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Prediction of advanced fibrosis in 
non-alcoholic fatty liver disease 
using gut microbiota-based 
approaches compared with simple 
non-invasive tools
Sonja Lang1,2, Fedja Farowski3,4,5, Anna Martin1, Hilmar Wisplinghoff6,7,8, 
Maria J. G. T. Vehreschild3,4,5, Marcin Krawczyk9,10, Angela Nowag6,8, Anne Kretzschmar6, 
Claus Scholz6, Philipp Kasper1, Christoph Roderburg11, Frank Lammert9, Tobias Goeser1, 
Hans-Michael Steffen1 & Münevver Demir11,1 ✉

Liver fibrosis is the major determinant of liver related complications in patients with non-alcoholic fatty 
liver disease (NAFLD). A gut microbiota signature has been explored to predict advanced fibrosis in 
NAFLD patients. The aim of this study was to validate and compare the diagnostic performance of gut 
microbiota-based approaches to simple non-invasive tools for the prediction of advanced fibrosis in 
NAFLD. 16S rRNA gene sequencing was performed in a cohort of 83 biopsy-proven NAFLD patients and 
13 patients with non-invasively diagnosed NAFLD-cirrhosis. Random Forest models based on clinical 
data and sequencing results were compared with transient elastography, the NAFLD fibrosis score 
(NFS) and FIB-4 index. A Random Forest model containing clinical features and bacterial taxa achieved 
an area under the curve (AUC) of 0.87 which was only marginally superior to a model without microbiota 
features (AUC 0.85). The model that aimed to validate a published algorithm achieved an AUC of 0.71. 
AUC’s for NFS and FIB-4 index were 0.86 and 0.85. Transient elastography performed best with an AUC 
of 0.93. Gut microbiota signatures might help to predict advanced fibrosis in NAFLD. However, transient 
elastography achieved the best diagnostic performance for the detection of NAFLD patients at risk for 
disease progression.

Non-alcoholic fatty liver disease (NAFLD) is a global health issue with growing incidence1. Some patients with 
simple steatosis develop liver fibrosis which can lead to cirrhosis, hepatocellular carcinoma, liver transplantation 
and death2,3. The presence of liver fibrosis is the major determinant of future liver related complications4,5. Liver 
biopsy, an invasive procedure with an inherent risk of complications remains the gold-standard for disease grad-
ing and staging.
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There is an urgent need for reliable non-invasive tools to detect NAFLD patients at risk for disease progression 
in order to prevent further complications. Several non-invasive tests such as the NAFLD fibrosis score (NFS)6 
and FIB-4 index7 have been developed and included into a diagnostic algorithm proposed by the European 
Association for the Study of the Liver8.

Recent studies have further linked alterations in the gut microbiota to disease severity in NAFLD9–19. Loomba 
et al. were the first, who precisely and non-invasively identified NAFLD patients with advanced fibrosis (F3-F4) 
by using a machine learning algorithm which combined the abundance of specific gut microbial taxa and clinical 
features15. However, this Random Forest algorithm has not been validated so far.

The aim of this study was to validate the diagnostic accuracy of the gut microbiota-based prediction model 
published by Loomba et al.15, to compare the results to an own Random Forest model including clinical features 
and 16S rRNA gene sequencing data and to compare the results to the NFS and FIB-4 index as well as transient 
elastography as ultrasound-based method for the prediction of advanced fibrosis (fibrosis stage F3-F4) in 96 
NAFLD patients.

Methods
Patient cohort.  This cross-sectional, prospective study was primarily designed to detect associations 
between the gut microbiota, diet, as well as genetic factors with the activity and severity of NAFLD. Therefore, 
a total of 180 NAFLD patients were prospectively enrolled between March 2015 and December 2018 in the out-
patient liver department of the Clinic for Gastroenterology and Hepatology, University Hospital of Cologne, 
Germany. The protocol was approved by the Ethics Commission of Cologne University’s Faculty of Medicine 
and written informed consent was obtained from each patient. The study was performed in accordance with the 
Declaration of Helsinki.

In this secondary analysis, 83 biopsy-proven NAFLD patients and 13 NAFLD patients diagnosed with cirrho-
sis based on characteristic clinical findings (see criteria below) were included.

Patients were referred to our tertiary referral center with elevated liver function tests and/or liver abnormal-
ities on ultrasound for further diagnostic tests, or with already diagnosed NAFLD in order to investigate disease 
activity and severity. If NAFLD diagnosis was made or confirmed, patients were consecutively enrolled in this 
observational study, after written informed consent was obtained.

