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Abstract

To improve our knowledge of the migration pathway of a highly threatened fish species

along the Mekong River, strontium isotope ratios (87Sr/86Sr) and 18 trace element concen-

trations were measured in the water and in the otoliths of an anadromous catfish, Pangasius

krempfi, to infer its natal origin and potential migration pathways. Water was sampled at 18

locations along the mainstream, tributaries and distributaries of the Mekong River. To check

for accuracy and precision, measurements of the 87Sr/86Sr ratios and trace element concen-

trations were then compared in two laboratories that use different analytical methods. Differ-

ences in trace element concentrations between locations were not significant and could not,

therefore, be used to discriminate between migration pathways. However, the Mekong

mainstream, tributaries and distributaries could all be discriminated using Sr isotopes. The
87Sr/86Sr profiles recorded in P. krempfi otoliths showed that there were three contingents

with obligate freshwater hatching and variable spawning sites along the Mekong main-

stream, from Phnom Penh (Cambodia) to Nong Khai (Thailand) or further. After hatching,

the fish migrated more or less rapidly to the Mekong Delta and then settled for most of their

lifetime in brackish water. Spawning habitats and migration routes may be threatened by

habitat shifts and the increasing number of hydropower dams along the river, especially the

contingents born above Khone Falls (Laos). The conservation of P. krempfi, as well as other

migratory fish in the Mekong River, requires agreements, common actions and manage-

ment by all countries along the Mekong River. This study highlighted the importance of

using both Sr/Ca and 87Sr/86Sr ratios to understand life history of anadromous fishes as the
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87Sr/86Sr ratio in the water was shown to be less effective than the Sr/Ca ratio in identifying

movements between different saline areas.

Introduction

The Mekong River is the main river in South East Asia, it rises in the Tibetan Plateau, crosses

six countries (China, Myanmar, Laos, Thailand, Cambodia, and Vietnam), and creates a delta

before flowing out to sea. With a mainstream around 4,400 km long and a catchment area of

795,000 km2 [1, 2], the Mekong River has the second highest inland fish biodiversity in the

world, with more than 1,100 species [3, 4]. Wild fish are an important source of income and

consumption for local populations [5]. Of all the major river systems in the world, the Mekong

River and its Delta are probably the most affected by global climate change and human activi-

ties [6, 7]. Pollution and saline intrusions with rising sea levels due to climate change currently

threaten the Delta [8–10], while the whole Mekong River is even more threatened by many

dam-building projects that could have strong impacts, especially on fisheries [6]. With the

dams currently under construction or planned in the near future on the Mekong mainstream

and its tributaries, scientists are considering measures to mitigate the anthropogenic influences

on all surrounding socio-ecosystems [6]. The numerous dams being built on the Mekong

mainstream will have an negative impact on the migratory behavior of many fish species and

on associated fisheries [6, 11]. By changing hydrological flow and habitat connectivity, the

presence of dams impacts fish populations, by blocking possible migration pathways and

reducing population size and potentially their genetic diversity [6, 12, 13]. Understanding the

life history of migratory fish, as well as their key habitats in the Mekong River, has become

essential for monitoring and managing fish communities and populations under threat.

It has been estimated that 87% of known fish species in the Mekong River are migratory

(anadromous, catadromous, or potamodromous) [14] and that 50% of the catches include

long-distance migrants [4]. The migration pathways in the Mekong River have been described

based on the hydrological and morphological characteristics of the mainstream and on the

feeding behavior of fish in different habitats [14]. In many species, these migration patterns

are interconnected or overlapping. Among these patterns, the main migration route includes

the mainstream from the Mekong Delta to the Khone Falls at the border between Cambodia

and Laos, where annual floods affect large areas, and are essential for fishery productivity [14].

Nevertheless, our understanding of their migratory behavior is speculative, and the location of

the spawning grounds and homing cues remain largely unknown.

Fish otoliths (ear stones) are biogenic carbonate structures deposited on a protein matrix,

which grow throughout the fish’s lifetime with both daily and seasonal growth increments

[15]. The otoliths are composed of 99% calcium carbonate, but, during formation, they incor-

porate trace elements from the water that can provide a detailed history of an individual fish’s

environment and life events [16, 17]. The incorporation of elements is a complex process

involving different physiological barriers. Elements are absorbed from the water through the

gills or the intestine into the plasma and the endolymph surrounding the otolith, where they

crystallize in the matrix [17]. The process is affected by various environmental and physiologi-

cal factors, including salinity, temperature, ontogeny, metamorphosis, sex, growth, and diet

[18–24]. Incorporation also depends on the element concerned, and there are many differ-

ences between them. For example, carbon isotopes and magnesium are related to physiological
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factors, whereas physiology is weakly related to strontium and lithium, and oxygen isotopes,

barium, and manganese are related to past environments [24–26].

The study of fish environmental conditions and physiology is thus made possible by otolith

chemistry. Strontium is known as the best proxy for ambient water salinity [20, 27], the Sr/Ca

is the ideal variable to estimate fish movements between marine, brackish and fresh waters [28,

29], whereas it is not affected by water temperature [30]. When compared with water concen-

trations and age estimates, otolith strontium isotope ratios (87Sr/86Sr) can provide valuable

information about the migration pathways of species that pass through different habitats [17,

31, 32]. More specifically, the strontium isotopic ratio (87Sr/86Sr) signatures in the water [33]

and the otoliths provide evidence for the origin of individual migratory and non-migratory

fish [34–39]. Duponchelle et al. [40] recently investigated the natal origin of an Amazonian

giant catfish (Brachyplatystoma rousseauxii) and by comparing the Sr isotope ratios in otoliths

and in the water over a very large spatial scale, these authors identified one of the longest fish

migrations in freshwater: more than 4,000 km. However, the Sr isotope ratio is a proxy of natal

origin in freshwater [40], and its use in saline areas is limited because the variation of 87Sr/86Sr

value is less sensitive to changes in salinity when salinity is higher than 20 [29, 30].

The catfish Pangasius krempfi (Fang and Chaux 1949; Siluriformes, Pangasiidae) is one of

the most important anadromous fishes in the Mekong River, and is classified as vulnerable in

the International Union for Conservation of Nature (IUCN) Red List [41]. This species is

widely distributed in the Mekong basin from China to Vietnam, but is primarily found in

Laos, Cambodia, Thailand and Vietnam in both brackish waters and freshwaters [42, 43]. This

catfish is one of the target species for fishery and aquaculture in the countries along the

Mekong where it has high economic value in the local markets [43–46]. Although P. krempfi
represents only around 2% of the total catches by Mekong fisheries, its economic value on

landing is three times higher than that of more common species [45]. The domestication of P.

krempfi has been investigated to improve catfish aquaculture in the Mekong Delta [46]. Infor-

mation on the life history traits of the species is scarce in the literature. P. krempfi is believed to

undertake a long migration from its growing areas in brackish waters in the Mekong delta

over the rapids and deep pools of the Khone Falls in Laos for reproduction [44, 47] at the

beginning of the rainy season [43]. However, the spawning grounds of P. krempfi and age at

first sexual maturity and reproduction are not yet fully known [41, 43]. After hatching at the

Khone Falls, the larvae are assumed to rapidly drift downstream, and juveniles and adults

spend almost all their life in the Mekong Delta before migrating back upstream to spawn [14,

44, 47]. Living in the brackish Mekong Delta, this anadromous species is presumed to be sensi-

tive to the construction of dams upstream, which is why it was chosen to infer its natal origin

using the Sr isotope ratio in the otolith core [47]. The resulting information can be used to

identify threats to the migration pathways due to dam construction or habitat changes.

