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In all living organisms, metabolic homeostasis and the immune system are the most fundamental requirements for survival.
Recently, obesity has become a global public health issue, which is the cardinal risk factor for metabolic disorder. Many diseases
emanating from obesity-induced metabolic dysfunction are responsible for the activated immune system, including innate and
adaptive responses. Of note, inflammation is the manifest accountant signal. Deeply studied microRNAs (miRNAs) have
participated in many pathways involved in metabolism and immune responses to protect cells from multiple harmful
stimulants, and they play an important role in determining the progress through targeting different inflammatory pathways.
Thus, immune response and metabolic regulation are highly integrated with miRNAs. Collectively, miRNAs are the new targets
for therapy in immune dysfunction.

1. Introduction

Obesity is the result of imbalanced energy intake and expen-
diture, which is defined as abnormal or excessive ectopic fat
accumulation in peripheral tissues that may impair health.
It is estimated that by 2030, the overweight adults (body mass
index (BMI)> 25 kg/m2) are projected to be 1.35 billion, and
573 million of these are considered clinically obese
(BMI> 30 kg/m2) in the world [1]. Obesity plays an impor-
tant role in the dysfunction of the liver, cardiac, pulmonary,
endocrine, and reproductive systems, resulting in serious
metabolic disorders, such as diabetes, fatty liver disease,
atherosclerosis, and some cancers. This imposes a spectacular
burden on personal health, society, and economy. Treat-
ments of the escalating obesity and metabolic disorder have
been a long journey which requires efforts from each level
of society. Further, medical therapy and surgery are also
powerful measures to shape tackling and curbing programs.

Since the beginning of life, metabolic response and
immune system are highly interwoven for tissue and

organismal health. It was reported that immune cells, such
as macrophages and mast cells, infiltrated adipose tissue in
obese animal models [2], suggesting an immunological
nature of metabolic disease. This observation can clarify
another study which showed that some diabetic patients
treated with aspirin exhibited rapid improvement in glucose
homeostasis [3]. On the other hand, dysimmunity is para-
mount for metabolic disorder. Fox et al. reported that
patients with meningitis exhibited a transient diabetic syn-
drome [4]. Another study also found that treatment with
lipopolysaccharide in dogs caused resistance to insulin by
abrogating the ability of insulin to induce glucose uptake
in the muscle [5]. Besides, it was recognized that acute
infection in human patients was associated with decreased
binding of insulin to the insulin receptor in isolated blood
cells [6]. Hence, delicate regulation of these pathways is vital
for cell homeostasis.

miRNAs are small noncoding, endogenous, single-
stranded RNAs usually consisting of 18–25 nucleotides that
regulate gene expression through repression or degradation
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of targeted mRNAs at the posttranscriptional level [7]. It is
estimated that about 30–50% of protein-coding genes are
regulated by miRNAs [8]. Disrupted expression of miRNAs
participating in cell process is related to many diseases, such
as obesity-induced hyperlipidemia, nonalcoholic fatty liver
disease (NAFLD), type 2 diabetes mellitus (T2DM), and
atherosclerosis, through regulation of multiple genes [9].
In the immune system, the feedback networks serve to reg-
ulate protein expression at a steady state and conditions of
environmental stress that are necessary for fate commitment
[10]. Therefore, miRNAs implicated in immune system
development and function have a potential role in the thera-
peutics for immune-related diseases.

In this review, we focus on obesity-induced metabolic
disorder with the goal to illustrate the links with immune
response and the role of miRNAs and therefore to develop
effective therapeutic strategies.

2. miRNAs and Obesity-Induced Metabolic
Disorder

Obesity is the primary target for prevention and treatment
as elevated serum concentration of lipid in obese subjects
may lead to severe disturbances (lipotoxicity) and inevita-
ble metabolic disorder. Adipose tissue is the main organ
for lipid storage; however, excess calories will change
endocrine functions of adipocytes and the ectopic fat accu-
mulation in peripheral tissues, such as liver, skeletal muscle,
pancreatic β-cells, and kidney [11], will lead to lipotoxic
stress and low-grade inflammation, accompanied by meta-
bolic disorder.

