladium is an effective

nano-delivery platform, which has been demonstrated in several

studies, and drugs, such as DOX, has been successfully loaded

using palladium NPs (Shanthi et al., 2015).

3 Loading method of MNPs

The MNP loading method affects the loading efficiency

and release rule of therapeutic molecules, further affecting

FIGURE 3
Different loading methods of MNPs.
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the diagnosis and treatment of bone-related diseases or bone

regeneration. There are three commonly used methods for

MNP loading with therapeutic molecules: post-loading, Co-

loading, and biomimetic mineralization (Liu et al., 2020c;

Lawson et al., 2021). Different loading methods are suitable

for different kinds of MNPs. The three loading methods of

MNPs are elaborated in the following subsections

(Figure 3).

3.1 Post-loading

Post-loading can also be referred to as “postsynthetic

encapsulation/loading,” which is a strategy of first

fabricating nanocarriers and then loading drugs to achieve

high drug loading nano drug-loading systems. Using this

method, non-porous nanomaterials can be combined with

therapeutic molecules via electrostatic attraction, non-

covalent hydrophobic interactions, π–π stacking, and

hydrogen bonding. Benefiting from tunable pore, high

specific surface areas, and active surfaces, some porous

NPs can also be loaded using drugs via this method (Chen

et al., 2021). Therefore, postsynthetic encapsulation/loading

is a suitable method for most MNPs; however, the difference

is that for MNPs with pores, small drug molecules can be

encapsulated inside the MNPs through the pore size; for

MNPs without sufficient pore sizes or if the pores are already

occupied, drug molecules can only be loaded onto the

nanomaterial surface or functionalized modified surfaces.

This post-loading method is particularly suitable for loading

additional therapeutic molecules into MOFs that have

already encapsulated the drug. The MNP pore size, drug-

to-pore size ratio, and strength of interactions, such as

coordination bonds, hydrophobic interactions,

electrostatic attraction, and π–π stacking, between the

drug and MNPs can all affect the loading efficiency of

post-loading (Cao et al., 2020; Lawson et al., 2021).

Farhad et al. (Ahmadijokani et al., 2021) post-loaded

methotrexate with three MOFs, MIL-53, NH2-MIL-53 and

NH2-MIL-101, and observed polar amine groups, larger

surface area and pore volume, high positive zeta potential,

and NH2-MIL-101 exhibited the highest loading capacity,

457.69 mg/g, of the drug. They proposed that electrostatic

interactions, π–π stacking interactions, and H-bonding are

the primary mechanisms by which methotrexate is

successfully post-loaded. Hu et al. (Hu J. Q. et al., 2021)

loaded CHC on Mg-MOF-74 using the “post-loading”

method and achieved a loading of 625 mg g−1. Post-

loading metal NPs can also be used to achieve high drug

loading. A few researchers used Polyethylene glycol–poly

(ethylene imine) -functionalized Au NPs to load chlorin e6,

and the loading content reached 46.4 ± 0.4% (Chuang et al.,

2020).

3.2 Co-loading

Co-loading, also known as “one-pot synthesis”, refers to

the strategy of loading or encapsulating drugs during MNP

formation. This loading method is primarily applicable to

MOFs, and the therapeutic molecules can be used as building

blocks to contribute to MOF formation along with metal ions.

The size of the therapeutic molecule affects physical

properties, such as the size and charge of the final MOF

drug-carrying system, to an extent. One-pot synthesis is

simple, convenient, and can facilitate the uniform

distribution of drug molecules in the whole MOFs as well

as effectively prevent the rapid release of drug molecules when

the pore size of MOFs is smaller than the particle size of the

drug. Electrostatic adsorption is of great significance to the

nano-delivery system formed using one-pot synthesis, which

is often used in the synthesis of nanomedicines for bone

regeneration or bone disease treatment. Risedronate was

successfully loaded into ZIF-8 using one-pot synthesis, and an

encapsulation rate of 64.21 ± 2.48% was achieved (Cheng et al.,

2020). Sun et al. (Sun et al., 2022) also loaded 4-chloro-

N-cyclohexyl-N-(phenylmethyl)-benzamide (FPS-ZM1) in a Co-

based MOF (ZIF-67) using one-pot synthesis. The results

demonstrated that post loading of FPS-ZM1 with ZIF-67, the

particle size changed from 386.0 to 466.3 nm, the zeta potential

changed from 3.63 to 3.10 mV, and the ZIF-67 delivery platform

achieved a favorable sustained release effect of FPS-ZM1.