The primary aim of the present study was to identify P. krempfi spawning grounds and the

possible effects of habitat changes (such as dam construction) on this anadromous species. Our

specific objectives were to (i) map the Sr isotope ratios (87Sr/86Sr) in waters along the Mekong

River until Laos, and in some of its main tributaries, (ii) measure the concentrations of trace ele-

ments in the waters to identify differences between locations along the river, (iii) estimate the

natal origin and migration behavior of P. krempfi caught in the Mekong Delta. Strontium iso-

tope ratios in the water have never been recorded along the Mekong River for the purpose of

tracing migrations. This catfish species was selected as a model because of its particular migra-

tory behavior, and Sr isotope ratios in the water and otoliths were tested as tools for understand-

ing fish migration. This research could provide fundamental data, including strontium isotope

values in the Mekong and tributaries, to assign natal origin to larvae, and information on the

migration pathway of other fish species caught in the Mekong basin using these isotopes.
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Materials and methods

Study area

The Mekong River rises in the Tibetan Plateau in China, and crosses Myanmar, Laos, Thai-

land, Cambodia, and Vietnam where it forms a gigantic delta before flowing into the sea

though nine river mouths. From Laos, the mainstream is supplied by water flowing from three

main complex tributaries, Chi-Mun River and Tonle Sap Lake on the right bank, and San-Sre-

pok Rivers that form the Sekong River on the left bank (Fig 1A) [48]. After crossing Phnom

Penh city (Cambodia), the Mekong River turns into two distributaries, the Mekong-Tien River

and the Bassac-Hau River, which, in Vietnam, form a massive delta that drains into the sea

through nine river mouths (Fig 1B) [49].

This study was conducted in the large stretch of the Mekong River that crosses four coun-

tries (Fig 1), Laos, Thailand, Cambodia, and Vietnam. The 19 sample locations were evenly

spaced from the mouth of the river up to a site close to Vientiane, the capital of Laos (Fig 1 and

Table 1). The upstream sampling sites began along the Thailand bank of the river in Laos to

Cambodia and continued to downstream sites in the Mekong Delta in Vietnam where they

Fig 1. Sampling sites along the Mekong River. (A) Map of sampling sites for water (black circle) and fish (catfish) along the Mekong River, and (B) detailed map of the

sites in the Mekong Delta.

https://doi.org/10.1371/journal.pone.0252769.g001
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were confirmed as representative of the salinity gradient (Table 1). Fourteen sampling sites

belonged from the Mekong mainstream (M01 to M14), three on tributaries (Mun River—

MUN, Sekong River—SK, and Tonle Sap—TS), and two on distributaries in the Mekong Delta

(Co Chien River—CC and Ham Luong River–HL, in the Tien River), were sampled between

April 2018 and September 2019.

Sampling was authorized in Vietnam by the Fisheries Department (Ben Tre Province) for

restricted areas. In Cambodia and Thailand, the authors were directly involved in the study,

covering the permission required.

Water sampling and analyses

At each sampling site, two replicates of 50 ml surface water were filtered through Minisart1

cellulose acetate filters (pore size 0.2 μm, to remove suspended solids) into polypropylene

tubes previously rinsed with pure nitric acid and MilliQ water. Each sample was fixed with 0.2

ml of 0.2% ultra-pure nitric acid. Salinity was measured directly in the field at the same time as

the sampling using a Castaway1 CTD probe.

To cross-validate the analytical methods, one of each replicate was analyzed in different lab-

oratories. Two types of analysis were carried out on each replicate: trace element concentra-

tions and the strontium isotope ratio (87Sr/86Sr). The trace element concentrations (7Li, 24Mg,
31P, 55Mn, 66Zn, 85Rb, 88Sr, 118Sn, 138Ba and 208Pb) of one replicate from each sampling site

were analyzed at the AETE-ISO OREME laboratory (Analyse des Eléments en Trace dans l’En-
vironnement & ISOtopes–Observatoire de REcherche Méditerranéen de l’Environnement, Uni-

versity of Montpellier, Montpellier, France) using solution-based inductively coupled plasma

mass spectrometry (ICP-MS). Then, the same replicates were analyzed at the SARM laboratory

Table 1. Water samples collected along the Mekong River and its delta.

Site Location Coordinates Sampling date Salinity Distance from the sea (km)

Latitude Longitude

M01 Nong Khai, Thailand 17˚49.740’N 102˚41.878’E September 2019 0.0 1,529

M02 Nakhon Phanom, Thailand 17˚3.735’N 104˚45.268’E September 2019 0.0 1158

M03 Ubon Ratchathani, Thailand 15˚23.823’N 105˚32.737’E September 2019 0.0 903

M04 Khone Fall, Stung Treng, Cambodia 13˚34.815’N 106˚0.178’E August 2019 0.0 646

M05 Kampong Cham, Cambodia 12˚0.442’N 105˚28.461’E June 2019 0.0 417

M06 Dong Thap, Vietnam 10˚24.514’N 105˚36.764’E May 2019 0.0 143

M07 Tien Giang, Vietnam 10˚19.488’N 106˚0.396’E May 2018 0.1 90

M08 Chau Thanh, Ben Tre, Vietnam 10˚18.699’N 106˚26.909’E April 2018 1.0 39

M09 Binh Dai, Ben Tre, Vietnam 10˚16.266’N 106˚31.494’E April 2018 5.9 29

M10 Binh Dai, Ben Tre, Vietnam 10˚15.048’N 106˚37.698’E April 2018 10.7 18

M11 Binh Dai, Ben Tre, Vietnam 10˚12.114’N 106˚44.166’E April 2018 16.6 5

M12 Binh Dai, Ben Tre, Vietnam 10˚10.703’N 106˚45.793’E April 2018 21.3 2

M13 Binh Dai, Ben Tre, Vietnam 10˚7.254’N 106˚48.948’E April 2018 26.7 0

M14 Vung Tau, Vietnam 10˚19.188’N 107˚1.494’E May 2018 30.0 0

MUN Mun River, Ubon Ratchathani, Thailand 15˚18.133’N 105˚28.527’E September 2019 0.0 869

SK Sekong River, Stung Treng, Cambodia 13˚32.735’N 106˚0.875’E June 2019 0.0 646

TS Tonle Sap, Kampong Thom, Cambodia 12˚31.099’N 104˚27.334’E June 2019 0.0 443

HL Ham Luong River, Ben Tre, Vietnam 10˚10.518’N 106˚21.480’E May 2018 0.1 41

CC Co Chien River, Ben Tre, Vietnam 10˚4.561’N 106˚16.693’E May 2018 0.1 41

Sampling locations and date, in situ salinity and distance from the sea are given. Salinity was measured directly in the field using a Castaway1 CTD.

https://doi.org/10.1371/journal.pone.0252769.t001
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(Service d’Analyse des Roches et des Minéraux—Centre de Recherches Pétrographiques et Géo-
chimiques, Nancy, France) to measure Sr isotopes (87Sr and 86Sr) using multi-collector induc-

tively coupled plasma mass spectrometry (MC-ICP-MS). The other replicates were analyzed at

IES (Institute of Earth Science, Academia Sinica, Taiwan) to measure both the trace element

concentrations (7Li, 11B, 23Na, 24Mg, 27Al, 28Si, 39K, 40Ca, 55Mn, 63Cu, 66Zn, 88Sr, 138Ba, 208Pb,

and 238U), using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS),

and the Sr isotope ratio, using high-resolution multiple collector inductively-coupled plasma

mass spectrometry (HR-MC-ICP-MS). A summary of the analytical procedures is provided in

(S1 Fig).