In the last few years, there has been a growing interest in
the role of miRNAs in the development of obesity-induced
metabolic disorder. These miRNAs play important roles
in physiologic and pathophysiological conditions which
participate in cell differentiation, proliferation, apoptosis,
hematopoiesis, limb morphogenesis, and important meta-
bolic pathways, such as insulin secretion, triglyceride and
cholesterol biosynthesis, and oxidative stress [12, 13]. Among
these, it is shown that miR-103, miR-107, and miR-143 accel-
erate fat cell development [14]. miR-935, miR-4772, miR-
223, and miR-376b are reporters of diet-induced obesity
[15]. And mice lacking miR-378 are resistant to obesity and
exhibit enhanced mitochondrial fatty acid metabolism and
elevated oxidative capacity in insulin target tissues [16].
miR-221, miR-28, and miR-486 are associated with BMI,
percentage fat mass, waist, and regional fat distribution
[17]. In addition, miR-126, miR-15a, miR-29b, miR-223,
and miR-28-3p are related to T2DM, and miR-155, miR-
302a, and miR-712 are related to atherosclerosis [18].

3. Inflammation and Immune
Response in Obesity-Induced Metabolic
Disorder

The living organisms activate the immune system composed
of cell lineages residing in lymphoid organs or vary tissues
and transit through the peripheral blood against infectious

pathogens. Inflammation is a self-protective response with
the goal to clear antigens and return the system back to a
normal baseline, which recruits leukocytes to fat, but lacks
many of the cardinal signs of classic inflammation, such as
dolor, rubor, calor, and tumor. Immune activation is recur-
rent in superimposed metabolic disorder on obesity with
tonic low-grade inflammation. Innate and adaptive immune
responses are different kinds of immunity interacting with
additional cells to form dynamic cellular communities in
tissues. Innate immunity is an intrinsic, cell-autonomous
response representing the first barrier of fast-acting defense
against pathogens, while adaptive immune response stimu-
lates antigen-specific receptor molecules expressed by T
and B lymphocytes [19]. Excess lipid in obese individuals
is the main cause of metabolic disorder. Likewise, it may also
influence the ability of the immune system. Thus, it is vital to
evaluate the role of immune response and inflammation in
the obesity-induced metabolic disorder.

All metabolic tissues contain resident populations of
immune cells, and all cells with normal metabolism perform
cell-type-specific biological functions involved in immune
responses against ambient environment [20], which gave
birth to the concepts of “immunometabolism” [21] and
“metainflammation” [22]. Immunometabolism is proposed
to depict metabolism connected to immunity and the meta-
bolic impact on immune cell function, while metainflamma-
tion is a discipline of chronic low-grade inflammatory
response to obesity.

There are multiple signaling pathways participating in
promoting obesity-derived diseases and involved in the prog-
ress of inflammation. Lipid can act directly on cells of the
innate system to promote the development of Th2-type
responses associated with allergy or through CD1 to capture
and present lipid antigen restricted to T lymphocytes, which
can promote allergic reactions [23, 24]. Macrophages are
important for lipid sensing and induction of the inflamma-
tory programming from an anomalous activation of the
innate immune system. In the presence of a continuous
nutritional surplus, foreign pathogen molecules such as lipid
or saturated fatty acids are sensed by lipid transporter, pat-
tern recognition receptors (PRRs, such as Toll-like receptors
(TLRs), and Nod-like receptors (NLRs)) or other cytokine
receptors to initiate a defense response. Intracellular lipids
are recognized to ligate several immune receptors by TLRs
and subsequently induce inflammatory activity and inflam-
matory gene transcription, resulting in the production and
secretion of cytokines such as tumor necrosis factor (TNF)
and interleukin 6 (IL-6) [25], which are overexpressed in
the adipose tissue of obese mice providing the first clear link
between obesity and induced metabolic disorder [26]. IκB
kinase-β as the downstream target and activation of IKKβ/
NF-κB is crucial in inflammation in the obese state. Besides,
in insulin-responsive tissues, JNK is activated by fatty acids,
insulin, hyperglycemia, and inflammatory cytokines [27].
Another downstream pathway is endoplasmic reticulum
(ER) stress, which activates unfolded protein response and
governs multiple metabolic responses [28]. In addition, lipid
recognized by NLRs activated Caspase1 and ultimately
resulted in ROS activation and the release of IL-1β and IL-
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18 [29]. Thus, the lipid accumulation tissues which are pop-
ulated by macrophages and other immune cells give rise to
chronic activation of inflammatory pathways in the setting
of obesity (Figure 1). Further work is needed to show the pre-
cise cell signal for deep understanding of the response against
pathogen infections.