3.3 Biomimetic mineralization

Biomimetic mineralization is a loading method similar to

Co-loading, in which active molecules and MNPs are mixed.

However, biomimetic mineralization is predominantly used to

load biomolecules, such as nucleic acids and proteins, and

relies on biomolecules as nucleation sites for MNPs

crystallization (Wang J. et al., 2020). The encapsulation

mechanism is forming bonds/interactions between the

MNPs building blocks and loading biomolecules to

facilitate nucleation. In this encapsulated state,

biomolecules can be protected from harsh chemical

environments, heat, and degrading enzymes, while the

simultaneous delayed activity or slow release of

biomolecules mediated by MNPs disintegration may occur

(Zou D. et al., 2020; Ha et al., 2021). The tobacco mosaic virus

was loaded onto ZIF-8 via biomimetic mineralization, and its

thermal and chemical stability was significantly enhanced

after encapsulation (Li et al., 2018). Li et al. (Li et al.,

2019b) also successfully encapsulated pDNA into ZIF-8 via

biomimetic mineralization, where pDNA was uniformly

distributed within the ZIF-8 nanostructure, consequently

protecting it against enzymatic degradation. In a study on

biomimetic mineralization of Fe3O4 NPs (Liu L. et al., 2019),
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14-mer bi-functional copolypeptide was used as a template

and a ginger extract was applied as an antioxidant and a size-

conditioning agent. Under the cooperative effect of the

peptide and ginger extract, the size and dispersibility of

Fe3O4 crystals were effectively controlled. Tong et al. (Tong

et al., 2015) loaded TiO2 NPs onto C3N4 nanosheets via the

arginine-enabled biomimetic mineralization, and made Ag

NPs nucleate and grow on the surface of TiO2 NPs.

4 Application scenarios of MNPs in
bone diseases

4.1 Bone regeneration

The regenerative treatment of large-area bone defects

imposes strict requirements on tissue engineering materials,

particularly in the conditions accompanying basic diseases,

such as osteoporosis, hyperlipidemia, diabetes, infection, and

vascular necrosis, and the performance of the tissue engineering

materials is crucial. In these challenging bone-repair scenarios,

MNPs, particularly the Zn-based NPs, exhibit satisfactory

application potential and are widely used for enhancing or

modifying bone tissue engineering materials. For example,

MNPs comprising ZIF-8 with Zn as the coordination core

have assisted numerous novel bone tissue engineering

materials in the completion of complex bone repair tasks

(Figure 4). In the face of bone metabolism disorders and

hyperlipidemia, Qiao et al. (Qiao M. et al., 2022) used ZIF-8

to encapsulate the small-molecule drug, simvastatin, to reduce

serum cholesterol levels to form SIM@ZIF-8 nanocarrier

particles, and SIM@ZIF-8 for enhancing the performance of

poly (ethylene glycol) diacrylate (PEGDA) and sodium

alginate (SA) to form SIM@ZIF-8/PEGDA/SA (nSZPS)

composite biogels. The corresponding in vivo and in vitro

experiments confirmed that using SIM@ZIF-8, nSZPS can

inhibit adipogenic differentiation and promote osteogenic

differentiation of BMSCs in vitro, as well as promote blood

FIGURE 4
ZIF-8-based MNPs were demonstrated for building bone tissue engineering materials. (A) SIM@ZIF-8 carried hydrogel designed for regulating
the balance of osteogenic and adipogenic differentiation, copyright 2022 Elsevier. (B) A ZIF-8 loading miRNA promoting vascularized bone
formation, copyright 2021 Elsevier. (C) A ZIF-8-based MNP aiming at preventing osteoclasts, copyright 2019 ACS Publications. (D) Bone implants
modified with DMOG@ZIF-8, copyright 2019 SAGE Publications.
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lipid lowering and osseointegration of bone in hyperlipidemia

rats (Figure 3). For treating bone defects under ischemic

conditions, miR-21 or DMOG, which are active components

for activating blood vessels, and can also be loaded using ZIF-8,

which protect and intactly deliver drugs or nucleic acids into

cells, thereby completing the activation of the blood supply to the

damaged bone tissue area (Zhang et al., 2019; Feng et al., 2022).

