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Abstract

Foot-and-mouth disease (FMD) is endemic in India, where circulation of serotypes O,

A and Asia1 is frequent. Here, we provide an epidemiological assessment of the ongo-

ing mass vaccination programs in regard to post-vaccination monitoring and outbreak

occurrence. The objective of this study was assessing the contribution of mass vac-

cination campaigns in reducing the risk of FMD in India from 2008 to 2016 by eval-

uating sero-monitoring data and modelling the spatiotemporal dynamics of reported

outbreaks. Through analyzing antibody titre data from >1 million animals sampled as

part of pre- and post-vaccination monitoring, we show that the percent of animals

with inferred immunological protection (based on ELISA) was highly variable across

states but generally increased through time. In addition, the number of outbreaks in

a state was negatively correlated with the percent of animals with inferred protection.

We then analyzed the distribution of reported FMD outbreaks across states using a

Bayesian space–time model. This approach provides better acuity to disentangle the

effect of mass vaccination programs on outbreak occurrence, while accounting for

other factors that contribute to spatiotemporal variability in outbreak counts, notably

proximity to international borders and inherent spatiotemporal correlations in inci-

dence. This model demonstrated a ∼50% reduction in the risk of outbreaks in states

thatwerepart of thevaccinationprogram. In addition, after controlling for spatial auto-

correlation in the data, states that had international borders experienced heightened

risk of FMD outbreaks. These findings help inform risk-based control strategies for

India as the country progresses towards reducing reported clinical disease.
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1 INTRODUCTION

Foot-and-mouth disease (FMD) is caused by an Aphthovirus in the

Picornaviridae family that affects cattle, buffalo, pigs and other domes-

tic and wild ungulates. Classical infection produces clinical signs of

fever and vesicles in the mouth, tongue, hoof and udder, affecting pro-

duction and leading to economic losses (Arzt et al., 2011). However,

FMD virus (FMDV) is also known to cause various forms of subclinical

infection (Stenfeldt & Arzt, 2020) and has been associated with abor-

tion in cattle in India (Ranjan et al., 2016). FMD is endemic acrossmuch

of Asia, South America and Africa, where estimated economic losses

range from $6.5 to 21 billion USD annually (Knight-Jones & Rush-

ton, 2013). Preventing the transboundary spread of FMD into disease-

free countries, including many countries in Europe and North Amer-

ica, plays a major role in shaping international trade policies (Shanafelt

& Perrings, 2017). In the past two decades, several widespread viral

lineages of serotypes O, A and Asia1 have emerged from South Asia,

suggesting that this region is a hotspot for viral evolution and subse-

quent transboundary spread (Brito et al., 2017b), including the O/ME-

SA/Ind2001d lineage that subsequently spread to the Middle East,

North Africa and Southeast Asia (Bachanek-Bankowska et al., 2018;

Dahiya et al., 2020; Knowles et al., 2016; Subramaniam et al., 2015;Vu

et al., 2017). Some of these emerging lineages were first reported from

India, possibly originating in India’s large susceptible livestock popula-

tion, or reflecting external introduction and early recognition in India

due to its relatively robust surveillance system. Therefore, understand-

ing the epidemiology of FMD in India is critical for supporting regional

FMD control initiatives and controlling the disease globally.

India has a population of >300 million cattle and buffalo (20th live-

stock census, 2019), with some states and administrative units hav-

ing bovine population sizes on par with individual countries in Africa,

Asia and Europe (http://www.fao.org/faostat/en/#data/EK/visualize).

In addition, the country is the world’s third largest beef exporter and

largest producer and consumer of dairy, with dairy products contribut-

ing∼70%of total livestock incomeof India (Hemmeet al., 2003; Kumar

et al., 2012). Infection byFMDVcan cause significant reductions inmilk

production, manifesting in losses of up to $200 per animal in India,

but economic losses borne by farmers also include treatment, loss in

draught power, opportunity costs related to labour and distress sales

(GG et al., 2021).

A trivalent FMD vaccine against serotypes O, A and Asia1 has been

used as part of India’s FMD control strategy, with states enrolled in

either of two regular vaccination programs, namely, the central gov-

ernment vaccination program (FMD Control Program, FMDCP) or the

Assistance to States to Control Animal Disease (ASCAD) program.

FMDCP is a biannual vaccination program in which the vaccine is

administered to cattle and buffaloes, whereas ASCAD is an annual vac-

cination program (Hegde et al., 2014). FMDCP was first implemented

in 54 selected districts in 2003–04, and subsequently expanded from

southern and central India to the northern part of the country in a

phased manner, such that different states were initiated to the pro-

gram in different years. For FMDCP, monitoring and surveillance are

conducted by the Indian government. Pre- and post-vaccination mon-

itoring includes the determination of antibody titres by ELISA before

and after each round of vaccination (Pattnaik et al., 2012). At the pop-

ulation level, it is desirable for >80% of animals 12 months and older

to have adequate protection (inferred through antibody titres) to min-

imize the risk of widespread outbreaks within a population (Ferrari

et al., 2016).

The World Animal Health Organization (OIE) and the World Food

and Agriculture Organization (FAO) have developed a set of outcome-

oriented guidelines for FMD-endemic countries to reach FMD-free

status, which is known as the progressive control pathway (PCP). India

is in the stage 3 of the PCP, and most other countries in Asia are in

stage 1, 2 or 3. According to OIE/FAO recommendations, during stage

1, risk from FMD and available control options are identified. By stage

2, a country is expected to have a risk-based strategic control planwith

an FMDmonitoring and evaluation system in place. In stage 3, a coun-

try should continue to monitor disease risk, analyze passive and active

surveillance data to show progressive reductions in FMDV occurrence

and implement its strategic control plan, which may include pursuing

FMD-free zoneswith vaccinationwithin the country. Vaccination plays

amajor role in achieving this task.