The AETE-ISO OREME laboratory measured trace element concentrations using solution-

based ICP-MS, (7700x; Agilent, Santa Clara, CA, USA) as described in Tran et al. [47]. Samples

were filtered with 0.22 mm mesh size to remove suspended particles and diluted by a factor

between two and four, depending on their measured salinity, using milli-Q water to ensure

that the concentrations of trace elements to be detected were within equipment’s measurement

limits. Indium (115In) and Bismuth (209Bi) were used as internal standards. Concentrations

were determined by external calibration using multi-element standard solutions with concen-

trations in the range 0.25–5 ppb. Polyatomic interference was limited by keeping the oxide

level below 1%. The certified material SLRS-6 (National Research Council Canada, Ottawa,

ON, Canada) was used as standard, and analytical precisions were generally between 1 and 3%

relative standard deviation (RSD).

The SARM laboratory measured the Sr isotope ratios using thermal ionization mass spec-

trometry (TIMS, ThermoFisher Scientific TRITON Plus). Water samples were evaporated and

1.5–2.0 μg of Sr was loaded onto chromatographic separation columns with a Sr Spec specific

resin (modified after Pin et al. [50]) for separation. The Sr was then loaded onto rhenium fila-

ments and measured with a ThermoFisher Scientific TRITON Plus. The strontium isotopic

ratios are expressed as 87Sr/86Sr and were normalized to the stable 86Sr/88Sr ratio of 0.1194 to

correct for instrumental mass fractionation. Instrument accuracy was assessed by repeated

analyses of the standard reference material NIST SRM 987 (National Institute of Standards

and Technology, USA), and the blank values were below 300 pg.

The IES laboratory measured the trace element concentrations using HR-ICP-MS (Ther-

moFisher Scientific, Element XR). As there was a wide range of salinities in the water samples,

thus causing matrix effects, the saline waters collected from the estuary and coastal areas were

diluted to Na concentration of 10 ppm (around 0.03 salinity) by adding 0.1N HNO3. The

freshwater samples were analysed directly. Six in-house standards were prepared with high-

purity single element products (high purity standard, U.S.) in a series of different element con-

centrations and these standards were used to establish calibration curves. A total of 15 trace

element concentrations were measured. The analysis of SRM 1640a (the reference material for

trace elements in natural water, National Institute of Standards and Technology, USA)

resulted in trace element concentrations with an RSD compared to the certified values of better

than 10% for all trace elements except Si, Ba and Mn (data in S1 Table). Repeated analysis of

SRM 1640a gave a measurement precision better than 0.35 (1 standard deviation - 1SD) in all

cases.

The IES laboratory measured the Sr isotope ratios using HR-MC-ICP-MS (ThermoFisher

Scientific, Neptune Plus). The Sr element was purified using the procedure developed by

Huang et al. [51] and Huang and You [52]. Water samples were passed through Sr resin

(EichromTM) and Sr was then eluted with 0.05N HNO3. The elutant was slowly heated on a

hot plate until completely dry. The dried samples were re-dissolved in 0.1M HCl and then

diluted to a consistent Sr concentration of 10 ppb for isotope analyses. The blank was less than

5 pg for Sr and the whole procedure with the IAPSO Seawater Standard revealed 100%
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recovery of Sr in long-term tests. The sample standard bracketing method was applied to

determine the Sr isotope value of the water samples, and the certified international standard,

SRM 987 was used as a reference. IAPSO Seawater Standard was also treated as an unknown

sample for quality and quantity control, yielding high accuracy (RSD 0.001%) and precision

(1SD 4.2 × 10−6).

Otolith sampling and microchemical analysis

A total of 27 individual Pangasius krempfi (47.8 to 84.5 cm total length) were collected from

March-August 2017 (24 individuals) and in April 2018 (3 individuals) in the Mekong Delta.

The fish were collected on landing or in markets in Binh Dai city (18 individuals, coded BD01

to BD18), My Tho city (7 individuals, MT01 to MT07) and Dinh An city (2 individuals, DA01

and DA02) (Fig 1). Samples were collected randomly to get a wide range of lengths and

weights. The left (the larger) otolith (lapillus) was extracted using plastic forceps from a sagittal

head section, cleaned in Milli-Q water, and stored dry in 1.5 ml microtubes. As the right oto-

lith had been used in another study [47], the age and Sr/Ca ratio of the individuals were already

known.

The otoliths were prepared at the University of Science, VNU-HCM (Vietnam). They were

first photographed whole under reflected light, then embedded in epoxy resin (Creative Life

Vietnam, Vietnam), sliced transversally using a Buehler IsoMet Low Speed cutting machine

(Buehler, Germany) and polished until the core was reached (S2 Fig). Sections were then

attached to a clean microscope slide for further processing. Sr isotopes were measured at the

AETE-ISO OREME lab, Montpellier, France) using a Thermo Finnigan Neptune+ multicollec-

tor inductively-coupled plasma mass spectrometer (MC-ICP-MS) coupled to a 193 nm Ana-

lyte G2 Excimer Laser Ablation system (Photon Machines Inc). Spots were ablated at 65 μm

diameter at 5μm/s. The pulse rate was 7 Hz and the energy density of the beam was 6.0 J/cm2.

A pre-ablation transect (spot size 85 μm, speed 15 μm/s) was used to clean the sample surface

before analysis. A typical analysis comprised a 30 s background measurement and the ablation

period required for a transect from the core to the edge. Corrections for Kr and Rb interfer-

ence and mass bias followed routine procedures using known isotopic ratios [53]. No correc-

tions were applied for interference from doubly charged REE, Ca argides and Ca dimers and

polyatomic interference, since numerous studies have shown that Ca argides and dimers have

no significant effect on Sr isotopic data using MC-ICP-MS [54]. Ca-P-O and doubly charged

ions are also insignificant for material with a high Sr (Sr> 300ppm) and low REE contents.