In addition, for treating osteoporosis and other bone immune

behavior disorders, ZIF-8 can deliver bisphosphonates (BP) to

combat excessive osteoclast behavior (Cheng et al., 2020). In

addition, metals, such as Ti, which are consistent with bone

implants are commonly used for designing MNPs, for the design

of bone tissue engineering materials (Chen et al., 2017). Saha

et al. (Saha et al., 2021) used curcumin-loaded TiO2 nanotubes to

modify Ti6Al4V implant surfaces and obtained a novel bone

implant with both drug release and support properties. This Ti-

based MNP-optimized implant can significantly inhibit

Escherichia coli and Staphylococcus aureus, as well as

effectively promote the cell adhesion, proliferation, and

osteogenic differentiation of mesenchymal stem cells, which is

beneficial for solving infection-related problems of Ti bone

implant and its surrounding. Recently, Xue et al. (Xue et al.,

2022) endowed 3D-printed polycaprolactone (PCL) scaffolds

with excellent photothermal properties by loading

dexamethasone sodium phosphate on CuS nanoparticle. This

design can controllably release drugs under exposure to 1,064 nm

NIR light irradiation and effectively promote the osteogenic

differentiation of BMSCs.

Notably, the high loading capacity and stable delivery ability

are not the only reasons why MNPs are preferred as bone tissue

engineering modification materials. The drug release or

controlled release capability of MNPs facilitates the possibility

for multi-level, multi-stage, and multi-purpose bone

regeneration and repair. Moreover, the metal elements in

MNPs influence the physiological activities of bones. First, few

metal elements (such as Zn) directly accelerate osteogenic

differentiation (Table 2). For example, Liu et al. (2020c) used

nano-ZIF-8 directly as a catechol–chitosan enhancer to prepare a

multifunctional bone adhesive hydrogel, and the sustained-

release Zn ions up-regulated the production and secretion of

alkaline phosphatase, collagen1 and osteocalcin promoted the

osteogenic differentiation of BMSCs and accelerated bone

remodeling. Similar applications have also been observed in a

few 3D-printed bone scaffolds or implants (Zhong et al., 2020).

Similarly, the nano-ZnO particles also have a direct role in

promoting bone repair. Studies have demonstrated that the

osteogenic effect of these Zn-based nanomaterials may be

achieved via upregulating the Wnt/β-catenin pathway (Gao

et al., 2021). In addition to direct osteogenesis, accelerate

vascularized bone repair has been achieved using NPs derived

from Fe, Cu, and Mg (Zhu et al., 2020), thereby providing

advantages for their constructed MNPs for bone repair. In

addition, the potential hindrance of the osteoclast process is

also of interest to researchers. Bai et al. (Bai et al., 2020) studied

the effect of Au NPs without any drug loading on osteoclasts and

observed that Au NPs can interact with the V0 domain of

vacuolar-type H + -ATPase, consequently preventing its

recruitment of the V1 domain, impairing osteoclast acid

secretion, and inhibiting the proteolytic enzyme secretion by

osteoclasts to degrade bone matrix. The inhibitory effect of Au

NPs on bone resorption was demonstrated in a

lipopolysaccharide-induced bone erosion mouse model.

TABLE 2 Application of one Zn-based MOF (ZIF-8) in treating bone disease and regeneration.

Cargo
loading

Study
model

Material form Functions Applications Citations

SIM In vitro/
In vivo

Biohydrogel Inhibited adipogenic differentiation, promoted
osteogenic differentiation

Bone regeneration Qiao et al.
(2022b)

MiR-21 In vitro/
In vivo

Nanocomposites Improved the osteogenic differentiation, promoted
angiogenesis

Bone regeneration Feng et al. (2022)

DMOG In vitro Coating on implants Effect osteogenic and angiogenic activity Bone regeneration Zhang et al.
(2019)

BP In vitro Nanocomposites Enhanced osteogenic and antiresorptive properties Bone regeneration,
Osteoporosis

Cheng et al.
(2020)

— In vitro/
In vivo

Bone adhesive hydrogel Promoted the osteogenesis of hydrogel, inhibited
bacterial activities

Bone regeneration Liu et al. (2020d)

— In vitro/
In vivo

3D-printed bone
scaffolds

Inhibited bacterial activities, promoted osteogenesis Bone regeneration Zhong et al.
(2020)

DOX In vitro/
In vivo

Nanocomposites Possessed stronger anticancer capability Osteosarcoma Xu et al. (2020)

Ald and DOX In vitro/
In vivo

Nanocomposites Enhanced killing tumor cells of bone metastases Bone metastasis Xue et al. (2020)

Cu2-XSe In vitro/
In vivo

Nanocomposites Suppressed the tumor cells and reduced the erosion of
bone tissue

Bone tumor Zou et al. (2022)
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Therefore, the active regulation of osteogenesis-related processes

using metal elements significantly facilitates the application of

MNPs in the field of bone repair.