To date, very few studies have been carried out to quantify the spa-

tial distribution of FMD risk in India (Hegde et al., 2014;Sharma et al.,

2014), and an evaluation of the success of vaccination programs in

reducing outbreaks is key to understanding the role of such programs

in controlling FMDandachieving FMDzonal freedomwith vaccination.

Several studies have recognized the importance of optimizing the vac-

cination program, controlling animalmovements and conducting effec-

tive surveillance for FMD control in India (Biswal et al., 2019; Pat-

tnaik et al., 2012). However, rigorous spatial epidemiological methods

have yet to be applied to understand howvaccination and other factors

relate to the spatiotemporal pattern of outbreaks.

The objective of this study was to assess the contribution of mass

vaccination campaigns in reducing the risk of FMD in India by evaluat-

ing sero-monitoring data and modelling the spatiotemporal dynamics

of reported outbreaks. We first assessed vaccination outputs through

an evaluation of antibody titre data collected as part of pre- and

post-vaccination monitoring. Using a Bayesian space–time model that

accounts for underlying spatial dependencies often present in dis-

ease data (Branscum et al., 2008;Chhetri et al., 2010; Machado et al.,

2019), we then investigated the impact of mass vaccination programs

on the occurrence of reported FMD outbreaks overtime while con-

trolling for other factors that contribute to spatiotemporal hetero-

geneities. Results presented here will ultimately contribute to evalu-

ation of progress of India’s mass vaccination campaigns and support

country’s progress in the context of the PCP.

2 MATERIALS AND METHODS

2.1 Study area and data sources

There are 28 states and eight union territories in India, and each state

is further subdivided into administrative districts. Union territories are

http://www.fao.org/faostat/en/#data/EK/visualize
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a type of administrative division in India governed by central govern-

ment, in contrast to states which have their own state-level govern-

ments. The first phase (phase I) of the FMDCP began in 2003 as a

pilot study (Subramaniam et al., 2013). At the beginning of the FMDCP

phase I, nine states and one union territory were part of the mass vac-

cination program, and not all districts within each state were included.

In the second phase of FMDCP (starting between 2010 and 2011,

depending on the state), all districts within the participating states

were part of the vaccination program except for Uttar Pradesh (an

administrative unit in northern India with 50.2 million bovine popula-

tion). In Uttar Pradesh, only 16 out of 75 districts participated in the

vaccination program as of 2018. By 2018, all seven union territories

and 11 out of 29 states were covered by FMDCP without exceptions.

A map of states participating in FMDCP by 2016 is shown in the sup-

plementary materials. During phase II of the FMDCP vaccination pro-

gram, 38% of the total cattle and buffalo population of India were esti-

mated to have been vaccinated (Mahapatra et al., 2015). In this FMD

vaccinationprogram, all cattle andbuffalo>6monthsof ageareeligible

for vaccination, with the intent to cover the entire eligible population.

However, animals in the last trimester of pregnancy are not vaccinated.

Prior to 2020, there has been no mandated two-dose primary vacci-

nation regimen for animals that are vaccinated for the first time. The

3PD50 potency trivalent (serotypes O, A and Asia1) vaccine used in

India contains three times the protective dose required to protect 50%

of the animal population (Pattnaik et al., 2012). Currently, there are

three vaccinemanufacturers in India. Since the vaccines havebeenpro-

cured centrally through a techno-commercial tender-bid system (the

lowest bid selected during each round of vaccination), there has been

no uniformity with respect to the vaccine manufacturer supplying vac-

cine to a particular state across years.

In India, disease control and reporting rely primarily on passive

surveillance conducted by different veterinary authorities including

veterinarians and veterinary paraprofessionals, adding up to nearly

65,000 at different administrative levels. Disease reporting is paper

based. Outbreaks are directly communicated by mobile phones to dis-

trict offices, and a monthly report is submitted to the Department

of Animal Husbandry. Laboratory diagnosis and confirmation of out-

breaks is performed by one of 27 FMD network laboratories and

two national laboratories located across the country. FMD outbreak

response includes ring vaccination, isolation of animals and treatment

against secondary infection andwounds.

Dataonpre- andpost-vaccinationFMDVantibody titres (seebelow)

and annual reported number of outbreaks from each state were

obtained from the annual reports of theDirectorate of Foot andMouth

Disease of the Indian Council of Agricultural Research (ICAR-DFMD,

Ministry of Agriculture), which is the national referral centre for FMD

diagnosis.Outbreak datawere generated throughpassive surveillance,

where an outbreakwas defined as a report of clinically FMDV-infected

animals from the same village/district (OIE) which was further con-

firmed by laboratory tests conducted on referred clinical samples.

The number of infected animals was not available for a given out-

break. Outbreak data were reported at the state and not the district

level.