Within the study, a detailed history, physical exam, anthropometric measurements, blood pressure measure-
ments, ultrasound and/or magnetic resonance imaging (MRI), transient elastography and liver biopsy, if clinically 
indicated, as per standard of care were performed. NAFLD was diagnosed, if the following conditions were met: 
hepatic steatosis on liver imaging (ultrasound and/or magnet resonance imaging) and/or the presence of >5% 
fat in histological analysis of liver biopsy, daily alcohol consumption of less than 10 g in women and less than 
20 g in men, absence of steatogenic drugs such as glucocorticoids, methotrexate, amiodarone and tamoxifen, 
absence of other diseases causing secondary steatosis such as human immunodeficiency virus infection, celiac 
disease or inflammatory bowel disease, absence of other chronic liver diseases, e.g. viral hepatitis, autoimmune 
hepatitis, toxic liver injury, alcoholic steatohepatitis, cholestatic liver disease, Wilson’s disease and hereditary 
hemochromatosis. Alcohol consumption was self-reported. The daily alcohol intake was calculated based on the 
regular amount of specific alcoholic beverages according to patients’ disclosures. Exclusion criteria for all study 
subjects were oral- or intravenous antibiotic treatment within the last 6 months prior to the study, known malig-
nancy, pregnancy, and age <18 years. Any recommendations or treatment suggestions for study participants did 
not differ from usual patient care. Thus, NAFLD patients received the same overall lifestyle recommendations 
as indicated in the current European guideline20. Further exclusion criteria for NAFLD patients were ongoing 
successful lifestyle modifications defined as more than 5% loss of body weight within the last three months prior 
to enrollment or current or prior participation in an interventional non-alcoholic steatohepatitis (NASH) study21.

Abdominal ultrasound was performed for all patients. All blood samples for laboratory analyses were col-
lected under fasting conditions. Anthropometric measurements were carried out by trained physicians or 
research assistant nurses.

Type 2 diabetes was defined as glycated hemoglobin (HbA1c) ≥6.5% and/or fasting glucose ≥126 mg/dL and/
or use of antidiabetic medications. Overweight was defined as body mass index (BMI) ≥ 25 kg/m2. Metabolic 
syndrome was defined following the International Diabetes Foundation (IDF) criteria. Arterial hypertension was 
defined as office blood pressure ≥140/90 mmHg on ≥2 measurements during ≥2 occasions or antihypertensive 
drug treatment.

Liver biopsies.  Liver biopsy was performed in patients with elevated liver function test values over a longer 
period, to rule out potential other liver diseases than NAFLD and if a possible underlying advanced liver injury 
was suggested. Indicators for an advanced liver injury included altered laboratory parameters, co-morbidities, 
findings from ultrasound and/or MRI and results from transient elastography measurements.

If liver biopsy was performed, samples were evaluated by an experienced liver pathologist who was blinded 
for all clinical and laboratory patient data. The NASH clinical research network histological scoring system22 
was used to evaluate disease activity and severity. Accordingly, steatosis was graded 0–3, ballooning was graded 
0–2, lobular inflammation was graded 0–3. Fibrosis was staged from 0–4. Stages 1a, 1b and 1c were summa-
rized as stage 1. Fibrosis stages: 0 none, 1 perisinusoidal or periportal, 2 perisinusoidal and portal/periportal, 3 
bridging fibrosis, 4 cirrhosis. The NAFLD activity score was obtained for each biopsy. This score is defined as the 
unweighted sum of the scores for steatosis, (0–3), lobular inflammation (0–3), and ballooning (0–2); thus ranging 
from 0 to 821,22.

Non-invasive diagnosis of liver cirrhosis.  If the following criteria were present, patients were staged as 
histological F4 fibrosis without determination of histological grading: liver imaging consistent with liver cirrhosis 
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(e.g. nodular hepatic contour, changes in volume distribution indicating portal hypertension in the absence of 
portal vein thrombosis, secondary phenomena of portal hypertension such as splenomegaly, enlarged caudate 
lobe and left lobe lateral segment, regenerative nodules) together with clinical and laboratory signs of portal 
hypertension/cirrhosis (e.g. low platelets, albumin and prothrombin time, esophageal varices)21,23.