4.2 Osteomyelitis

Osteomyelitis is an inflammatory/infectious bone disease and

considerably affects the daily life of patients, and it is commonly

occurring in people that are older, diabetic, or with poor general

health. Osteomyelitis is often caused by pyogenic bacteria, such

as Staphylococcus aureus and Staphylococcus epidermidis, and

fungal infections, such as Haemophilus influenzae and Brucella

suis fungi. It may also be a complication of orthopedic surgery,

tooth extraction, or facial plastic surgery. The predominant

treatment approach currently employed is the administration

of systemic antibiotics, which is less effective at the localized

infection site. The topical use of MNPs encapsulated with

antibiotics or MNPs with targeted functions is favorable

choice to enhance the therapy of osteomyelitis, delay drug

action time, reduce the systemic side effects, and reduce

osteonecrosis. Abdulrehman et al. (Abdulrehman et al., 2020)

synthesized Ag–Cu–boron (ACB) alloy NPs and obtained

ACB–OBAb nano-delivery system via the Cadherin-11

antibody (OBAb) coupling. It has been demonstrated that

ACB–OBAb can target osteoblasts and effectively inhibit

Staphylococcus aureus inside and outside the infected

osteoblasts. This study demonstrates the significance of MNPs

in reducing systemic toxicity and targeting bone infection and

inflammation. Escobar et al. (Escobar et al., 2019) used Ti dioxide

film (MTF) loaded with gentamicin and conjugated human

recombinant BMP-2 on its surface. This delivery platform can

effectively inhibit the colonization of Staphylococcus aureus as

well as significantly enhance the MC3T3-E1 preosteoblastic cell

attachment, proliferation, and differentiation. Liu et al. (Liu et al.,

2020b) used the Au NPs synthesized using Acetobacter and

Gluconobacter to load ginsenoside compound K (CK) and

surface-conjugated CopA3 to obtain the

GNP–CK–CopA3 nano-delivery system.

GNP–CK–CopA3 improved the LPS-induced production of

nitric oxide (NO) and ROS and inhibited the mRNA and

protein expressions of pro-inflammatory cytokines in

macrophages, combined with significant anti-inflammatory

effects.

In addition to the treatment of osteomyelitis via high-

efficiency drug loading, anti-inflammatory or antibacterial

activities are attributes of most MNPs that can release metal

ions, making them effective candidates for the topical treatment

of osteomyelitis. The powerful antibacterial, antifungal, and

osteoinductive properties of Ag-based nano-delivery platforms

have been extensively validated and are exceedingly the most

commonly used commercial NPs (Hauser and Nowack, 2021). In

addition, there is significant evidence that Cu-based, Ti-based,

Zn-based, Palladium-based, iron-based, Co-based and other

nanomaterials exhibit favorable bactericidal properties (Rojas-

Andrade et al., 2017). Additionally, compared with traditional

antibiotics, MNPs avoids the limitations caused by drug

resistance. Marsich et al. (Marsich et al., 2013) prepared

alginate/hydroxyapatite composite scaffolds containing Ag

NPs and demonstrated that the presence of Ag NPs endowed

the scaffolds with favorable sterilization against both Gram+ and

Gram− bacterial strains and did not affect the ability of the

scaffold to promote the proliferation of osteoblasts. Arenas-Vivo

et al. (Arenas-Vivo et al., 2019) formed nanocomposites with

MIL-125(Ti)NH2 composite Ag NPs. This nanocomposite

exhibits a favorable effect against Staphylococcus aureus

biofilm under the triple action of the intrinsic bactericidal

activity of MIL-125(Ti), bactericidal properties of Ag NPs,

and photoactivity of UVA irradiation. This study provides a

substantial basis for MNPs to inhibit bone implant biofilm

formation and treat osteomyelitis caused by bacterial

infection. According to reports (Krumdieck et al., 2019), TiO2

can be used as an effective antibacterial coating material owing to

its unique photocatalytic properties, which can effectively reduce

E. coli. In a study, magnetic Co. ferrite NPs were demonstrated to

exhibit inhibitory effects on Gram-negative Escherichia coli and

Gram-positive Staphylococcus aureus, Candida parapsilosis, and

Candida albicans. Moreover, the antibacterial effect was

improved with increasing the Co2+ content (Zalneravicius

et al., 2018). The cooperation of different metal NPs

sometimes brings new ideas for the treatment of deep

osteomyelitis. Fe3O4 NPs and Au NPs were combined to act

as the nuclear component of an engineered macrophage with a

nuclear–membrane structure. The nuclear component can

produce abundant ROS and heat under microwave irradiation

thus suppressing inflammatory responses, killing bacteria in situ,

simultaneously promoting osteoblast differentiation for

osteomyelitis (Fu et al., 2021).