Krypton interference (84,86Kr on 84,86Sr) from the argon tank was corrected for by measuring

the background level before the analysis, and then by subtracting the background from the

data. Rubidium interference (87Rb on 87Sr) was corrected for by monitoring 85Rb and subtract-

ing the signal at mass 87 amu assuming a natural 85Rb/87Rb of 2.59262 [55]. The 85Rb/87Rb

ratio was corrected for mass bias using the mass discrimination factor calculated from Sr,

using an exponential law and a natural 88Sr/86Sr = 8.375209, and assuming no differential mass

discrimination between Sr and Rb. The accuracy and long-term reproducibility of the mea-

surements were checked by analyzing the pressed pellet MACS3 from the USGS (United States

Geological Survey, Reston, VA, USA; reference value of 87Sr/86Sr = 0.70755) and in-house ref-

erence material (Atlantic shell with a reference value of 87Sr/86Sr = 0.70918).

Statistical analyses

All data were tested for normality using the Shapiro-Wilk test [56], and for homoscedasticity

using Levene’s test prior to using parametric or non-parametric tests. Due to the absence of
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normality in trace element concentrations, differences in measurement precision and accuracy

between the laboratories were compared using the Wilcoxon test.

The 86Sr/87Sr values of the two replicate sets of water samples were normally distributed

and were compared using a paired Student’s t-test. The relationship between these values was

calculated using a general linear regression. The correlation between 87Sr/86Sr and water salin-

ity, the distance from the sea and 1/Sr were tested using a Pearson test, and the relationships

were then tested using linear or logarithmic regressions based on the R2 value.

For each sampling site, the mean of the concentrations for each trace element obtained by

the two laboratories was used for subsequent analyses. The concentrations of trace elements

that were only measured by one laboratory were used directly. Correlations between trace ele-

ment concentrations and salinity in water were tested by using a Pearson correlation test for

Mg and Spearman correlation test for other trace elements. Concentrations of 28Si, 63Cu, 138Ba

and 238U were only detected in freshwater and were not used to test correlations with salinity.

Among these trace elements, only the Sr/Ca and Ba/Ca ratios were tested to determine if they

were able identify differences in water chemistry between locations, as mentioned by Fukush-

ima et al. [11].

The 87Sr/86Sr profiles were calculated for each otolith using moving means of three adjacent

values at a given distance from the core to the edge. ANOVA was used to test for differences in

otolith 87Sr/86Sr between fish sampled at different locations (Binh Dai, My Tho and Tien

Giang), or between years (fish collected in 2017 and 2018). To test for similarity of 87Sr/86Sr

profiles between individuals and for distinct groups of P. krempfi based on 87Sr/86Sr profile, a

hierarchical cluster analysis (HCA) was used based on the Euclidean distances between
87Sr/86Sr profiles and Ward’s clustering method (“ade4” package in R). The number of clusters

was determined based on the performance of hierarchical cluster analysis. 87Sr/86Sr profiles

were also compared by direct observation to the Sr/Ca ratio already available from the right

otolith in a previous publication [47]. All statistical analyses were performed in R [57].

Ethics statement

All the fish samples used in this study were collected dead at fish landings from fishermen or

in markets. Thus, all fish were dead at sampling and no ethical approval is required. The sam-

pling in Vietnam was hosted by University of Science–VNUHCM with the permission from

Ben Tre Fishery Department and Immigration Department (number 317/

KHTN-QHQT-QLDA on 12/04/2018). Other sampling locations in Cambodia and Thailand

are not included in protected areas or restricted areas and there is no requirement for official

permission.

Results

Strontium isotope ratios (87Sr/86Sr) and trace element concentrations in

the water

The differences in 87Sr/86Sr between SARM France and IES Taiwan were well within 2σ, being

less than 0.000022 (Table 2) and were not statistically significant (paired Student’s t-test,

t = 0.347, df = 18, p-value = 0.732). The relationship between 87Sr/86Sr in water analyzed at the

two laboratories was linear and highly significant (Fig 2; R2 = 0.999, slope = 0.999). For each

sampling site, the mean of the 87Sr/86Sr from the two laboratories was used for subsequent

analyses.

The 87Sr/86Sr for water samples from the Mekong River ranged from 0.708934 ± 20 × 10−6

to 0.713943 ± 11 × 10−6 (Table 2). The 87Sr/86Sr for the Mekong mainstream ranged from
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0.709180 ± 6 × 10−6 at the sea to 0.710750 ± 7 × 10−6 upstream. In the tributaries, the 87Sr/86Sr

were lower in the Tonle Sap Lake (0.708934 ± 20 × 10−6) and higher in the Sekong River

(0.713943 ± 11 × 10−6) which was higher than any of the ratios in the Mekong mainstream.

The other tributary (Mun River–MUN) and the distributaries (Ham Luong—HL and Co

Chien River—CC) had 87Sr/86Sr of 0.710351 ± 2 × 10−6, 0.710488 ± 11 × 10−6 and

0.710486 ± 8 × 10−6 respectively, similar to the upper part of Mekong mainstream.

Table 2. 87Sr/86Sr and Sr concentrations.

Sampling Site 87Sr/86Sr Sr (ppb)

SARM (France) IES (Taiwan) Mean ±SD AETE-ISO OREME (France) IES (Taiwan) Mean ±SD

M01 0.710646 0.710638 0.710642 ± 4 × 10−6 149.08 123.04 136.06 ± 13.02

M02 0.710656 0.710632 0.710644 ± 12 × 10−6 99.71 83.05 91.38 ± 8.33

M03 0.710757 0.710742 0.710750 ± 7 × 10−6 82.87 64.03 73.45 ± 9.42

M04 0.710639 0.710641 0.710640 ± 1 × 10−6 50.61 45.12 47.86 ± 2.74

M05 0.710358 0.710345 0.710352 ± 6 × 10−6 178.75 151.96 165.36 ± 13.39

M06 0.710495 0.710485 0.710490 ± 5 × 10−6 157.95 89.03 123.49 ± 34.46

M07 0.710507 0.710515 0.710511 ± 4 × 10−6 161.74 114.00 137.87 ± 23.87

M08 0.709707 0.709672 0.709690 ± 17 × 10−6 335.75 331.00 333.38 ± 2.38

M09 0.709284 0.709303 0.709293 ± 9 × 10−6 1398.54 1431.00 1414.77 ± 16.23

M10 0.709246 0.709259 0.709253 ± 7 × 10−6 2030.00 2288.00 2159.00 ± 129

M11 0.709197 0.709221 0.709209 ± 12 × 10−6 2464.69 4196.00 3330.35 ± 865.65

M12 0.709246 0.709187 0.709216 ± 30 × 10−6 8369.77 5132.00 6750.88 ± 1618.88

M13 0.709174 0.709187 0.709180 ± 6 × 10−6 6432.31 6266.00 6349.15 ± 83.15

M14 0.709182 0.709209 0.709195 ± 13 × 10−6 6738.53 7340.00 7039.26 ± 300.74

MUN 0.710353 0.710350 0.710351 ± 2 × 10−6 32.60 26.03 29.32 ± 3.29

SK 0.713932 0.713955 0.713943 ± 11 × 10−6 34.79 33.20 33.99 ± 0.79

TS 0.708914 0.708954 0.708934 ± 20 × 10−6 46.73 43.16 44.95 ± 1.79

HL 0.710499 0.710477 0.710488 ± 11 × 10−6 149.13 94.00 121.56 ± 27.56

CC 0.710494 0.710477 0.710486 ± 8 × 10−6 156.71 142.00 149.35 ± 7.35

87Sr/86Sr and Sr concentrations (mean ± S.D.) measured by AETE-ISO OREME and SARM (France) compared with those measured by IES (Taiwan).

https://doi.org/10.1371/journal.pone.0252769.t002

Fig 2. Relationship between 87Sr/86Sr determined by the two laboratories (AETE-ISO OREME and IES). Linear

regression between the 87Sr/86Sr in water samples reported by IES (Taiwan) versus those reported by SARM (France).