Liver stiffness measurement.  For all patients, vibration controlled transient elastography (FibroScan, 
Echosens, Paris, France) was performed in fasting patients by experienced operators, blinded to all clinical patient 
data. At least 10 valid measurements were performed, and the median value of these measurements was reported 
in kPa. In accordance with the manufacturer’s protocol, patients were first scanned using the M probe and if 
indicated by the equipment, patients were re-scanned using the XL probe. Sensitivity, specificity, positive-, and 
negative predictive values were calculated using published cut-off values24.

Non-invasive fibrosis tests.  The fibrosis-4 index (FIB-4)7 and NAFLD fibrosis score6 were calculated for 
each patient. Sensitivity, specificity, positive-, and negative predictive values were calculated using published 
cut-off values8.

Gut bacterial sequencing.  The DNA was isolated using the RNeasy Power Microbiome Kit (Qiagen, 
Hilden, Germany). Seven of the 9 variable bacterial 16S rRNA gene regions (pool 1: V2, V4 and V8; pool 2: 
V3, V6/7 and V9) were amplified with the Ion 16S Metagenomics Kit (Thermo Fisher Scienctific, Waltham, 
USA) utilizing two primer pools (An integrated research solution for bacterial identification using 16S rRNA 
sequencing on the Ion PGM System with Ion Reporter Software https://www.thermofisher.com/content/ dam/
LifeTech/Documents/PDFs/Ion-16S-Metagenomics-Kit-Software-Application-ote.pdf). Amplicons were pooled 
and cleaned using the NucleoMag NGS Clean-up (Macherey-Nagel, Düren, Germany). The Qubit system was 
used to determine amplicon concentration, the library was prepared with the Ion Plus Fragment Library Kit 
(Thermo Fisher Scienctific, Waltham, USA). For the template-preparation amplicon concentration was diluted to 
30 ng/mL. The Ion Chef Kit and the Ion Chef system (both, Thermo Fisher Scienctific, Waltham, USA) were used 
to enrich and prepare the template-positive Ion Sphere Particles (ISP). Amplicon library was sequenced using the 
Ion Torrent S5 system (pH-dependent, Thermo Fisher Scienctific, Waltham, USA). The amplicon sequences were 
clustered into operational taxonomic units (OTUs) before taxonomical alignment with the MicroSEQ. 16S-rDNA 
Reference Library v2013.1 (Thermo Fisher Scienctific, Waltham, USA) and Greengenes v13.5 databases. 97% sim-
ilarity was used to genus level assignment and 99% similarity for species level assignment. Data files were assigned 
by the Ion Reporter metagenomics 16S w1.1 workflow (Thermo Fisher Scienctific, Waltham, USA). The raw data 
was processed using the programming language R version 3.5.1.

Accession numbers sequence data.  Sequence data were registered at  NCBI under 
BioProject PRJNA540738. Sequence reads are available at NCBI under the following BioSample 
IDs: SAMN11554417-SAMN11554433, SAMN11554446, SAMN11554451-SAMN11554484 and 
SAMN13895357- SAMN13895400.

Statistical analysis.  Results are expressed as median and interquartile range in parentheses for each con-
tinuous outcome and as number and percentage for categorical variables. A two-sided P value of equal or less 
than 0.05 was considered as statistically significant. Comparisons of clinical characteristics between groups were 
performed using the Kruskal-Wallis test with Dunn’s post-hoc test for continuous and Fisher’s exact test for cat-
egorical variables, each followed by false discovery rate (FDR) procedures to correct for multiple comparisons.

According to Loomba et al.15 we used a Random Forest machine learning algorithm to identify taxa and 
clinical variables that predict advanced fibrosis. In order to reduce noise, only taxa present in at least 66% of all 
samples and with a mean relative abundance >10−4 were considered as an input feature. Features resulting in the 
“best” accuracy were selected by the recursive feature elimination algorithm. The dataset was repeatedly (300 
times) randomly split into training and test datasets. We further trained a Random Forest model including only 
overlapping taxa and the same clinical variables as implemented by Loomba et al.15. Only 16 species out of 37 
species identified by Loomba et al. were also detected in our cohort. For these unresolved species, we included all 
other species within the respective genus. E.g. for “Blautia sp. KLE 1732” and “Blautia sp. CAG:37”, we included 
Blautia coccoides, Blautia faecis, Blautia glucerasea, Blautia hansenii, Blautia hydrogenotrophica, Blautia luti, 
Blautia obeum, Blautia producta, Blautia stercoris, Blautia wexlerae, Ruminococcus gnavus, Ruminococcus torques 
and Blautia unknown species, which resulted in 136 taxa. To increase the diagnostic accuracy and to reduce dis-
traction of the model, we used Random Forest feature elimination to determine the top 37 taxa out of these 136 
features together with age, Shannon diversity index, gender and BMI.