4.3 Bone tumor

There are several commonly occurring types of bone tumors,

such as osteosarcoma and bone metastases originating from

breast or prostate cancer. The common symptoms of bone

tumors are severe pain, pathological fractures, bone marrow

aplasia, and hypercalcemia, which induce considerable pain in

patients. CT, radiotherapy, and ablation are the commonly used

non-surgical methods for treating bone tumors. DOX, cisplatin,

ifosfamide, BP, tetracycline, denosumab, cabozantinib, mesna,

methotrexate, etc. Are commonly used as CT drugs for bone

tumors. To reach bone tissues via systemic administration, drugs

require to penetrate the blood–bone marrow barrier including

the clefts of bone marrow sinusoidal capillaries with diameters of

80–100 nm (Sarin, 2010). Therefore, MNPs are favored by bone

tumor specialists because of their small sizes and high loading
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TABLE 3 Application scenarios of MNPs in bone diseases.

Application scenarios in bone diseases MNPs Cargo loading Focus points Citations

Bone regeneration ZIF-8 SIM Osteogenic and adipogenic differentiation Qiao et al. (2022)

ZIF-8 miR-21 Vascularized Osteogenesis Feng et al. (2022)

TiO2 DMOG Osteogenic differentiation Zhang et al. (2019)

ZIF-8 Bisphosphonates Osteoclast control Cheng et al. (2020)

TiO2 Curcumin Antibacterial Saha et al. (2021)

CuS Dexamethasone sodium phosphate NIR response Xue et al. (2022)

ZIF-8 — Bone remodeling Liu et al. (2020c)
Zhong et al. (2020)

ZnO — Osteogenic differentiation Gao et al. (2021)

Au — Inhibitory effect on bone resorption Bai et al. (2020)

Osteomyelitis Ag−Cu−B Cadherin-11 antibody Inhibition of bone inflammation Abdulrehman et al. (2020)

TiO2 Gentamicin/BMP-2 Antibacterial, Escobar et al. (2019)

Au GNP−CK−CopA3 Anti-inflammatory effects Liu et al. (2020b)

Ag — Antibacterial Hauser and Nowack (2021)
Marsich et al. (2013)

MIL-125(Ti)NH2 composite Ag — Inhibition of bone implant biofilm formation Arenas-Vivo et al. (2019)

TiO2 — Antibacterial Krumdieck et al. (2019)

Magnetic Co ferrite NPs — Antibacterial Zalneravicius et al. (2018)

Fe3O4 NPs and Au NPs — Microwave response and suppressing inflammatory Fu et al. (2021)

Bone tumor Co-ferrocene MOF Glucose oxidase CDT Fang et al. (2020)

Iron oxide Riluzole Tumor apoptosis Raghubir et al. (2020)

Cu-MOF Methotrexate Targeted drug delivery Nezhad-M et al. (2019)

Mn - Au - mesoporous silica NPs Ald and DOX CT and CDT Sha et al. (2021)

TiO2 W Sonodynamic − chemodynamic combination tumor therapy Geng et al. (2021)

Cu/Zn-MOF ICG PTT, PDT, and CDT Cheng et al. (2021)

ZIF-8 Cu2-XSe CDT and PTT Zou et al. (2022)

Osteoarthritis Fe-MOF PCA Anti-osteoarthritis Xiong et al. (2020)

Au α-TOS and anti-TNF-α siRNA Combination of antioxidant and anti-inflammatory Li et al. (2020)

CuS@MnO2 Metformincan Anti-inflammation and chondrogenesis Lu et al. (2022)

Au-coated CuS Vasoactive intestinal peptide and HA Removing hyperplasia Huang et al. (2021)

Au-coated Fe3O4 — Inhibiting joint edema and inflammation Carneiro et al. (2020)
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capacities. Fang et al. (Fang et al., 2020) synthesized a nanoscale