Black circles indicate sites along the Mekong mainstream, grey triangles indicate sites on tributaries and distributaries.

https://doi.org/10.1371/journal.pone.0252769.g002
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The 87Sr/86Sr was negatively correlated with salinity (Pearson correlation = - 0.523, p-

value = 0.021). The 87Sr/86Sr was always much higher in freshwater (Fig 3A) while there was a

significant logarithmic regression between 87Sr/86Sr and salinity in more saline waters (R2 =

0.922, Fig 3B). The 87Sr/86Sr was non-significantly correlated with the distance from the sam-

pling location to the sea (Pearson correlation = 0.449, p-value = 0.053), but there was a signifi-

cant logarithmic regression between these two variables along the Mekong mainstream (R2 =

0.757, Fig 4). The 87Sr/86Sr was divided into five groups depending on their value, salinity and

distance from the sea: a saline and brackish water region in Mekong Delta (sites M09 to M14),

a freshwater region in the Mekong Delta (site M05 to M08, CC, and HL), upstream regions

(sites M01 to M04 and Mun), the Sekong River and Tonle Sap Lake. The relationship between

concentrations of 87Sr/86Sr and 1/Sr in the water was more exponential (R2 = 0.408), but not

significant, when all sites were included, the relationship was exponential only if the tributaries

and distributaries were excluded (R2 = 0.923, Fig 5), and the correlation between 87Sr/86Sr and

1/Sr was significant (Pearson correlation = 0.592, p-value = 0.007).

The concentrations of 31P, 28Si, 63Cu, and 238U in brackish and marine water samples were

below the limit of detection, and were therefore neglected in further analyses. The trace element

concentrations did not differ between two analytical methods used in AETE-ISO OREME and

IES (Table 3, Wilcoxon test, p-value> 0.05). Most of the trace element concentrations (7Li, 11B,
23Na, 24Mg, 39K, 40Ca, 66Zn, 85Rb and 88Sr) were significantly positively correlated with water

salinity (Spearman’s correlation, p-value< 0.05), when 27Al, 31P, 55Mn, 118Sn, 138Ba, 208Pb

showed no significant correlation (Spearman’s correlation and Pearson correlation, p-

value> 0.05) and 28Si, 63Cu, 138Ba, 238U only detected in freshwater region (Table 3). The value

of water salinity and trace element concentrations are available in S2 Table.

Correlations between trace element concentrations and salinity were highly significant and

positive for 7Li, 11B, 23Na, 24Mg, 39K, 40Ca, 85Rb and 88Sr, whereas for 66Zn the correlation was

less significant, and no correlation was found for 19Sn, 27Al 55Mn, 138Ba and 208Pb (Table 3 and

S3 Fig). The relationships between Sr/Ca ratios and Ba/Ca ratios were quite close in the

Fig 3. Water 87Sr/86Sr versus salinity along the Mekong River. Water 87Sr/86Sr versus salinity along the Mekong mainstream (dark circles) and tributaries /

distributaries (grey triangles); (A) for all sampling locations, and (B) only in saline waters (Mekong Delta) with a logarithmic regression. Labels at each point refer

to the sampling sites in Fig 1 and Table 1.

https://doi.org/10.1371/journal.pone.0252769.g003
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freshwater parts of the Mekong mainstream compared to values in tributaries (MUN, SK and

TS) (Fig 6). Other trace elements showed no or only slight differences among sites indicating

their limitations as biotracers in the Mekong mainstream.

Strontium isotope ratios in Pangasius krempfi otoliths

All the otoliths showed similar 87Sr/86Sr patterns over the lifetime of the fish (Fig 7 and S3

Table): high values at hatching and during the early days of life (0.7106 ± 0.0003 at the core

region ~ 30 μm width), corresponding to the 87Sr/86Sr of waters collected upstream along the

Laos–Thailand border and through Cambodia (sites M01 to M04). The ratios then decreased

to a more or less variable plateau (0.70928 ± 7.4 × 10−6), corresponding to the 87Sr/86Sr of the

Fig 4. Water 87Sr/86Sr ratio versus distance from the sea along the Mekong River. Water 87Sr/86Sr versus distance

from the sea along the Mekong mainstream. Distances were estimated using Google Earth Pro. Labels at each point

refer to the sampling sites in Fig 1 and Table 1.

https://doi.org/10.1371/journal.pone.0252769.g004

Fig 5. Water 87Sr/86Sr against 1/Sr. Water 87Sr/86Sr versus 1/Sr along the Mekong River; (A) with and (B) without tributaries and distributaries. Labels at each

point refer to the sampling sites in Fig 1 and Table 1. Black circles indicate sites on the Mekong mainstream, grey triangles indicate sites belonging on tributaries

and distributaries.

https://doi.org/10.1371/journal.pone.0252769.g005
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brackish waters (site M09 at Binh Dai). Otolith 87Sr/86Sr never showed values corresponding

to water samples collected from Tonle Sap Lake or the Sekong River. There was no difference

in 87Sr/86Sr in the otoliths in fish sampled at locations Binh Dai (BD01 –BD18), My Tho

Table 3. Trace element concentrations measured by the two laboratories (AETE-ISO OREME and IES).

Trace

element

Number of samples measured by
AETE-ISO OREME

Number of samples

measured by IES
Difference between two

labs (p-value)

Correlation with

water salinity

Comments

(� = p > 0.05)
7Li 19 19 0.080 0.829
11B 19 - 0.943

23Na 19 - 0.945
24Mg 9 19 0.129 0.999 Value from AETE-ISO OREME only

outside the Mekong Delta
27Al 19 - 0.431�

28Si 13 - - Value only from freshwater regions
31P 6 - - 0.410� Only a few samples were detected
39K 19 - 0.931

40Ca 19 - 0.879
55Mn 19 11 0.175 -0.042�

63Cu 12 - - Value only from freshwater regions
66Zn 19 11 0.365 0.596
85Rb 19 - - 0.886
88Sr 19 19 0.197 0.883

118Sn 19 - - -0.229�

138Ba 19 13 0.070 -0.254� Value from IES only from freshwater

regions
208Pb 19 - - 0.410�

238U 11 - - Value only from freshwater regions

Trace element concentrations measured by the two laboratories (AETE-ISO OREME and IES), with p-value (Wilcoxon test) for differences between the two laboratories

and correlation between trace element concentrations in the water vs. salinity (Spearman’s correlation and Pearson correlation). � significant correlation (p > 0.05).