Receiver operating characteristic (ROC) analysis with calculation of the area under the curve (AUC) was per-
formed to compare all non-invasive approaches. For the clinical scores and transient elastography, we calculated 
sensitivity, specificity, positive-, and negative predictive values using published cut-offs8,24. Statistical analysis was 
performed using R statistical software, R version 3.5.1, 2018 the R Foundation for Statistical Computing. This 
report follows the Standards for Reporting Diagnostic accuracy studies (STARD) checklist25.

Results
A total of 65 patients was staged as none to significant (F0-F2) fibrosis and compared with 31 patients with 
advanced (F3-F4) fibrosis of whom 13 patients were staged as F4 fibrosis based on characteristic clinical findings 
(see Methods sections). Patients with advanced fibrosis were older, had a higher BMI and waist-circumference, 
suffered more frequently from type 2 diabetes, arterial hypertension and metabolic syndrome, differed signifi-
cantly in a variety of laboratory parameters and used proton pump inhibitors more frequently on a daily basis 
(Table 1). Patients with cirrhosis diagnosed based on characteristic clinical findings had significantly higher 
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bilirubin (P = 0.006) and international normalized ratio (INR) (P = 0.04) levels, lower platelet counts (P = 0.003), 
a higher NAFLD fibrosis score (P = 0.023) and FIB-4 Index (P = 0.028) compared to those patients with advanced 
fibrosis detected at liver biopsy (Supplementary Table 1).

Values are presented as median and interquartile range (IQR) in brackets. 65 NAFLD patients were staged 
as F0-F2 fibrosis based on their liver biopsy result (“biopsy-proven F0-F2”), 18 NAFLD patients were staged 
as F3-F4 fibrosis based on their liver biopsy result (“biopsy-proven F3-F4”) and 13 patients were staged as 
NAFLD-cirrhosis based on characteristic findings on ultrasound and/or magnetic resonance imaging together 
with clinical and laboratory findings (“non-invasive F4”) (see Methods section for details). Groups were com-
pared using the Kruskal-Wallis test with Dunn’s post-hoc test for continuous and Fisher’s exact test for cate-
gorical variables, each followed by false discovery rate (FDR) procedures to correct for multiple comparisons. 
Bold font indicates significance (P value < 0.05). Post-hoc P values for significant variables are reported in 
Supplementary Table 1. The number of missing values within the overall cohort is indicated in the third col-
umn (“N/A”). ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; GGT, 
gamma-glutamyl-transferase; HbA1c, glycated hemoglobin; INR, international normalized ratio; HDL, 
High-density lipoprotein; kPa, kilopascal; LDL, low-density lipoprotein.

All liver histology features are shown in Table 2.

Random Forest models to predict advanced fibrosis.  Our Random Forest model, including all lab-
oratory parameters from Table 1 together with age, gender, BMI, type 2 diabetes, arterial hypertension, meta-
bolic syndrome, waist circumference and all gut bacterial taxa that met the criteria as an input feature, identified 