Co–ferrocene MOF (Co–Fc NMOF) and loaded glucose oxidase

with this nanoplatform to construct Co–Fc@GOx, which plays

the role of a cascade enzymatic/Fenton catalytic platform to cure

cancer via CDT. In addition, a few scholars (Raghubir et al., 2020)

delivered riluzole through two different shapes of iron oxide NPs

(nanocages or nanospheres, 15 ± 2.5 nm), and significantly

induced tumor tissue apoptosis in the osteosarcoma model

mice. Mokhtari et al. (Nezhad-Mokhtari et al., 2019) loaded

methotrexate into the empty face-centered cubic lattice and two-

dimensional tunnels of Cu-MOF to form nano-delivery ions (Cu-

MOF/MTX), and further inserted Cu-MOF/MTX into a series of

synthesis experiments of novel microspheres (Cu-MOF/MTX@

GM) from pH-sensitive gelatin microsphere biopolymers,

demonstrating that the microspheres are suitable for targeted

anticancer drug delivery. In a report (Sha et al., 2021), metal

manganese (Mn) was in situ doped into Au core mesoporous

silica NPs to construct a multifunctional MNPs (Au@MMSN).

Au@MMSN was further loaded with Ald and DOX (DOX@Au@

MMSN-Ald) for osteosarcoma treatment. It was confirmed that

the Au and Mn ions released from the nanocomposite could be

used for computer tomography and MR dual-modality imaging

for in vivo localization. At the same time, DOX@Au@MMSN-

Ald can release antitumor drugs responsively to realize the

combined treatment of CT and CDT for osteosarcoma.

MNPs can load drugs for bone tumor CTP and show

considerable potential in PTT, PDT, sonodynamic therapy,

and other new noninvasive solid tumor therapy or multimode

combined therapy. Recently, Geng et al. (Geng et al., 2021)

reported ultrafine W-doped TiO2 (W- TiO2) nanorods for

sonodynamic−chemodynamic combination tumor therapy.

They observed that W doping narrows the band gap from

3.2 to 2.3 eV, enhancing the TiO2 acoustodynamic properties;

W5+ doping endows W- TiO2 nanorods with Fenton-like

reactivity; W6+ doping promotes the transfer of endogenous

transformation of glutathione to W5+ ions, thereby enhancing

the chemical kinetic activity of W- TiO2 and changing the tumor

microenvironment. In vivo experiments demonstrated that W-

TiO2 enhances tumor eradication in an osteosarcoma model

under single ultrasound irradiation. Cheng et al. (Cheng et al.,

2021) used a mixed-metal Cu/Zn-MOF for integrating Mn2+

and MnO2 and loaded the photosensitizer ICG to form

nanocomposites. The contained ICG can realize photothermal

imaging and PTT under laser irradiation. The nanocomposite

exhibits fluorescence imaging and PDT capacity by releasing ICG

upon reaching the tumor site and can produce cytotoxic OH by

releasing Cu+/Mn2+ and scavenging glutathione to exert CDT

effect. The study demonstrates that MNPs are excellent candidate

materials for PTT/PDT/CDT of bone tumors. Recently, Zou et al.

(Zou et al., 2022) developed a composite nanoplatform using

ZIF-8–capped Cu2-XSe and used it for CDT and PTT of bone

tumors. Cu2-XSe was released with the cleavage of ZIF-8 under

acidic microenvironment in tumor and subsequently degrade

into Cu+ and Cu2+ to initiate a Fenton-like reaction inducing

CDT. At the same time, Cu2-XSe can also induce PTT effect and

inhibit tumor cells and osteoclasts. This ZIF8-capped

nanomedicine effectively demonstrates the potential value of

MNPs for advanced therapy in bone tumors.

4.4 Osteoarthritis

Osteoarthritis is a chronic disease characterized by the

progressive degeneration of articular cartilage, abnormal

reduction of joint lubrication, and synovial inflammation.