3.1. Hyperlipidemia and Atherosclerosis. Hyperlipidemia, a
chronic disorder with high levels of triglyceride (TG,
hypertriglyceridemia), total cholesterol (TC, hypercholester-
olemia), and low-density lipoprotein cholesterol (LDLC) and
a decreased level of high-density lipoprotein cholesterol
(HDLC), is a manifest consequence of obesity. Lipid droplets
are absorbed by intestine cells and transported to tissues for
storage and expenditure. Thus, regulation of lipid absorption,
generation, and expenditure is crucial in determining circu-
lating lipid levels. To understand the prevalence of hyperlip-
idemia in China, Li et al. determined TG, TC, HDLC, and
LDLC levels in fasting serum for 97,409 subjects who were
selected by multistage stratified cluster random sampling
from 162 surveillance points of 31 provinces in 2010. After
the complex weighting, data showed that prevalence of
hypertriglyceridemia, hypercholesterolemia, high blood
LDLC, and low blood HDLC in Chinese adults was 11.3%,
3.3%, 2.1%, and 44.8%, respectively [30].

Atherosclerosis is a result of fatty streak lesions initiated
by macrophages forming foam cells trapped beneath the
endothelial cell lining in the artery [31]. It is enhanced after
continued recruitment of immune cells and subsequent
proliferation and migration of smooth muscle cells to larger
fibrofatty plaques, followed with significant narrowing of
the arterial lumen, leading to chronic syndromes, such as
cardiovascular disease [32]. The major clinical manifesta-
tions of atherosclerosis include ischemic heart disease,
ischemic stroke, and peripheral arterial disease. It is the
leading cause of death worldwide which is declared by the
World Health Organization to highlight its prevalence
threat to public health.

Atherosclerotic lesions recruit inflamed endothelial cells
in postcapillary venues, such as intracellular adhesion mole-
cule-1, E-selectin, and vascular cell adhesion molecule-1.
Macrophage scavenger receptor type A expressed by immune
cells recognizes and facilitates the phagocytosis of specific
surface molecules of pathogens. Besides, CD36 and TLRs
are also receptors regulated by macrophages and endothelial
cells contributing to inflammation [33, 34], which can pro-
vide a link between systemic inflammation and local infection
in driving plaque growth or engendering atherosclerotic
plaque instability. The role of inflammatory cytokines and
mediators influence the development of atherosclerotic
lesions [35]. In addition, interferon-γ and IL-18 are two
Th1 cytokines involved in proatherogenic reaction. Recent
studies show that IL-18 receptor is expressed in multiple
immune cells within human atherosclerotic plaques, while
intraperitoneal injection of recombinant IL-18 increased
atherosclerotic-lesion size twofold in ApoE−/− mice [36, 37].

3.2. NAFLD. NAFLD is a pathologic syndrome ranging from
simple steatosis through steatohepatitis to fibrosis and

cirrhosis which are characterized by excess fat accumulation
in hepatocytes that is associated with an enlargement of the
liver (hepatomegaly) accompanied by inflammation, leading
to loss of metabolic competency as reduced mitochondrial
β-oxidation capacity and induced endoplasmic reticulum
stress, oxidative stress, and hepatocyte apoptosis. It is the
major risk factor of chronic liver disease in the developed
countries as the prevalence of steatosis in patients with obe-
sity is about 75% [38]. In a US community, the incidence of
NAFLD diagnosis increased 5-fold from 1997 to 2014 [39];
therefore, it was expected that within the next decade,
NAFLD-associated hepatic disorder could be the most com-
mon. In general, nearly 10–20% of NAFLD patients will
progress to nonalcoholic steatohepatitis (NASH) and 8–
25% of NASH patients may develop liver cirrhosis. Up to
2.8% of NASH cases may further develop into end-stage liver
disease or hepatocellular carcinoma [40].