N/A
Biopsy-proven 
F0-F2

Biopsy-proven 
F3-F4

Non-invasive 
F4 P value

Total n 65 18 13

Demographics

Age, years 50.0 (23.0) 59.0 (14.0) 64.0 (7.0) <0.001

Gender female, n (%) 30 (46.2) 9 (52.9) 5 (38.5) 0.739

Body mass index, kg/m² 30.0 (6.2) 32.1 (10.2) 31.4 (4.3) 0.053

Type 2 diabetes, n (%) 7 (10.8) 9 (52.9) 7 (53.8) <0.001

Arterial hypertension, n (%) 37 (56.9) 14 (82.4) 11 (84.6) 0.042

Metabolic syndrome (IDF criteria), n (%) 1 20 (31.2) 11 (64.7) 8 (61.5) 0.012

Waist circumference (cm) 18 105.5 (19.8) 119.5 (19.2) 120.0 (4.2) 0.003

Metformin use, n (%) 7 (10.8) 5 (29.4) 5 (38.5) 0.024

Antihypertensive drug use, n (%) 26 (40.0) 12 (70.6) 10 (76.9) 0.010

Proton pump inhibitor use, n (%) 5 (7.7) 5 (29.4) 4 (30.8) 0.018

Laboratory parameters

Albumin, g/L 1 45.0 (3.5) 44.0 (4.0) 42.0 (3.0) 0.025

Creatinine, mg/dL 1 0.8 (0.3) 0.8 (0.2) 0.9 (0.2) 0.403

Urea, mg/dL 1 29.0 (14.0) 26.0 (11.0) 29.0 (12.0) 0.557

Uric acid, mg/dL 1 6.1 (2.0) 6.1 (1.9) 6.2 (2.4) 0.666

AST, U/L 1 32.5 (21.0) 51.0 (26.0) 56.0 (23.0) 0.001

ALT, U/L 1 50.5 (53.5) 59.0 (28.0) 34.0 (34.0) 0.122

GGT, U/L 1 67.0 (82.5) 119.0 (79.0) 180.0 (103.0) 0.002

Alkaline phosphatase, U/L 1 73.5 (26.0) 81.0 (27.0) 90.0 (37.0) 0.195

Bilirubin, mg/dL 2 0.5 (0.4) 0.4 (0.3) 0.9 (0.5) 0.005

Ferritin, µg/L 2 180.0 (168.0) 238.0 (165.0) 195.5 (278.0) 0.439

Triglycerides, mg/dL 1 137.0 (105.8) 197.0 (130.0) 129.0 (142.0) 0.162

Total cholesterol, mg/dL 1 189.0 (56.2) 171.0 (57.0) 169.0 (42.0) 0.055

HDL cholesterol mg/dL 6 50.0 (20.0) 43.0 (10.5) 41.0 (14.8) 0.092

LDL cholesterol mg/dL 9 119.5 (48.8) 99.0 (63.0) 81.0 (56.5) 0.058

Platelet count, x1E9/L 1 225.0 (85.5) 234.0 (90.0) 121.0 (70.0) <0.001

INR 1 1.0 (0.1) 1.0 (0.1) 1.1 (0.3) <0.001

Prothrombin time (s) 1 108.0 (16.2) 105.0 (25.0) 84.0 (41.0) <0.001

HbA1c, % 10 5.2 (0.5) 5.9 (1.2) 6.0 (1.1) <0.001

Fasting glucose, mg/dL 1 93.5 (14.0) 110.0 (37.0) 131.0 (56.0) <0.001

Alpha-fetoprotein kU/L 11 2.0 (2.0) 4.0 (2.0) 4.0 (0.0) <0.001

Non-invasive fibrosis assessment

Transient Elastography, kPa 5 5.4 (2.4) 13.6 (6.6) 24.4 (16.0) <0.001

NAFLD Fibrosis Score 1 −2.5 (2.1) −0.7 (1.3) 0.9 (1.3) <0.001

FIB-4 Index 1 0.9 (0.8) 1.8 (1.4) 3.8 (3.1) <0.001

Table 1.  Characteristics of the study cohort.
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Ruminococcaceae (family), Streptococaceae (family) and Sutterellaceae (family) as gut bacterial predictors of 
advanced fibrosis in NAFLD. The strongest predictors, however, were clinical features such as fasting glucose, 
platelet count and age. This Random Forest model, based on clinical variables and the mentioned gut microbial 
taxa, achieved an AUC of 0.87 (95% CI 0.865–0.874, Fig. 1a).

We further compared the data to a model limited to clinical variables. In this model, fasting glucose, plate-
let counts, waist circumference, age, gamma-glutamyl-transferase (GGT), prothrombin time and aspartate 
aminotransferase (AST), followed by INR, albumin and type 2 diabetes were predictors of advanced fibro-
sis, identified by Random Forest feature elimination. The resulting AUC achieved 0.85 (95% CI 0.849–0.858, 
Supplementary Fig. 1a), indicating that the gut microbiota component of the previous model did not add major 
value regarding prediction of advanced fibrosis compared with the model which only included clinical variables.

Sixteen gut bacterial taxa were overlapping with the Random Forest model published by Loomba et al.15. To 
cover the remaining specific 21 species, we included all other related species within the corresponding genus 
level for the respective undetected species (see methods section). In this dataset, we used Random Forest feature 
elimination to select only the top 37 taxa together with Shannon diversity index, age, gender and BMI (according 
to Loomba et al.15). This model achieved an AUC of 0.71 (95% CI 0.701–0.714) for the prediction of advanced 
fibrosis in NAFLD (Fig. 1b).