Joint pain as well as joint damage and dysfunction are the

primary clinical symptoms of osteoarthritis (Litwic et al.,

2013). Several common drugs, including anti-rheumatic drugs,

non-steroidal anti-inflammatory drugs, glucocorticoids, and

newly discovered biological agents, are used to treat

osteoarthritis (Mackenzie and MacDonald, 2010). Although

intra-articular drug injection is a characteristic administration

mode for treating osteoarthritis, the free drug is rapidly cleared

from the joint cavity, leading to increased complications and

decreased drug bioavailability (Kompel et al., 2019). Based on

this, MNPs have been extensively explored as a drug-loading

vehicle for osteoarthritis (Table 3). Xiong et al. (Xiong et al.,

2020) developed a pH-responsive Fe-based MOF system MOF@

HA@PCA loaded with an anti-inflammatory protocatechuic acid

(PCA) and modified with hyaluronic acid (HA), which can

respond to the acidic microenvironment and gradually

released for treating osteoarthritis PCA, which downregulates

the expression of osteoarthritis inflammatory markers and

promotes the expression of cartilage-specific markers,

significantly reducing IL-1β-induced synovial inflammation in

both joints and chondrocytes. Li et al. (Li et al., 2020b) generated

five poly (amidoamine) dendrimer-entrapped Au NPs (Au

DENPs) that simultaneously delivered antioxidant α-TOS and

anti-inflammatory antiTNF-α siRNA (Au DENPs/TNF-α siRNA
complex thing). The complex can significantly enhance the

antioxidant capacities of macrophages and down-regulate

inflammatory cytokines in arthritis mouse models, thereby

achieving a combined antioxidant and anti-inflammatory

therapy for joint inflammation. MNPs also can contribute

uniquely to stem cell therapy for osteoarthritis. The CuS@

MnO2 NPs loaded with metformincan could be targeted for

uptake by MSCs which further were used as stem cell therapy for

osteoarthritis. MSCs modified with this MNPs were validated to

exhibit an increased capability of anti-inflammation and

chondrogenesis, and effectively relieve osteoarthritis symptoms

(Lu et al., 2022).

Similarly, MNPs provide new avenues for osteoarthritis

treatment owing to their excellent light responsiveness, strong

plasticity, and self-anti-inflammatory properties. Huang et al.

(Huang et al., 2021) reported a metal/semiconductor composite

(Au NR@CuS) comprising octahedral Cu sulfide shell and Au
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nanorod core, loaded with vasoactive intestinal peptide and HA to

form VIP–HA–Au NR@CuS NPs. It was experimentally

demonstrated that the nanocomposite generated a photothermal

effect under laser irradiation and introduced additional OH for PDT

under the integration of a Fenton-like reaction and Au NR and CuS

semiconductor photocatalysts; targeting synovial cells under the

action of active intestinal peptides and HA, thereby exerting the

combined effect of PTT, PDT, and CT, significantly removing the

hyperplastic synovium, reducing joint inflammation symptoms. In

addition, it has been reported (Carneiro et al., 2020) that Au-coated

superparamagnetic iron oxide NPs could more significantly reduce

the number of immunostaining positive cells of TNF-α and IL-1β in
synovium compared with the drug methotrexate alone, thereby

inhibiting joint edema and inflammation.

5 Challenges of MNPs

Although the applications of MNPs in bone tissue

engineering and the management of various bone-related

diseases have been well reported, only a few MNPs have

entered the market evaluation stage and received final

approvals. Numerous challenges remain to be overcome in the

translation of MNPs from basic experiments to clinical

applications in orthopedics, which may originate from

multiple aspects and fields. We analyzed the reasons and

summarized them into the following points:

5.1 Agglomeration

Several reports have mentioned the agglomeration of MNPs,

which limits MNPs functionality in the nano-scale, as well as

their dispersibility and stability. A few scholars believe that

electrostatic interactions, which is size-dependent, cause this

agglomeration (Chandrakala et al., 2022). Agglomeration in

vivo hinders the dispersibility of MNPs, which challenges the

targeting efficacy and biosecurity of MNPs. Apparently,

agglomeration may also affect the in vivo behavior of MNPs,

such as the cellular uptake, inter-tissue transport, penetration,

diffusion, and biocompatibility (Sengul and Asmatulu, 2020),

which hinder the application of MNPs as active molecules or

therapeutic agent delivery vehicles. Surface functional modification of

MNPs is currently a commonly used method to overcome the

limitations of agglomeration instability and improve biological

applications. The surface functionalization of MNPs can be

achieved via techniques such as coordination binding of

unsaturated metal sites, ligand exchange, and covalent binding

with pre-functionalized linkers (Kainz and Reiser, 2014; Nolte

et al., 2017). The thermal and chemical stability of MOFs can be

significantly improved using amino-modified MOFs in 2-

aminoterephthalic acid ligands (Chen et al., 2019). Surface

PEGylation is an FDA-approved technique (Veronese and Pasut,

2005). In addition, complexation with other nanomaterials (polymer

NPs, liposomes, cubes, etc.) can reduceMNP agglomeration (Phuong

et al., 2019). These methods impose strict requirements on process

flow, cost, and technical parameters. Moreover, all MNPs cannot

overcome the agglomeration limitation via the aforementioned

methods. The surface chemical properties of MNPs are

significantly vary, and the chemical groups or compounds that can

be matched are complex. Methods to overcome MNP agglomeration

remains a topic worthy of future research.