NAFLD is characterized of hepatic lipid accumulation
accompanied with inflammation. Acute immune response
and coordinated network of multiple cell types are essen-
tial for maintaining metabolic homeostasis. In lipid accu-
mulation tissues, aggregation macrophages predominantly
assume a classical proinflammatory activation state (M1)
through Th1 responses while reducing an alternative mac-
rophage activation state (M2) generated by Th2 cytokines
which promotes fibrotic responses [41, 42], resulting in
the suppressed recruitment of eosinophils and attenuation
of classical NF-κB-dependent activation pathways [43, 44],
leading to low-grade inflammation. Many of the signaling
pathways such as TLR, JNK, and ER stress were elevated
in steatotic liver inducing inflammation and metabolic
dysfunction. In addition, M1/Th1 cytokines are increased
mediated by immune cells recruited to the liver.

3.3. T2DM. Glucose homeostasis is controlled by multiple
organ system, including brain, pancreas, and peripheral

Lipids

TLRs NLRs CD1

IKK�훽/NF-�휅B Caspase 1 T lymphocytes

ER stress ROS activation Allergic reaction

In�ammation

Figure 1: Inflammation pathways induced by lipid. Lipid can be
recognized by multiple molecules resident in cellular membrane,
such as TLRs, NLRs, and CD1, to activate different signal
pathways and ultimately induce inflammation. TLRs are
responsible for IKKβ/NF-κB and ER stress augment, while
NLRs activate Caspase1 expression and induce ROS production.
Besides, lipid captured by CD1 can be presented to T lymphocytes
directly. All these signals participate in translating lipids to
inflammatory response.
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tissues (such as liver, adipose tissue, and skeletal muscle).
In the fasted state, release of glucose from liver is a key for
euglycemia. Circulatory glucose originates from hydrolysis
of glycogen (the polysaccharide storage form of glucose) in
the liver as well as from gluconeogenesis (de novo production
of glucose from non-glucose-derived carbon precursors). As
a compensatory response to postprandial hyperglycemia,
plasma insulin concentration rises to maintain normal glu-
cose homeostasis by inducing glucose uptake in the skeletal
muscle and liver while simultaneously inhibiting hepatic glu-
cose production [45]. However, nutritional excess enhances
the secretion of insulin but blunts the response of organs to
insulin and ultimately results in the clinical manifestation
of T2DM, the most studied multifactorial metabolic disorder
associated with obesity. The global prevalence of T2DM is
rapidly increasing, and epidemiologists predict that the num-
ber of patients will double in the second half of the twentieth
century by 2030 in China [46]. The number of people with
diabetes mellitus is projected to rise to 439 million globally,
which represents 7.7% of the total adult population of the
world’s adults [47].

T2DM is relevant to synergistic action by multiple
organs, such as pancreatic islets, liver, adipose tissue, and
skeletal muscle, which coordinated to determine circulatory
glucose level and insulin action. Pancreatic islets are the
critical cells for insulin secretion. When the lipid is over-
whelmed, macrophages are recruited and produce proin-
flammatory cytokines to induce inflammation, which result
in blunted β-cell function, reduced insulin secretion, and cell
apoptosis, leading to decreased islet mass. Excess lipid in
liver, adipose tissue, and skeletal muscle has causal relation-
ship with insulin resistance. The increased adipose tissue
mass is related to an estimated excess of 20–30 million mac-
rophages that accumulate with each kilogram of excess fat in
humans [48]. The inflammatory cytokines are increased in
obesity coupled with myocytes’ capacity in response to
inflammatory and metabolism [49, 50]. Infiltrating macro-
phages accumulated in muscle induce M1 activation [51].

Taken together, at the molecular and cellular levels,
excess nutrients such as lipid can induce secretion of cyto-
kines and trigger inflammatory responses in obesity-
induced disorder.