https://doi.org/10.1371/journal.pone.0252769.t003

Fig 6. Ba/Ca ratios versus Sr/Ca ratios in the Mekong mainstream and tributaries. Labels at each point refer to the

sampling sites in Fig 1 and Table 1. Black letters correspond to sites on the Mekong mainstream, red letters to sites on

tributaries, and blue letters to sites on distributaries.

https://doi.org/10.1371/journal.pone.0252769.g006
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(MT01 –MT07) and Dinh An (DA01 and DA02) in the Mekong Delta, or between years

(BD16 –BD18 were collected in 2018 and the other samples were collected in 2017) (ANOVA,

p-value = 0.47 and 0.75, respectively). Comparing the ratios 15 μm from the core with those in

the water showed that all individuals were born in the Mekong mainstream and not in

tributaries. Nevertheless, the differences in 87Sr/86Sr (Fig 7) at the core pointed to different

spawning grounds and different behaviors during the early life stages. The lowest 87Sr/86Sr in

the otoliths was lower than the lowest 87Sr/86Sr in saline water that was collected at Vung Tau

(site M14), suggesting that the fish may move to saline areas other than our sampling locations

once they reach brackish water.

The hierarchical cluster analysis of the general shape of otolith 87Sr/86Sr profiles produced

three main clusters (Fig 7A). One cluster had lower 87Sr/86Sr at the core (1/3 of individuals),

close to the ratios at sites M06 and M07 in the freshwater part of the Mekong Delta that fell to

reach a plateau corresponding to the 87Sr/86Sr ratios in the saline waters at sites M10 to M14 in

the part of the Mekong Delta where the water is brackish (Fig 7B). The second cluster had

medium 87Sr/86Sr ratios at the core (1/3 of individuals), corresponding to the water 87Sr/86Sr

encountered upstream in Thailand and Cambodia (sites M01 to M04), and variable ratios after

reaching brackish water (sites M10 to M14, Fig 7C). In this cluster, after the fish had reached

Fig 7. Main patterns of 87Sr/86Sr profiles in the otoliths of P. krempfi caught in the Mekong Delta. (A) Dendrogram of

the hierarchical cluster analysis on the right. (B, C and D) on the left, three main types of 87Sr/86Sr profiles from the core to

the edge of the otolith coming from the three branches of the dendrogram. Vertical dotted lines mark the end of each year

based on the position of the annual growth increments. Horizontal lines correspond to the mean water 87Sr/86Sr at each

sampling location in the Mekong River, except for sampling locations in the Sekong River and Tonle Sap Lake that had

higher and lower values, respectively. Labels on the point on each horizontal line refer to the sampling sites (Fig 1 and

Table 1). Black dots indicate Mekong mainstream sites; grey triangles indicate a tributary or distributary.

https://doi.org/10.1371/journal.pone.0252769.g007
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the Delta, the 87Sr/86Sr sometimes peaked close to the ratio found in the slightly brackish water

at M08. The last cluster had higher, variable ratios at the core, higher than any recorded in the

water in the Mekong mainstream (1/3 of individuals), falling to a plateau while the fish were in

the brackish waters of the delta (ratios close to those at sites M11 to M14, Fig 7D).

In comparison, otolith Sr/Ca profiles measured in our previous study [47] had a very low

ratio at the core, a rapid increase to higher ratios, and greater variations during the rest of the

lifetime of the fish (Fig 8). While the 87Sr/86Sr profiles showed more variance close to the core,

Sr/Ca profiles showed much more variation during the period of their life in brackish waters.

Although the Sr/Ca ratio patterns along the otolith transect were the opposite of 87Sr/86Sr pro-

files, they showed the same migration patterns in the Mekong Delta with several peaks.

The patterns of all individuals suggest that they moved from freshwater at birth, down the

Mekong mainstream to coastal, saline regions, during their lifetime. A large part of their life-

time was spent in the brackish and marine water regions in the Mekong Delta, where they

were caught. After hatching, they spent only a few months, much less than 1 year (Fig 8), in

the freshwaters of the Mekong in Thailand and Cambodia, before moving to the Mekong

Delta. None of the individuals showed any evidence of having swum in the Mekong tributaries,

such as the Mun River, the Sekong River, or Tonle Sap Lake.

Discussion

In transboundary rivers, such as the Mekong River, migratory fish are threatened by climate

changes, pollution, saline intrusions and the construction of dams [8–10]. Studying the move-

ment patterns of migratory fish species is thus essential for fishery management and fish

Fig 8. Comparison of 87Sr/86Sr profiles and Sr/Ca profiles for the same individuals. Comparisons of 87Sr/86Sr profiles

(solid line) and Sr/Ca profiles (dotted line) for four P. krempfi individuals. Profiles are shown from the core to the edge of

the transverse otolith section. Vertical dotted lines mark the end of each year based on the position of the annual growth

increments.

https://doi.org/10.1371/journal.pone.0252769.g008
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conservation across the Mekong countries [58, 59]. In this study, strontium isotope ratios

(87Sr/86Sr) in the water and in fish otoliths were used to identify the migration pathways of one

anadromous catfish, Pangasius krempfi, from the delta up to the Mekong River. The Sr isotope

ratios and trace element concentrations in waters along the river and in some main tributaries

were mapped in four countries (Vietnam, Cambodia, Thailand and Laos), to provide the data

needed to estimate the origin and migration pathways of fish caught in the Mekong Delta.

Strontium isotope ratios (87Sr/86Sr) and trace element concentrations in

the water along the Mekong River

This is the first study mapping the 87Sr/86Sr ratios along the Mekong River, from the Laos-Thai-

land border to the delta and the sea, and in the main tributaries (Fig 9). The 87Sr/86Sr at the

upper Mekong (0.71064) is below the average for big rivers (0.71107), reported by Peucker-

Ehrenbrink et al. [60], and below the average of the Himalayan-Tibetan rivers (0.7127) reported

by Richter et al. [61] but similar to that of the Amazon River (0.710–0.712) reported by

Duponchelle et al. [40]. The 87Sr/86Sr at the Mekong mouth (0.70919) corresponds to the global

average 87Sr/86Sr for seawater (0.70918, [38]). The strontium concentration and Sr isotope

Fig 9. Map of 87Sr/86Sr values along the Mekong River and tributaries. Detailed values are listed in Table 2.

https://doi.org/10.1371/journal.pone.0252769.g009
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composition of rivers are largely induced by a mixture of strontium derived from the type of

rocks encountered and their age [62, 63]. Therefore, the 87Sr/86Sr values measured from the

upper Mekong to the mouth could reflect a mixture of sources in different geological regions

along the Mekong River, including (1) Himalayan bedrocks in the upper Mekong, (2) the

Annamite Range along the Laos–Cambodia—Vietnam border, and (3) primitive volcanic

sources, or other tributaries in the Mekong Delta [64, 65]. Seawater, a source of strontium iso-

topes, could also affect the 87Sr/86Sr in the estuarine regions, as reported in a previous study [66].