5.2 Toxicity

The toxicity of MNPs has always been a hot research topic. In

addition to the agglomeration phenomenon mentioned above,

there are several reasons for MNP toxicity. The recognized high

specific surface area of MNPs leads to high surface reactivity,

which is a double-edged sword that may bring unexpected

toxicity mechanisms to MNPs (Mahana et al., 2021). The

small sizes of MNPs promote the cellular uptake rate, which

subsequently increases bioavailability as well as enhances toxicity

(Yang et al., 2013). In addition, MNPs release numerous metal

ions with a bactericidal effect, but excessive metal ions can impair

the electrolyte balance of the body fluid environment and the

normal ion exchange of cell membranes, consequently resulting

in cytotoxicity (Wang et al., 2016a). It has been reported that

heavy metal ions accumulated in osteoblasts and chondrocytes

can lead to cellular dysfunction by replacing essential elements in

enzymes and disrupting the conformation of the active site,

thereby increasing the risk of osteoporosis and osteoarthritis

(Krizkova et al., 2016). Organic linkers, metal ions, solvents, and

chemical residues formed during MNP synthesis also cause

toxicity, which still requires attention and should be resolved.

Although a few scholars (Huang et al., 2020; Ting et al., 2022)

have functionally modified MNP surfaces by targeting ligands,

attempting to reduce systemic toxicity through the targeting of

MNPs, MNP toxicity remains a major problem that limits its

clinical application.

5.3 Complexity

The application of MNPs in orthopedics, particularly in

tissue engineering materials, often requires the cooperation of

materials such as scaffolds, gels, and biofilms. The type of disease,

drug resistance, implantation site, mechanical properties, and

several other requirements should be comprehensively

considered. This requires the precise control of MNPs by

nanomedicine experts, as well as a high degree of

coordination among orthopedic surgeons, biomedical

scientists, and biomechanical engineers (Schuemann et al.,

2020). In addition, the repair/treatment requirements of bone

defects/diseases in different zones of the epiphysis, diaphysis,
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metaphysis, and joints are different. The most important

requirement for diaphyseal healing is the establishment of

mechanical strength; for the metaphysis, joints, both

mechanical strength and flexibility require to be considered.

Therefore, the mechanical, physiological, pathological,

immune biochemical, and surgical conditions for the design

and implementation of MNPs into scaffolds should be

comprehensively considered. That is, for different orthopedic

problems, appropriate MNPs should be specially designed for the

corresponding needs. Particularly, the selection of optimal drugs

or active ingredients, metal ions, organic ligands, supporting

biomaterials, machines, preparation techniques is a complex

interdisciplinary task.

6 Conclusion

The rapid development of MNPs provides new avenues for

innovating the diagnosis and treatment of bone diseases and

regeneration. The advantages of MNPs are significant: high

loading rate, excellent antibacterial properties, functionally

modified surface, tunable pore volume and size, acceptable

biocompatibility, and strong mechanical properties as well as

a few unique features such as magnetic properties, light

responsiveness, and pH responsiveness. Various types of

MNPs, such as MOFs, metal nanoplatforms, and metal

oxide nanoplatforms, exist. Ag NPs and Ag2O NPs are

exceedingly the most commonly used commercial

nanoplatforms. The current mainstream research is focused

on the development and application of MOFs. In addition to

small-molecule drug MNPs, various therapeutic agents, such

as proteins, viruses, peptides, and RNA, can be effectively

delivered. Moreover, several delivery methods can be used,

such as post-loading, Co-loading, and biomimetic

mineralization. MNPs can be used in various orthopedic

scenarios, most commonly in bone tissue engineering

regeneration and can also play a favorable role in bone

regeneration in a few osteoporotic diseases. In addition,

MNPs have significant potential in treating diseases, such

as osteomyelitis caused by various infections, bone

metastases from different sources, osteosarcoma, and

osteoarthritis. However, MNPs still have limitations; for

instance, the problems of aggregation and toxicity require

to be further overcome. In the future, multidisciplinary efforts

are required to promote the clinical application of MNPs in

orthopedics.
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