2.2 Serological data

As outlined above, mass vaccination of cattle and buffalo was carried

out by the Indian government once every 6 months in the selected

states and districts that were part of FMDCP. To determine antibody

titres pre-vaccination, serum samples were collected at the time of

vaccination for each biannual round of vaccination. Samples were col-

lected from animals selected from 10 villages in each district on day of

vaccination (pre-vac) and 21–30 days post-vaccination. Sampled ani-

mals were selected at random and the pre- and post-vaccination sam-

ples may or may not come from the same animal. Minimal meta-data

was available at the animal-level, and agewas not recorded, though the

FMDCP guidelines target animals approximately >2 years of age. On

average, the number of animals per state fromwhich sampleswere col-

lected ranged from 100 to 1000 animals per sampling round.

Serum samples were tested for reactivity against FMDV using Liq-

uid Phase Blocking (LPB)-ELISA, which was used to infer protective

antibody titres against FMDV structural proteins at an inferred pro-

tection level of log10 titre of 1.8 (Sharma et al., 2017). Change of titre

values pre- and post-vaccination was qualitatively similar for all three

serotypes O, A and Asia 1 as vaccination was conducted with a triva-

lent vaccine. Since serotype O accounts for more than 80% of the out-

breaks (Brito et al., 2017b), only antibody titre change for serotype O

is shown in the main text. For this study, antibody titre data were only

available from states that were part of FMDCP phase I (see Figure S1

for amap of states included in phase I). Because LPB-ELISA cannot dis-

criminate between antibody responses induced by vaccination versus

natural infection, we could not determine whether inferred protection

was the sole result of vaccination and not from previous natural expo-

sure to FMDV.Data regarding the percent of animalswith inferred pro-

tection pre- and post-vaccination were summarized for each 6-month

round of vaccination.

In contrast to LPB-ELISA, non-structural protein (NSP)-based ELISA

differentiates vaccinated animals from naturally infected animals

based on elicitation of a response to NSPs that should be absent in

vaccine preparations. There is evidence that vaccination can elicit a

transient NSP response in vaccinated animals in India (Hayer et al.,

2018; Mohapatra et al., 2011). However, the majority of positive sam-

ples byNSP-ELISA are expected to be frompreviously infected individ-

uals. Annual information on sero-positivity in NSP-ELISAwas available

only for certain states/administrative units for some years. Further, the

animals sampled for NSP-ELISA once in a year are not necessarily the

same ones as sampled for LPB-ELISA.

2.3 Descriptive analysis

Data from pre- and post-vaccination monitoring obtained through

LPB-ELISA from the phase I were analyzed to identify whether there

was an increase in percent of animals with inferred protection before

and after each individual round of vaccination, as well as to iden-

tify trends in inferred protection over time across multiple successive

rounds of vaccination.
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To evaluate whether there was a correlation between population

immunity and FMDV circulation, the association between the percent

of animals in each state over a period of 8 years (2008–2016) with

inferred protection via LPB-ELISA (an indicator of population immu-

nity) and percent of NSP-ELISA-positive animals (an indicator of pre-

vious natural exposure) was evaluated using a Spearman’s correlation

test.

Bovine (cattle and buffalo) population data were obtained from the

Department of Animal Husbandry and the Dairying census, Govern-

ment of India, which was available for the years 2008 and 2012. We

averaged the two values to represent bovine population size per state.

The reportednumber of outbreaks per state per year alongwith bovine

population size per state was used to calculate a standardized inci-

dence ratio (SIR) at the state level for the years 2008–2016. Popula-

tion size and nationwide outbreak counts were used to calculate the

expected number of outbreaks per state per year (eit) if the distribution

ofoutbreaks across spaceand timewasproportional topopulation size,

such that

eit = Pit

∑
it Yit

∑
it Pit

(1)

where Pit is the population of state i in year t, and Yit is the number

of FMD cases in state i in year t. SIR was defined as the observed to

expected ratio (Yit/eit). SIRs were plotted as choropleth maps for all

years.

2.4 Conceptual framework of outbreak risk

A conceptual diagram was created to represent pathways by which

hypothesized factors beyond vaccination could influence pathogen

spread and the reported number of outbreaks per state (Figure S2),

and accounting for these additional sources of variability may allow

to better determine the effect of vaccination on outbreak counts at

the state level. Details on risk factor variables included in the model

are shown in Table S1. Disease spread is expected to be influenced

by organized farming practices, and other community activities like

animal fairs. Briefly, livestock population data of goat density and pig

density were included in our model as categorical variables (high/low,

split at the mean). In addition, higher outbreak numbers have been

reported in dryer agroclimatic zones in some parts of India (Hegde

et al., 2014), potentially due to husbandry practices that are typical

of different climatic conditions or due to environmental conditions

within those regions that promote survivability of the virus outside the

host. Therefore, land cover and annual averages for wind speed, rain-

fall and temperature were included to capture environmental factors

related to outbreak risk (Abatzoglou et al., 2018). Evaluation of intra-

annual and seasonal variationwasnotpossible sinceoutbreaknumbers

were reported as annual values. However, to quantify areas with more

extreme seasonality, annual variance (calculated across 12 months) of

each environmental variable was also included. All environmental vari-

ables were centred at themean and standardized.

Animal transport within India or across international borders for

trading and slaughter may promote disease spread and the occur-

rence of outbreaks. Because no digitized animal movement databases

are maintained for India, road density was utilized as a proxy mea-

sure. India is bordered by Pakistan, China, Nepal, Bhutan, Myanmar

and Bangladesh. FAO/OIE has categorized India and the surrounding

endemic countries into threedifferent ‘pools’ of FMDbasedon thepre-

dominant circulating serotypes and topotypes in eacharea (Patonet al.,

2018). Pool 1 includes Myanmar and China; pool 2 includes India, Sri

Lanka, Nepal, Bangladesh and Bhutan; and pool 3 includes Pakistan.