4. Role of miRNAs in Metabolic Disorder
and Immunity

There are many miRNAs enriched in immune response dys-
function to affect immunity [52]. miR-125 has a vital role in
maintaining normal inflammatory cytokine output, which
targets several mRNAs that are important in development
and apoptosis, thereby altering immune cell biology in
complex ways. Overexpression of miR-125a decreases cell
apoptosis and increases total number of bone marrow cells
[53]. Beyond this, many others have been linked to the
modulation of immune cell development. A recent study
shows that ectopic expression of miR-142 has been found
to increase production of T lymphocytes in vitro [54].
Besides, miR-221 and miR-222 are downregulated during

erythropoiesis, thus relieving repression of their target, which
encodes the stem cell factor receptor c-Kit [55].

In addition to function on gene expression participating
in immune response, miRNAs also influence metabolism.
For example, miR-100, miR-130, and miR-155 which is pos-
itive in macrophage infiltration are inhibited with adipocyte
differentiation [18]. miR-155 is ubiquitously expressed, not
only in many haemopoietic cell types but also in human
reproductive tissues, fibroblasts, epithelial tissues, and central
nervous system [56]. The miR-155 is encoded by a gene orig-
inally isolated near a common retroviral integration site-
induced lymphomas [57]. It is found that this miRNA is
upregulated in atherosclerosis which is coordinated with
lipid and inflammation [58]. Also, its expression is downreg-
ulated in mature immune cells and increased in adaptive
macrophages after exposure to inflammatory cytokines
[59, 60]. The importance of proper regulation of miR-155
expression is exemplified by its much higher expression in
response to infection [61–63].

miR-33 is the typical miRNA abundant in lipoprotein
particles which is crucial in lipid metabolism [64]. Targets
of miR-33 include key enzymes of fatty acid uptake and
metabolism such as CPT-1, AMPK, and β-hydroxyacyl-
CoA dehydrogenase [65]. Moreover, overexpression of
miR-33 significantly inhibits cellular fatty acid oxidation
and enhances mitochondrial oxidative capacity and ATP
production [66, 67]. Further, numerous studies have
regarded miR-33 as the therapy target of obesity and induced
metabolic disorder [68]. At the same time, a recent study
shows that miR-33 regulates the innate immune response
via ATP-binding cassette transporter [69]. Consistent with
this, Abca1−/− and Abcg1−/− macrophages have increased
TLR proinflammatory responses, which indicate that miR-
33 augment TLR signaling in macrophages via a raft
cholesterol-dependent mechanism. Another study shows
that miR-33 controls adaptive fibrotic response in the remod-
eling heart by preserving lipid raft cholesterol [70].

5. Conclusions and Future
Therapeutic Directions

miRNAs are now widely regarded as playing a critical role
in regulating homeostasis of obesity-induced metabolic
disorder and immune response by fine tuning the expression
of a network of genes through posttranscriptional regulation.
Specific miRNA expression profiles can be utilized as bio-
markers for diagnosis, prognostic purposes, and clinical
development in various diseases [71]. However, studies in
demonstrating the therapy role of miRNAs in metabolic dis-
order and dysimmunity are lagging.

In this review, we analyze the important role of miRNAs
in obesity-induced metabolic disorder and immune response.
We listed many diseases induced by obesity, such as NAFLD,
T2DM, hyperlipidemia, and atherosclerosis, which have
affinity with miRNAs. These miRNAs participate in many
pathways and regulate metabolism progression, including
insulin secretion, triglyceride and cholesterol biosynthesis,
and oxidative stress. Moreover, metabolic disorder accounts
for dysimmunity as ectopic and excess lipid accumulation
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in cell can be detected by multiple signals, such as TLRs,
NLRs, and CD1, to initiate inflammatory response. And dys-
immunity is accompanied by metabolic disorder as patients
with meningitis exhibited an instant diabetic syndrome. Fur-
ther, miRNAs play a crucial role in coupling metabolism and
immunity. As shown before, miRNAs regulated by immune
response can regulate the development of obesity-induced
metabolic disorder. On the contrary, immune response regu-
lated by metabolism is mediated by miRNAs (Figure 2).

Thus, it is expected that a better understanding of miR-
NAs in obesity-induced disorder and immune response will
lead to the discovery of the potential therapy role of miRNAs
in metabolic and immune-related disorder. And further work
needs to accelerate the clinical use of miRNAs.
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