Comparison of random forest models to conventional non-invasive fibrosis tests.  We further 
compared gut microbiota-based approaches to well-known simple non-invasive fibrosis scores based on clin-
ical and laboratory parameters as well as transient elastography in our cohort. The NAFLD fibrosis score and 
the FIB-4 index achieved both comparable results with an AUC of 0.86 (95% CI 0.75–0.94) and 0.85 (95% CI 
0.78–0.94), respectively (Fig. 1c).

Transient elastography had the highest diagnostic performance with an AUC of 0.93 (95% CI 0.87–0.99, 
Fig. 1c). We used published cut-off values to further determine the diagnostic sensitivity, specificity, positive and 
negative predictive values of the NFS and FIB-4 (Table 3). When we compared the number of patients classified 
into intermediate stages to the actual, by liver biopsy confirmed fibrosis stage, both non-invasive fibrosis scores 
classified a considerable number of patients into intermediate stages. In contrast, this was only observed for 
two patients when using transient elastography. Transient elastography had the highest negative predictive value 
(94.6%) whereas the highest positive predictive value was observed for the FIB-4 index (85.7%, Table 3).

83 biopsy-proven NAFLD patients and 13 NAFLD patients diagnosed with liver cirrhosis based on character-
istic clinical findings (see criteria in methods section) were included. Due to present missing values, 91 patients 
were included in the analysis for transient elastography, 95 for the FIB-4 analysis and 95 for the analysis NAFLD 
fibrosis score analysis.

Overall, the prediction of advanced fibrosis with transient elastography as an imaging-based method, per-
formed superior when compared with Random Forest classifier models based on the gut bacterial microbiota 
together with clinical data or clinical features alone.

Liver histology feature Scoring Classification
NAFLD 
F0–F2

NAFLD 
F3–F4

Total n 65 18

Grade of steatosis, n (%) 0 <5% 0 0

1 5%–33% 20 (30.8) 5 (27.8)

2 >33%–66% 29 (44.6) 6 (33.3)

3 >66% 16 (24.6) 7 (38.9)

Ballooning, n (%) 0 none 18 (27.7) 1 (5.6)

1 few balloon cells 33 (50.8) 6 (33.3)

2 prominent ballooning 14 (21.5) 11 (61.1)

Grade of inflammation, n (%) 0 no foci 10 (15.4) 1 (5.6)

1 <2 foci 39 (60.0) 5 (27.8)

2 2–4 foci 16 (24.6) 10 (55.6)

3 >4 foci 0 2 (11.1)

Fibrosis stage, n (%) 0 None 20 (30.8)

1 Perisinusoidal or periportal 29 (44.6)

2 Perisinusoidal and portal/
periportal 16 (24.6)

3 Bridging fibrosis 8 (44.4)

4 Cirrhosis 10 (55.6)

Table 2.  Liver histology features of the cohort. Liver histology features of 83 NAFLD patients who underwent 
liver biopsy.
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Figure 1.  Comparison of Random Forest models with simple non-invasive tools to predict advanced fibrosis in 
NAFLD. (a) Area under the curve (AUC) for our Random Forest model based on 14 features (right panel) that were 
identified by Random Forest feature elimination. Light grey lines represent the 300 training runs, the black line and 
AUC represent the median over these. The right panel shows the feature importance based on mean decrease in Gini 
index. All shown bacterial taxa belong to the family level (b) AUC and mean decrease in Gini index for the validation 
approximation of the Random Forest model by Loomba et al. Only 16 species out of 37 species identified by Loomba 
et al. were also detected in our cohort. For these unresolved species, we included all other species within the respective 
genus (see methods section) which resulted in 136 taxa. To increase the diagnostic accuracy, we used Random Forest 
feature elimination to determine the top 37 taxa out of these 136 features together with age, Shannon diversity, gender 
and BMI. (c) Diagnostic performance of the FIB-4 index, NAFLD fibrosis score and transient elastography. In a-c, 83 
biopsy-proven NAFLD patients and 13 NAFLD patients diagnosed with liver cirrhosis based on clinical characteristic 
and characteristic findings on liver imaging (see criteria in methods section) were included. 65 patients were staged 
as F0-F2 and 31 as F3-F4. AST, aspartate aminotransferase; GGT, gamma-glutamyl-transferase; INR, international 
normalized ratio; LDL, low-density lipoprotein; FIB-4, fibrosis-4 index.
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Discussion
In this study, we directly compared the performance of widely used non-invasive tools to microbiota-based 
machine learning approaches for the detection of advanced fibrosis in a well-described cohort of biopsy-proven 
NAFLD patients. Transient elastography, which is a fast and convenient method performed best, with an AUC of 
0.93 for the prediction of advanced fibrosis.