Dummy variables were introduced to the analysis indicating whether

each state was bordered by a pool 1, pool 2 or pool 3 country, or if the

state did not have any international land borders (Table S1).

In addition, the presence and efficiency of veterinary serviceswithin

a state may influence both vaccination as well as outbreak reporting.

The coverage of veterinary services in each state was calculated based

on the percentage of veterinarians available relative to the number of

veterinarians estimated to be required by that state. This value was

obtained from theOIE Performance of Veterinary Services analysis for

India.

For each year, states were categorized into two groups based on

whether they were part of the FMDCP. All states that had at least one

district participating in the vaccination program at some point of time

are shown in the Figure S3, and district-level participation expanded

through time. During the study period, themajority of districtswithin a

statewere enrolled in the program.Detailed information regarding the

participation in vaccination program at the district level is available at

https://dadfonline.gov.in/FMDCP/Index.aspx. Therewasno substantial

correlation between any variables (Figures S4 and S5).

2.5 Bayesian space–time hierarchical model

The observed number of outbreaks per state per year was assumed to

followaPoissondistribution yit ∼ Poisson (eit, 𝜃it), with yit representing

the number of FMD outbreaks in state i in year t; eit representing the

expected number of outbreaks defined as above, and 𝜃it is the yearly

relative risk ratio for each state. Relative risk can be interpreted as

howmany timesmore (or less) likely outbreaks are relative to the num-

ber of outbreaks that would be expected in a state based on its pop-

ulation size (observed-to-expected ratio). Estimation of relative risk

incorporated both spatially structured (spatial correlation amongst

neighbouring states) and unstructured (i.e., random variation) effects,

such that:

log (𝜃i ) = 𝛼 + 𝜐i + 𝜈i + Σ𝛽 (2)

where α is the intercept representing the overall level of risk in coun-

try, ʋi is the structured spatial effect and νi is the unstructured spatial

effect that functions as a random effect for each state. Variables (fixed

effects) that modify relative risk are represented by β. This model is

known as the BYM2model (Riebler et al., 2016).

https://dadfonline.gov.in/FMDCP/Index.aspx
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TABLE 1 Specification of different model structures, including DIC and posterior predictive p values

Model Specification DIC

Posterior predictive-

values (lower, upper)

Equation 1. Spatial only model log(θit)= α+ vi + υt 224.99a (15.2, 0)

Equation 2. Space–timemodel (time as an unstructured effect) log(θit)= α+ vi + υt +ωt 2765.52 (63.7, 26.1)

Equation 3. Space–timemodel (time as a structured effect) log(θit)= α+ vi + υt +ωt + ýt 2768.51 (63.7, 26.1)

Equation 4. Space–timemodel (space–time interaction) log(θit)= α+ vi + ut +ωt + γt + δit 1222.6 (33, .7)

Eachmodel adds additional components to the previousmodel.
aDIC for the spatial-only model is not comparable to space–timemodel.

2.5.1 Spatial-only model

Because data for many of the risk factors were only available for a

single point in time, a spatial-only model was initially built to screen

important risk factors among potential predictors. Although we do not

expect substantial annual variation in such variables (i.e., cattle popu-

lation sizes are not expected to change rapidly), the spatial-only model

was done so that significance of variables was not inflated due to repli-

cation of predictor data across years.

For model selection purposes, univariable analyses were first per-

formed separately for each variable in Table S1. Backward selection

was then performed from a full multivariable model by removing the

variables with the widest confidence interval that overlapped zero.

From among those different models, the simplest model that was <2

ΔDIC from the model with the lowest DIC value was considered the

best-fit spatial-only model (Spiegelhalter et al., 2002). Risk factors in

the best-fit spatial-only model were considered as candidate variables

in the space–time model alongside temporally variable risk factors (in

which yearly data were available from 2008 to 2016).

2.5.2 Space–time model

To incorporate temporal effects into the model, a BYM2 model was

used (Riebler et al., 2016). Several possible model structures exist to

incorporate the temporal effect (summarized in Table 1): time (year)

can be considered as a random effect (ωt, Equation 1 in Table 1), a

structured effect (γt), in which a random walk is used to account for

between-year dependencies (ωt + γt, Equation 2) and/or as a random,

structured and space–time interaction (ωt + γt + δit, Equation 3). The

best model structure was selected from amongst these models using

DIC. This structurewas thenused to evaluate the impact of vaccination

programs on relative risk while accounting for other sources of vari-

ability (hypothesized risk factors) aswell as spatial and temporal corre-

lations in outbreak incidence.

We also calculated how much variability is explained by each com-

ponent that made up the final model structure. Once the best model

structure was selected, variable selection was performed as described

for the spatial-only model, including temporally variable risk factors

and spatial-only factors from the spatial-only model as candidate fixed

effects. Excess risk (ER) for a given state was calculated as the propor-

tion of the posterior for each fitted θit that exceeded .8.

2.5.3 Prior sensitivity analysis

Since prior distributions can influence model results, we conducted a

sensitivity analysis on the priors. Themodel was refittedwith different

penalized complexity priors and non-informative priors to evaluate the

extent to which our results were sensitive to different prior assump-

tions (Figure S6). We ultimately used non-informative penalized com-

plexity priors, which are applicable for a large class of hierarchicalmod-

els (Simpson et al., 2014). Penalized priors consider that there is a base

model and that the complex model that we obtain is a result of devi-

ation from the base model. For Gaussian Random Field distributions,

the base model can be given as π(x/ε) where ε = 0. The objective of

using the penalized priors is to make the model similar as possible to

the base model. Penalized priors can also account for model overdis-

persion (Simpson et al., 2014).