The sites sampled in the mainstream (M01, M05) and in the delta (M06 to M14, CC, and

HL) are influenced by quaternary sediments, while M02 and M03 are affected by shallow

shelf-marine dating from the Cretaceous or Jurassic periods [65]. Concerning the tributaries,

Tonle Sap (TS) had a much lower 87Sr/86Sr (0.708934) than M05, the closest Mekong main-

stream site (0.710352), even if it belongs to the Phnom Penh Basin region [65]. This may be

due to the different sources that affect the sites: Tonle Sap Lake is influenced by 87Sr/86Sr from

the bedrock [65]. On the other hand, the Sekong River (SK) has a much lower 87Sr/86Sr

(0.713943) than the nearby mainstream site (M04). The M04 site is influenced by 87Sr/86Sr

ratio from the Mun River (Jurassic or Cretaceous Khorat plateau red-bed), while the Sekong

River is influenced by a Permo-Triassic volcano-plutonic rock belt [65].

Although the 87Sr/86Sr in surface water reflects bedrock geology and remained constant

across seasons and years [37, 67, 68], the ratios are possibly affected by groundwater [69] and

rainfall [70–72], and by seawater, depending on the locations. The only slight variation in
87Sr/86Sr in saline waters limits the usefulness of this ratio to discriminate estuarine and

marine waters [29]. In the Mekong Delta, the 87Sr/86Sr showed a logarithmic relationship with

salinity from 5 to 30, but the variation was small (0.709174 to 0.709284) due to a short distance

between the sites along the salinity gradient. However, the 87Sr/86Sr depended much more on

the geology of the upstream origins than on salinity, making it possible to use this ratio to

study fish movements in the fresh to estuarine waters along the Mekong River.

Among all the trace elements, the Ba/Ca ratio vs. Sr/Ca ratio was used to distinguish the dif-

ferent areas along the Mekong River because they both provide useable evidence of the origins

of the water between the mainstream and tributaries or the different geological regions along

the Mekong River [11]. The Ba/Ca ratio vs. Sr/Ca ratio in the different tributaries revealed dif-

ferences that could be used to infer the origin of the water, and, consequently, the movements

of fish between them [11, 73, 74]. The differences were particularly marked between the

Mekong mainstream and its tributaries [11]. While Humston et al. [73] and Strohm et al. [74]

showed that there was strong linear relationship between Sr/Ca and Ba/Ca in otoliths and

water in various tributaries in the USA, the changes in otolith Sr/Ca and Ba/Ca did not reflect

the seasonal river flow [37]. In the present study, the potential of comparing Sr/Ca and Ba/Ca

between water and otoliths to determine the origin of fish origin remains questionable. The
87Sr/86Sr in the otoliths could be a better indicator and consequently more useful for discern-

ing the natal origin and migration pathways of fish.

Origin and movement of Pangasius krempfi along the Mekong River

The composition of trace elements in fish otoliths is influenced by different physiological pro-

cesses that regulate their incorporation [18, 20, 22–24, 75, 76], and may thus limit its usefulness

for inferring fish life history. However, some trace element ratios in the otolith, including the

Sr/Ca or Sr isotope ratios, could reflect the ambient water conditions such as temperature and

salinity [21, 47, 77] that are not strongly affected by biologically factors [28, 29] or seasonal-

annual flows [78]. Therefore, otolith Sr/Ca and 87Sr/86Sr could be used as evidence to infer

past environments the fish encountered during its lifetime.
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Sr/Ca profiles of Pangasius krempfi otoliths from our previous study [47] had a very low ratio

at the core, followed by a rapid increase, and high values during the rest of the fish’s life (Fig 8).

The fact all individuals were born in freshwater environments was demonstrated, but without

identifying the exact origin of the fish. The fact the fish remained in brackish water environments

for the rest of their lifetime was also demonstrated. The aim of the present study was to more pre-

cisely identify the natal origin using the 87Sr/86Sr ratio along the Mekong River. Unlike the Sr/

Ca, 87Sr/86Sr was the highest at the core, with more variance. These 87Sr/86Sr confirmed the natal

origin in the freshwater environments of the Mekong River. The 87Sr/86Sr support the P. krempfi
migration patterns between freshwater and brackish water in the Mekong Basin over their life-

time that we inferred from the Sr/Ca ratios in our previous study [14, 44, 45].

Combining otolith 87Sr/86Sr and Sr/Ca could provide the best evidence for the natal origin

and migration behavior of anadromous species [79]. While otolith 87Sr/86Sr profiles showed

the P. krempfi movements after hatching in freshwater regions, the otolith Sr/Ca profiles indi-

cated possible movements and migrations between different saline environments. The present

study demonstrated that P. krempfi is an anadromous fish, hatches in freshwater regions in the

Mekong mainstream along the Laos–Thailand border or in Cambodia, and then migrates at

early stages to the Mekong Delta, and spends most of its lifetime in brackish and marine envi-

ronments. All P. krempfi caught in the Mekong Delta were born in the upper part of the

Mekong mainstream, having migrated more than 1,500 km in the Mekong River mainstream,

with cross-border movements at least between Laos-Thailand, Cambodia, and Vietnam.

Comparing the 87Sr/86Sr in the core with those in the water, indicated that P. krempfi are

born in the Mekong mainstream and never in the tributaries. There could be spawning

grounds along Laos–Thailand border, or in Cambodia, or even in the upper part of the river in

Vietnam. Our results point to several spawning locations, but these were not precisely identi-

fied, because the 87Sr/86Sr in the otoliths corresponded to those in different locations in the

upper part of the stretch along the Laos-Thailand border. The cluster analysis separated three

contingents with distinct 87Sr/86Sr profiles in their otoliths. One contingent hatched around

Kampong Cham (M05, Cambodia), Cao Lanh (M06, Vietnam), Cai Be (M07, Vietnam) or

even in the upper part of distributaries (CC and HL), another contingent hatched in the upper

region from Khone Fall (Cambodia) to Nong Khai (Thailand). The third contingent had a

higher 87Sr/86Sr at the otolith core than that of any water collected in this study with the excep-

tion of water in the Sekong River, where the ratio was even higher. These fish could have

hatched at upper Nong Khai (Thailand), near Vientiane the capital of Laos.

The main conclusion of the present study is that P. krempfi does not have only one natal

origin. Although the spawning habitat requirements and biology of this species are not fully

known, the previous hypothesis was that the species spawns in the Mekong mainstream near

the rapids and pool systems around the Khone Falls [43, 44, 80, 81]. The spawning season is

assumed to occur between June and August, when fishermen observed specimens with eggs in

Laos, but has never been reported in other periods [81]. By quantifying the genetic diversity

and structure of P. krempfi in the Mekong Delta, Duong and Nguyen [82] reported that there

were different spawning groups of this species. We, therefore, predicted that Khone Falls is not

this species only spawning ground and that the spawning grounds are probably rapids along

the Mekong mainstream from Vietnam and Cambodia, to the Laos-Thailand border: spawn-

ing grounds could also exist in upper Cao Lanh (Vietnam), from Kandal province to Kampong

Cham (Cambodia) [80], at Khone Fall (Laos), or along the Laos–Thailand border of the

Mekong River. P. krempfi breeds in different locations along the Mekong River, but never in

tributaries, brackish or saline environments.