Alterations in the gut microbiota have been linked to NAFLD but no consistent disease-specific gut microbi-
ota signature has been established across several studies including patients with different geographical, ethnic and 
dietary backgrounds9–19. Further, using different sequencing methods limits the comparability of individual stud-
ies. While most studies, including our own, used 16S rRNA gene sequencing methods, the study by Loomba et al. 
sequenced the complete metagenome of gut microbial communities. The model by Loomba et al. includes bacte-
rial taxa at species level and several of the included species could not be resolved in our study cohort. The analysis 
of 16s rRNA gene sequencing data involves clustering of the obtained sequences into OTUs. This approach is 
well-established, widely used and efficient. However, several challenges remain in terms of accurate and precise 
taxonomic quantification at species level26. On the other hand, assembling genomes from whole genome sequenc-
ing can be more informative and precise in identifying species level but may fail to identify the taxonomic origins 
of a gene of interest or to produce accurate and unbiased estimates of gene families abundances26.

Besides differences in the technical approaches, studied patient populations differed in several aspects. 
NAFLD patients in the study by Loomba et al. were enrolled in the Southwestern United States and included 34% 
NAFLD patients with Hispanic ethnicity while our study, performed in Germany, includes almost exclusively 
patients with a white ethnic background. Region-specific variations in lifestyle, ethnicity, nutrition, medication, 
genetics and environmental conditions play a role in shaping the gut microbiome. While some bacterial taxa are 
found to be common in all populations from different countries, abundances of multiple taxa have been found to 
vary substantially across populations27.

These aspects altogether might explain why we did not identify the same gut bacterial taxa at species level in 
our patient cohort and why several identified taxa by Loomba et al. were not similarly associated with advanced 
fibrosis in our study cohort. For a conclusive and more accurate validation, the combination of both datasets 
within one Random Forest algorithm using the same NGS method seems to be essential to distinguish between 
differences in the gut microbiome composition due to different NGS methods versus variations in patient 
populations.

Using an own Random Forest algorithm, we were able to achieve a good diagnostic accuracy. This algorithm 
was, however, still inferior to transient elastography. Compared with a Random Forest model consisting only 
of clinical features, adding bacterial taxa did not add major value to the model performance. This indicates that 
clinical features might be still more consistently associated with progression of liver disease compared with the 
relatively inconsistent findings from studies investigating gut microbiota alterations in NAFLD patients.

In conclusion, among the tested modalities to non-invasively predict advanced fibrosis in NAFLD patients, 
transient elastography, which is an easily applicable ultrasound-based method, performed best with an excellent 
diagnostic performance compared with other simple non-invasive scores and gut microbiota-based approaches 
in our cohort. When NGS will become easier applicable and standards regarding NGS based methods are more 
established, assessment of the gut microbiome might help to identify NAFLD patients with ongoing disease pro-
gression with the aim to prevent further liver related complications.

Transient Elastography <7.9 7.9–9.6 >9.6

F0-2 (n) 53 1 9

F3-4 (n) 3 1 24

Sensitivity (%) 89.3 85.7

Specificity (%) 84.1 85.7

Negative predictive value (%) 94.6 93.1

Positive predictive value (%) 71.4 72.7

FIB-4 Index <1.30 1.30–3.25 >3.25

F0-2 (n) 46 16 2

F3-4 (n) 5 14 12

Sensitivity (%) 83.9 38.7

Specificity (%) 71.9 96.9

Negative predictive value (%) 90.2 76.5

Positive predictive value (%) 59.1 85.7

NAFLD Fibrosis Score <−1.455 −1.455–0.676 >0.676

F0-2 (n) 46 17 1

F3-4 (n) 6 13 12

Sensitivity (%) 80.6 71.0

Specificity (%) 71.9 85.9

Negative predictive value (%) 88.5 85.9

Positive predictive value (%) 58.1 71.0

Table 3.  Diagnostic performance of non-invasive fibrosis tests.
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