2.5.4 Model diagnostics

The fit of the final model (selected based on DIC, as described

above) was evaluated using posterior predictive p values, defined as

p(yi* ≤ yi|y), where yi* is the posterior of the predicted distribution

from the model. Posterior predictive p values can be interpreted as

an approximation of the proportion of the predicted distribution for yi
that ismore extreme than the observed value, and values of p(yi*≤ yi|y)

near 0 and 1 indicate poor model fit. If the model is performing well,

then a greater portion of the posterior of the predicted values should

be>.1 and<.9 (Blangiardo &Cameletti, 2015). In addition, the propor-

tion of marginal variance for random effects and each model compo-

nent was checked in the final model. The explained variability from the

covariates was obtained as a percentage of change of standard devia-

tion from the null model to themodel with all the selected covariates.

2.6 Software

All analyses were performed in R statistical software. Different pack-

ages such as tidyverse 1.2.123 (Wickham et al., 2019), spdep 0.7−425

(Bivand and Wong, 2018), dplyr, stringr and ggplot2 were used. For

the Bayesian models, INLA 19.09.03 (Rue et al., 2009) were used, and

model results were processed with INLAOutputs 19.09.03 (Baquero,

2018).
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F IGURE 1 Annual standardized incidence ratio (SIR) of reported FMDoutbreaks from 2008 to 2016

3 RESULTS

3.1 Descriptive results

A total of 3282 outbreaks were reported over a period of 9 years from

2008 to 2016, with substantial heterogeneity in the spatial and tempo-

ral occurrence of outbreaks (as shown by SIR values) across states and

years (Figure 1). During this time period, we summarized the antibody

titre datameasured in 1,002,437 animals via LBP-ELISA.Antibody titre

data were only available for states that were part of FMDCP phase

I. This pre- and post-vaccination monitoring demonstrated that the

percent of animals with inferred protection for serotype O generally

increased after vaccination (Figures 2(a) and 2(b)), but there was high

variation between states and across time (Figure 2(c)). Similar trends

were observed for serotypes A and Asia1 (Figure S7). For states par-

ticipating in FMDCP phase 1, Figure S1 shows a choropleth map of the

post-vaccination serotypeOpercent protection titres, averaged across

all vaccination rounds

StateswhereNSP-ELISAand the LPB-ELISAwere carried are shown

in Figures S8 and S9. For years inwhichNSP-ELISA datawere available

(2009–2016), there was no significant correlation between NSP sero-

prevalence and the number of outbreaks per state per year (σ = .17,

p value = .10) or SIR (σ = .11, p value = .32). However, the per-

cent of animals with inferred protection via LBP-ELISA was nega-

tively correlated with raw outbreak numbers (σ = −.29, p < .001)

and SIR (σ = −.25, p value = .03). The most striking correlation was

between the percent of animals positive to LPB-ELISA and NSP-ELISA

(σ = −.39, p < .01; Figure 3). Because it was not possible to incorpo-

rate ELISAdata into space–timemodels, we performed a simple ad-hoc

linear regression on the percent of animals positive to LPB-ELISA and
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(a) (b)

(c)

F IGURE 2 Percent of animals with inferred protection based on antibody titres pre- and post-vaccination (a) overall, (b) for each state
summarized across all rounds of vaccination and (c) post-vaccination through time by state. In (a) and (b), pre- and post-vaccination values are
shown in blue and red, respectively, for serotypeO. In (c), a Loess smoothed line was plotted to visualize an overall increasing trend. States that
participated in the FMDPCP phase I are only considered
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F IGURE 3 Percent of animals with NSP-ELISA (an indication of FMD infection) and LPBE–ELISA positive (an indication of vaccine protection)
during the period of 2009 to 2016 at the state level

NSP-ELISA to estimate to relationship between these two measures

(Figure 3).

3.2 Bayesian modelling results

3.2.1 Selection of best model structure

Table 1 shows the different space–time models that were tested to

select the best fitting model structure based on DIC. For the selected

model structure that best fit the data (Equation 4, Table 1), the unstruc-

tured spatial effect accounted for 62% of the variability, whereas the

structured spatial effect accounted for only 14.6% of the variability

(Table S2). This suggests there was relatively little correlation in the

occurrence of reported outbreaks across neighbouring states through

time. Theother factor that accounted for substantial variabilitywas the

space–time interaction effect.

3.2.2 Univariable analyses of potential risk factors

Variables for which data were only available for 1 year were first

screened in univariable spatial-only models, whereas time-varying

TABLE 2 Results of the univariable analysis for the (a) spatial-only
model and (b) space–timemodel (coefficients and credible intervals
are exponentiated to be on the odds scale)

Univariablemodel DIC

Coefficient

(credible interval)

(a) Spatial-only models

No international border 228.35 .52 (.06, .74)

Bordered by country of FMD pool 1 229.33 6.11 (1.72, 21.93)

Pig density (reference: low) 229.81 2.23 (1.06, 4.72)

Forest coverage density (reference: low) 230.25 3.81 (2.07, 7.06)

(b) Space–timemodel

Participation in the vaccination program

(reference: no)

1224.01 .41 (.22, .78)

variables were screened in univariable spatiotemporal models. Vari-

ables that were associated with reported outbreaks (credible interval

of odds ratio does not overlap one) are shown in the Table 2. The com-

plete list of variables is included in the supplementarymaterials (Tables

S3 and S4). All univariable models included the underlying terms that

accounted for spatially structured and unstructured effects, as well as

temporal effects if applicable.
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TABLE 3 Results from the final Bayesian space–timemodel

Fixed effect Coefficient 95% credible interval

Intercept 1.64 (.72, 3.68)

No international border .27 (.08, .99)

Participation in the vaccination

program (reference: no)

.45 (.24, .84)

Coefficients and credible intervals have been exponentiated to be on the

odds scale.