After hatching in freshwater, all P. krempfi migrated to the Mekong Delta and settled in the

estuarine area, but the timing of leaving the hatching areas differed between the contingents.
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Although some individuals moved directly to the estuary after hatching, this could be due to

water currents flushing them before they had grown big enough to swim against the current

[44]. Other individuals appeared to move around in their area of origin or freshwater regions,

with slightly different 87Sr/86Sr, before migrating to the Delta. Chan et al. [80] reported two-

month-old juveniles at Mukdahan (Thailand), consistent with the delayed migration recorded

for some individuals in our study. Migration to the Mekong Delta probably depends on natu-

ral food sources, mainly composed of their favorite leaves and benthic food [44, 81], and subse-

quently on the abundance of riparian vegetation in the estuarine environments.

The purpose of the migration could be either moving from suitable reproduction habitats

to more suitable feeding habitats for growth, or avoiding predators and adverse abiotic condi-

tions upstream [83]. Poulsen et al. [14] proposed that the P. krempfi caught in the Mekong

Delta belong to the upper parts of the Mekong system, and indicated possible migration

routes. The marine residence and homing behavior of P. krempfi were observed by Baran et al.

[5] and Hogan et al. [44], who reported that these fish are able to come return to their natal ori-

gin for spawning [44]. Two of the contingents settled in the estuarine habitats, but the fish in

the other contingents moved frequently between estuarine water and slightly brackish water

upstream (M08). These results agree with those of Hogan et al. [44] and Tran et al. [47], who

reported several migratory clusters in a single population. During its life in estuarine waters, P.

krempfi can move around different areas, but only occasionally to freshwater. The longest dis-

tance traveled between marine and freshwater environments after reaching the Mekong Delta

was observed for two individuals who moved 40 km upstream near M08 (My Tho, Tien Giang

Province). The other individuals only moved around the brackish and marine environments

and did not reach the freshwater areas before capture.

In this study, spawning locations were predicted but not precisely identified, because the
87Sr/86Sr in the water overlapped in some locations, probably due to mixing between different

sources. A larger-scale study of values, sources, and changes in water 87Sr/86Sr in the Mekong

River could provide more data for applications of otolith chemistry in this area. The present

study was also limited by studying only P. krempfi captured in the Mekong Delta and no evi-

dence of homing behavior was found because no individual otolith showed a possible return

to its freshwater origin during its lifetime. The P. krempfi analyzed in the present study were

either non-homing individuals, or individuals who had not yet reached the reproductive stage,

even if the maximum age was 5 years (total length 0.8 m, weight 4.75 kg). Although there have

been several studies of the migration patterns of this species based on field observations, fish

catches or otolith chemistry [5, 44, 45, 47, 84], the life cycle of P. krempfi in the Mekong River

is still not fully understood. Age at first sexual maturity, age at migration, their behavior during

and after spawning remain unknown. Other individuals captured upstream in Thailand and

Laos, could provide more information on migrating pathways.

Threats to and conservation of Pangasius krempfi and migratory fish in the

Mekong River

Migratory fish are an important resource for many stakeholders along the Mekong River [45].

Understanding the early life history and the migratory behavior of these fish is crucial for identify-

ing their nursery habitats and their migration pathways for the purpose of conservation and fish-

ery management [85]. This study highlighted the ecological and anthropogenic threats to P.

krempfi, as it is an obligate anadromous species. P. krempfi has been shown to be highly vulnerable

to a combination of stresses including climate change, habitat loss, dam construction, pollution,

and overexploitation [5, 12, 86, 87]. Rising sea levels, the combination of severe drought, saltwater

intrusion in the coastal Mekong Delta in recent years and the construction of hydropower dams
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have reduced feeding habitats for the species at the adult stage [88–91]. Changes in rainfall pat-

terns could also affect the water levels required for breeding and the water levels in migration

pathways which, in turn, could affect breeding success [91–93]. Hydropower dams along the

Mekong mainstream reduce the availability of rapids and pools, which are possible breeding habi-

tats of this species. Future dams will increase the barriers along the migration pathways of the spe-

cies, especially for breeding, and will isolate habitats of the required quality [92]. Ultimately, these

threats will increase the mortality of adults and juveniles, compromising recruitment, and reduc-

ing population fitness [12, 13, 94]. These threats will not only impact anadromous fish, such as P.

krempfi, but also diadromous and potamodromous fish and even non-migratory fish.

Dams in the Mekong basin have more impact on migratory fish species than upstream

dams in China, and mainstream dams have a greater environmental impact than dams built

on tributaries [12]. If hydropower dams are constructed on the mainstream Mekong in Cam-

bodia and southern Laos (like the Sambor, Stung Treng, Don Sahong, Lat Sua and Ban Koum

dams), they will be a major threat to fish communities in the Mekong River, especially anadro-

mous species, such as P. krempfi, which migrate upstream to complete their life cycle. Dams

further upstream and on tributaries will also have local impacts on short-range migratory fish

[11, 12]. However, the effects of dam construction on P. krempfi populations need to be con-

sidered carefully as the wide range of breeding locations could reduce the impact of habitat dis-

connection on the populations. The lower P. krempfi contingent born around Phnom Penh

and the Mekong Delta are hypothesized to not be directly affected in the mainstream because

until now, no dam has been constructed between the delta and the sea. It is possible that the

upper contingents may adapt to the dams by switching to lower spawning grounds to avoid

migrating up or down from the dams.

Protection of hatching habitats, nursery grounds, and environmental connectivity along

the migration pathways are key issues for fish conservation. Building fishways, which could

mitigate the threats posed by dams and protect fish migration routes, ensuring habitat connec-

tivity, and rehabilitating fisheries are possible solutions to cope with dam construction [94,

95]. However, the fish passages must be designed to suit the specific topographic and hydro-

logical conditions of the river, as well as to respect the ecological and biological conditions

required at the different life stages of the fish species [12, 95]. Artificial fish passages are there-

fore unlikely to be an effective mitigation measure in the Mekong River because of a large

number of migration patterns, body sizes, shapes and behavior of migratory fish [96]. Finding

a balance between environmental, economic, and social demands are key issues for the sus-

tainable development of the Mekong region [12], and nature-based solutions are the best way

to protect and conserve the area and the fish communities.

Conclusion

This study demonstrated the use of 87Sr/86Sr ratios in water and fish otoliths to understand the

life history cycle of an anadromous catfish caught in the Mekong River. 87Sr/86Sr has never

previously been measured in the Mekong River for this purpose. The 87Sr/86Sr mapped in this

study differed significantly between the Mekong mainstream and its main tributaries, and

between different geological regions along the Mekong mainstream. The targeted species Pan-
gasius krempfi, caught in the Mekong Delta, hatch in freshwater along the Mekong main-

stream, from Phnom Penh (Cambodia) to Nong Khai (Thailand), or even further, before

settling in the delta. Spawning habitats and migration pathways are threatened by habitat deg-

radation and by the increasing number of hydropower dams along the river. Thus, the conser-

vation of P. krempfi, as well as other migratory fish in the Mekong River, requires the

agreement of and actions by all the stakeholder countries located along the Mekong River.
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