3.2.3 Best-fit multivariable model

Fixed effects identified from the best-fit multivariable spatial-only

model (Table S5) were included as candidates in the multivariable

space–time model. Two predictors were retained in the final space–

time model: no international border and participation in the vaccina-

tion program (Table 3). Fitted relative risk values calculated from the

best-fit model for each state are shown in Figure 4. Relative risk is

interpreted as how many times more (or less) likely outbreaks are rel-

ative to the number of outbreaks that would be expected in a state

based on its population size (observed-to-expected ratio). Most border

areas show continuous high risk throughout the years. In addition, risk

increased in some areas, whereas it decreased in others. ER peaked in

many states between 2011 and 2013 (Figure S10).

The sensitivity analysis of model priors demonstrated that similar

DIC and p values were produced regardless of choice of priors.

4 DISCUSSION

In this study, we first conducted a descriptive analysis of epidemiologi-

cal outcomes of government-aided FMDvaccination programs in India.

For states where the vaccination under FMDCPwas implemented, our

analysis showed that the percent of animals with inferred protective

antibody titres fluctuated across years and states, but therewas a gen-

eral increase in the percent of animals with protective antibody titres

after each round of vaccination and across time.We then analyzed the

distribution of reported FMD outbreaks by using a Bayesian space–

timemodel tomaphigh-risk areas, identify factors that influence risk in

order to inform risk-based control strategies and assess the impact of

mass vaccination in reducing outbreaks. Thismodel demonstrated that

states that were included in the vaccination program and did not have

F IGURE 4 Fitted relative risk of outbreaks (i.e., howmany timesmore or less likely outbreaks are relative to the number of outbreaks that
would be expected in a state based on its population size) for each state from the best-fit multivariable model
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an international border experienced reduced risk of FMD outbreaks.

These results quantitatively demonstrate how effective FMD control

in India, and potentially other endemic countries, can be supported by

expansion of mass vaccination programs, sero-monitoring, and move-

ment restrictions at international borders.

India has used FMD vaccination as a control measure since the

1980s. The trivalent vaccine produced in India has a protective effect

against the circulating outbreak strains of serotype O, A and Asia1,

and studies have been carried out on vaccine safety and efficacy

(Mahapatra et al., 2015; Mohanty et al., 2015; Subramaniam et al.,

2015). Approximately one-third of India’s cattle and buffalo popula-

tion have been vaccinated through the government’s FMDCP pro-

gram (Pattnaik et al., 2012). Following PCP guidelines for stage 3, India

has conducted pre- and post-vaccination sero-monitoring according to

OIE guidelines to monitor the population-level immunity since 2008.

For a given round of vaccination, as expected, antibody titres were

higher post-vaccination compared with pre-vaccination (Figures 2(a)

and S1). However, there was substantial heterogeneity across states

and between years (Figures 2(b) and 2(c)), and the percentage of ani-

mals with inferred protection mostly fell below OIE’s recommenda-

tion of >80% population of animals 12 months and older, though the

exact threshold for herd immunity will vary as a result of spatial het-

erogeneity, age distribution and vaccine effectiveness (Ferrari et al.,

2016). Furthermore, the pre-vaccination monitoring data showed that

(Figure 2) the percent of animals with inferred protection routinely fell

to <50% prior to the next round of vaccination. Unfortunately, lim-

itedmeta-datawere available for the sampled animals that precluded a

more detailed age-based or spatial analysis of serology data. It is possi-

ble that younger animals that have received fewer vaccines doses com-

pared to the other animals may not sustain durable antibody titres; a

two-dose primary course of vaccination would enhance the duration

of immunity in younger animals (Knight-Jones et al., 2015). However,

evenat suboptimal levels, vaccination can still reducedisease incidence

(Skowronski et al., 2012;Ohmit et al., 2013;Wan-Ju et al., 2018).

Population demographics, turnover and waning immunity may con-

tribute to periodic dips below the 80% threshold (Knight-Jones et al.,

2016). According to a study conducted in Turkey, biannual mass vacci-

nation can leave gaps in population-level immunity. Among other fac-

tors, young animals may not have received sufficient vaccine doses to

attain long-lasting immunity, and animals in late pregnancy are some-

times not vaccinated, resulting in declines in population-level immu-

nity just prior to the subsequent round of vaccination (Knight-Jones

et al., 2016). Due to herd demographics and semi-intensive manage-

ment practices, it was concluded that vaccination without biosecurity

may not be able to control FMD in Turkey (Knight-Jones et al., 2016).

Similar dynamics may also occur in India, as shown by the high spa-

tial and temporal variation in the percent of animals with inferred pro-

tection, and these spatial and temporal gaps in herd immunity may

allow for the persistence and spread of FMDV in the country. As cat-

tle slaughter is prohibited in India, the presence of stray cattle popula-

tionsmayalsohinder achieving the targetedvaccine coverage. Thepro-

portion of animals with inferred protection could also have been influ-

enced by inconsistent vaccine administration and transport conditions,

delay in re-vaccination, lack of booster doses in the primo-vaccinated

calves and transboundary introduction of naïve animals, which could

have contributed to variable antibody titres.

We also investigated the relationship between the occurrence of

FMDVwithin states and vaccination data (i.e., participation in FMDCP

or the percent of animals with inferred protection via LPB-ELISA). We

used two imperfect measures to quantify the extent of FMD circula-

tion: standardized incidence ratios (SIR, based on reported outbreaks)

and NSP-based sero-prevalence. Outbreak reporting can be inconsis-

tent and likely provides an incomplete picture of FMDV incidence. In

contrast, the NSP-ELISA data captured the percentage of animals with

an anti-NSP response, which is indicative of natural infection. A nat-

urally infected animal is also expected to be positive on LPB-ELISA,

thus the percent of animals with inferred protection (based on LPB-

ELISA) cannot discriminate between immunity due to vaccination or

natural infection. However, during the period under study, the percent

of animals positive on LBP-ELISA and NSP-ELISA was negatively cor-

related. In addition, fewer outbreaks and lower SIRs were reported

in states with higher proportion of animals LPB-ELISA positive. These

results suggest that (a) LPB-ELISA data can be interpreted as an indi-

cator of vaccine coverage rather than natural virus circulation and (b)

areas with higher vaccine coverage experienced reduced circulation

of FMDV (as shown by low NSP sero-prevalence and fewer reported

outbreaks). Indeed, a simple ad hoc analysis suggests that NSP sero-

prevalence declined by∼2.1% for every 10% increase in vaccine cover-

age (inferred from LPB-ELISA positivity; Figure 3). These results are in

agreementwith a cross-sectional study conducted in 2014,which iden-

tified that herds in states in the biannual vaccination program reported

lower disease incidence (Sharma et al., 2014). Once we accounted for

spatiotemporal dynamics in the space–timemodel, participation in the

FMDCP reduced outbreaks by∼55%.

To better understand heterogeneities in outbreak occurrence

within India, we developed a Bayesian space–time model that allowed

us to examine risk factors associated with outbreak risk alongside

model components that accounted for the spatial interdependency of

risk across states. Although reported outbreak numbers are likely an

underestimate of the true number of outbreaks, analyzing patterns of

reported outbreak occurrence does advance our understanding about

spatial factors associated with outbreaks. An examination of the vari-

ance explained by each component making up the model’s structural

backbone (Table S2) revealed initial insights into processes shaping

outbreak risk. For example, the structured spatial effect explained rel-

atively little variation, indicating that the outbreak risk in one statewas

not closely correlated with the occurrence of outbreaks in neighbour-

ing states. This pattern may be because states in India are large, and a

smaller spatial scale would better capture the local spatial dynamics of

outbreak propagation. Also, this result suggests that outbreaks or con-

trol programs in one statewouldnot have large impacts on the adjacent

state.

From our model, it is evident that relative risk of outbreaks changes

through time and space, though there are some states that were more

consistently at higher risk (Figure 4). The two variables retained in the

final model were participation in the FMDCP vaccination program and
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not having an international border. The relative risk of outbreaks in

states that were part of the FMDCP during 2008–2016was about one

half that of states that were not part of the program. This is consistent

with our descriptive analysis on the importance of vaccination. It is also

notable that we observed a benefit of the FMDCP in the number of

reported outbreaks state-wide, despite the observed variability in per-

cent of animals with inferred protection and that the FMDCP did not

always extend to all districts within the state.

The other important risk factor identified by the model was a ∼70%

reduction in the riskof outbreaks in stateswithno international border.

Given thatmany northern states did not participate in the FMDCPvac-

cination program until later in the study period, part of this effect may

be due to the shorter duration of time that bovine populations in these

states received vaccination, which could potentially impact population

immunity. Our model included FMDCP participation and international

borders as additive effects and did not account for different lengths

of time that a state was part of the FMDCP, which could lead to a

slight overestimation of the risk associated with international borders.

Nonetheless, our results in combination with other published research

suggest that international borders increase the risk of outbreaks. In

a longitudinal study conducted in 2014 to determine serological herd

immunity, border states such as Assam, Rajasthan, Jammu and Kash-

mir, West Bengal and Uttar Pradesh were at high risk due to low pop-

ulation immunity. There were also instances where high incidence of

FMD was observed in border states even where herd immunity was

high (Sharma et al., 2014). We observed the same pattern of border

states having greater ER (Figure S10), including the states of Megha-

laya, Assam, Arunachal Pradesh, Tripura and Jammu and Kashmir.

The potential for transboundary introductions of novel FMDVs into

India from neighbouring countries may in part explain the risks asso-

ciated with international borders. Alternatively, transboundary value

chains may result in high risk in certain border states if animals are

transported to border states from elsewhere within India prior to

exportation. Legal and illegal animal movement occurs between neigh-

bouring countries, but the extent of such transboundary movements

depends on the countries involved (Landes et al., 2016). Previous stud-

ies have identified that cattle and buffaloes are transported from India

toMalaysia throughMyanmar andVietnam (all pool 1 countries),which

may lead to the dissemination of FMDV (Rweyemamu et al., 2008;

Smith et al., 2016; Bartels et al., 2017). Interestingly, our spatial-only

model suggests that bordering a country in pool 1 carried a higher risk,

which would be consistent with the idea that transboundary move-

mentswithpool 1 countries shapesFMDriskwithin India, although this

variable was not retained in the space–timemodel.

ERpeakedbetween2009, 2011and2013 in almost all states (Figure

S10). During 2013, widespread FMD outbreaks occurred in India,

caused by the strain O/ME-SA/Ind2001d. This strain also spread to

other countries in theMiddleEast andSoutheastAsia at this time (Brito

et al., 2017a; Subramaniam et al., 2015), suggesting that periods of ER

in Indiamay also translate to heightened frequencies of transboundary

transmission.

India is in the stage3of thePCP forFMD.Countrieswithin this stage

should engage in ongoing monitoring of risk and implementation of

risk-based strategies to define a pathway to obtain freedom from FMD

(with vaccination) in at least one geographic zone, including analysis of

passive/active surveillance data to document epidemiological evidence

of reductions inFMD incidence. Related to this, our results suggest that

a feasible strategymay be to continue trying to decrease prevalence in

identified high risk areas tomitigate the impact of the diseasewith spe-

cial focus on states that possess international borders. Alternatively,

low risk areas identified from this spatial analysis could help delineate

areas in which zonal freedommay bemore readily attainable.

There are several caveats to the interpretation of the serological

data that present limitations to this study. First, NSP-ELISA data were

available from only 24 out of 29 states for 6 years. In addition, tran-

sient increases of NSP titres can occur within 21 days of vaccination

in up to 15% of previously uninfected animals, which complicates the

interpretation of NSP-ELISA results particularly if vaccination history

is not available (Mohapatra et al., 2011;Hayer et al., 2018). Second, ani-

mals can be positive on an LPB-ELISA from either vaccination or nat-

ural infection. The negative correlation between NSP-ELISA and LPB-

ELISA data suggests that (a) rates of LPB-ELISA positivity likely repre-

sented vaccination rather than natural infection, and (b) rates of NSP-

ELISA positivity were not coupled with vaccination. However, serial

testing and monitoring for clinical signs is necessary to identify the

changes in antibody titres in infected and vaccinated animals to deter-

minewhether animals have acquired antibodies due to infectionor vac-

cination (Mohanty et al., 2015). Related to this, when pre- and post-

vaccination antibody titres were compared at the state level, samples

were not coming from the same animal which limits the conclusionswe

can draw from this comparison. In addition, serum samples were not

collected in an age stratified manner, and information on age of ani-

mals was not available. Not only is the number vaccine doses received

and hence LPB-ELISA positivity potentially tied to age, but there is also

an age-related increase in post-vaccinal NSP-responses and the prob-

ability of lifetime infection (de Carvalho Ferreira et al., 2017; Stenfeldt

& Arzt, 2020). While lack of age information may hinder the interpre-

tation of sero-reactivity, particularly at the individual-level, the robust

sample sizes within each state should somewhat mitigate this issue for

population-level estimates, as each state’s sampled population should

contain a relatively representative mixture of animals of various ages.

Age-stratified sampling has been implemented as of 2020, but not for

the study period investigated here. Finally, data for years beyond 2016

were not included in the present study because the country began

using Solid Phase Competitive ELISA assessment of population immu-

nity, and this different diagnostic technique could create inconsisten-

cies and confusion in the interpretation of patterns of protection at the

population level.

Another limitation is that the outbreak data came from passive

surveillance, and theremay be substantial under-reporting. If there are

spatial biases in the extent to which outbreaks are under-reported,

then this could introduce spatial biases to the SIR data and the data

used for the space–time model. These types of potential bias are

common in observational epidemiological studies that rely on passive

surveillance; however, we believe there is still value in describing large-

scale patterns of FMD incidence. In addition, we have no information
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about the number of animals infected in each outbreak, which means

that small and large outbreaks receive equal weight in our analysis.

Finally, no environmental or climatic factors were retained in our best-

fit model. This may be an artefact and limitation of the state-level spa-

tial and yearly temporal scale of our analysis, which did not allow us to

capture finer-scale spatial variation or seasonal effects. Future analy-

ses couldovercome the limitations imposedby the spatial and temporal

resolution of our outbreak data by tabulating outbreak data on a finer

spatiotemporal scale, thus enabling a better evaluation of the impor-

tance of environmental risk factors.

5 CONCLUSION

In this study, we show that the standardized incidence of FMD out-

breaks have reduced over time with the implementation of mass

vaccination, though the percent of animals with inferred protection

was highly variable through space and time and often fell below the

desired threshold of >80%. Over the same time period, states with

a higher percentage of animals with inferred protection had a signif-

icantly lower number of reported outbreaks. Through implementing a

Bayesian space–timemodel,wedemonstrate that states thatwerepart

of the FMDCP experienced a ∼50% reduction in the risk of reported

outbreaks.Our results also demonstrate a substantial risk of outbreaks

associatedwith international borders, suggesting a role of transbound-

ary movements of animals or fomites in shaping FMD incidence. This

study provides a rigorous spatial analysis of the impact of vaccination

programs in FMD circulation, which will contribute towards efforts

to reduce disease prevalence. Further studies may be necessary of

detailed risk factor identification at a granular level and to assess

the impact of other control measures, such as implementing biosecu-

rity measures, movement control and systematic age-stratified sero-

surveillance, to control FMD in India.
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