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Background: Individuals with bilateral vestibular hypofunction (BVH) often report symp-
toms of oscillopsia during walking. Existing assessments of oscillopsia are limited to 
descriptions of severity and symptom frequency, neither of which provides a description 
of functional limitations attributed to oscillopsia. A novel questionnaire, the Oscillopsia 
Functional Impact scale (OFI) was developed to describe the impact of oscillopsia on 
daily life activities. Questions on the OFI ask how often individuals are able to execute 
specific activities considered to depend on gaze stability in an effort to link functional 
mobility impairments to oscillopsia for individuals with vestibular loss.

Methods: Subjective reports of oscillopsia and balance confidence were recorded for 
21 individuals with BVH and 48 healthy controls. Spearman correlation coefficients were 
calculated to determine the relationship between the OFI and oscillopsia visual analog 
scale (OS VAS), oscillopsia severity questionnaire (OSQ), and Activities-Specific Balance 
Confidence scale to demonstrate face validity. Chronbach’s α was calculated to deter-
mine internal validity for the items of the OFI. A one-way MANOVA was conducted with 
planned post hoc paired t-tests for group differences on all oscillopsia questionnaires 
using a corrected α = 0.0125.

results: The OFI was highly correlated with measures of oscillopsia severity (OS VAS; 
r  =  0.69, p  <  0.001) and frequency (OSQ; r  =  0.84, p  <  0.001) and also with the 
Activities-Specific Balance Confidence scale (r = −0.84, p < 0.001). Cronbach’s α for 
the OFI was 0.97. Individuals with BVH scored worse on all measures of oscillopsia and 
balance confidence compared to healthy individuals (p’s < 0.001).

conclusion: The OFI appears to capture the construct of oscillopsia in the context of 
functional mobility. Combining with oscillopsia metrics that quantify severity and frequency 
allows for a more complete characterization of the impact of oscillopsia on an individual’s 
daily behavior. The OFI discriminated individuals with BVH from healthy individuals.

Keywords: oscillospia, vestibular loss, activity and participation restriction, balance, mobility

inTrODUcTiOn

During locomotion, the ability to see clearly in order to avoid or interact with objects or to facilitate 
use of optic flow for balance and heading is essential (1, 2). The primary purpose of the vestibulo-
ocular reflex (VOR) may be to stabilize gaze during locomotion, when frequencies of head movement 
far exceed the capabilities of other eye movement systems (3, 4). Gaze instability during walking 
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has been directly attributed to loss of function of the VOR (5–9). 
Impaired gaze stabilization makes navigation and obstacle avoid-
ance during walking more challenging, which may contribute 
to gait variability in individuals with bilateral vestibular hypo-
function (BVH) (10). After VOR failure, a commonly reported 
complaint was that stationary environmental objects appear to 
“jump” during walking (6). Oscillopsia has also been reported in 
individuals with intact saccular function further indicating that 
oscillopsia symptoms may depend on angular VOR capabilities 
(11). However, complaints of oscillopsia are not consistent across 
all individuals with a diagnosis of BVH (12).

Current physiological vestibular function tests do not 
adequately characterize oscillopsia or the daily life impairments 
experienced by individuals with BVH. Oscillopsia has been 
studied using visual analog scales of symptom severity (5, 13) 
or symptom frequency (9, 14). However, oscillopsia severity and 
frequency do not consistently relate to physiological (i.e., VOR) 
or perceptual assessments of vestibular function like dynamic 
visual acuity (DVA) (5, 9, 12, 15–17). This disconnect between 
diagnostic testing and subjective quality of life may represent a 
limitation in the ability of existing questionnaires or diagnostic 
tests to adequately capture the functional impact of oscillopsia 
symptoms on daily life. Combining physiological assessments 
of gaze stability by simultaneous measurement of the VOR and 
other oculomotor responses and reading capability using tests 
such as the HITD will help to close the gap between physiol-
ogy and function (18), but may not fully account for reported 
symptoms of oscillopsia. Recently, the presence of oscillopsia 
symptoms in individuals with BVH was found to correlate with 
their performance on a suppression head impulse test (SHIMP) 
(19). There are no self-report symptom scales that specifically 
characterize the impact of oscillopsia symptoms on the ability to 
execute daily life activities. This suggests that subjective measures 
that are linked to functional daily life tasks are needed to more 
completely describe the relationship between vestibular pathol-
ogy and oscillopsia and the impact of both on an individual.

The two most common subjective measures of oscillopsia are 
the oscillopsia visual analog scale [OS VAS (13)] and an oscil-
lopsia severity questionnaire [OSQ (9)]. The OS VAS describes 
oscillopsia symptom severity and the OSQ describes symptom 
frequency but is not specific to head motion-induced oscil-
lopsia. Although very important in characterizing disease state, 
symptom severity and frequency may not adequately characterize 
the ability to execute daily life activities, which could explain the 
inconsistent relationship between VOR gain, DVA scores, and 
oscillopsia symptoms. The existing scales do not adequately char-
acterize how oscillopsia impacts daily function from an activity 
or participation perspective as described by the International 
Classification of Functioning, Disability, and Health (ICF) (20). 
The ICF model includes four domains: (1) body functions; (2) 
body structures; (3) activities and participation; and (4) environ-
mental factors. The WHO defines activities as “the execution of 
a task or action by an individual” and participation as “involve-
ment in a life situation” (20). The OS VAS and OSQ would both 
address the Body Functions domain of the ICF as would diag-
nostic measures of vestibular function like VOR gain and caloric 
responses. Imaging and postoperative anatomical status would 

provide information in the domain of Body Structures. There are 
currently no oscillopsia specific measures, which address the ICF 
domain of Activities and Participation (15). Oscillopsia has been 
reported to diminish quality of life via activity restriction (21, 
22); therefore, development of a valid scale that can identify the 
impact of oscillopsia on the ability to perform or participate in 
specific activities is greatly needed.

A new questionnaire, the Oscillopsia Functional Impact 
(OFI) scale (see Supplementary Material) was developed to more 
completely characterize the impact of oscillopsia on daily life. The 
OFI was designed to characterize the impact of oscillopsia during 
functional mobility and other tasks with implicit visual acuity 
or visual attention components for individuals with vestibular 
loss. We investigated whether the OFI had face validity based 
on existing scales related to oscillopsia and balance ability and 
whether the OFI could discriminate between healthy individuals 
and individuals with vestibular hypofunction.

MaTerials anD MeThODs

subjects
Sixty nine individuals (33 males, 36 females) participated in 
this experiment after providing informed consent. A diagnosis 
of BVH was made based on weak (<10°/s combined per ear) 
or absent caloric responses and/or bilaterally pathologic head 
impulse tests (23, 24). Healthy individuals did not have a history 
of vertigo, dizziness, or balance problems. 48 healthy individu-
als and 21 individuals with BVH participated in the study. This 
study was carried out in accordance with the recommendations 
of the institutional review boards at Johns Hopkins School of 
Medicine and the University of Maryland, and all subjects gave 
written informed consent in accordance with the Declaration of 
Helsinki. The protocol was approved by the institutional review 
boards at Johns Hopkins School of Medicine and the University 
of Maryland.

Procedures
Each subject completed several questionnaires including: (1) 
the Activity-Specific Balance Confidence scale (ABC) (25); (2) 
the oscillopsia visual analog scale (OS VAS) (13); (3) the oscil-
lopsia severity questionnaire (OSQ) (9); and (4) the Oscillopsia 
Functional Impact (OFI) scale developed for this experiment. 
Questions on the OFI were designed to identify the degree to 
which oscillopsia interferes with execution of daily activities 
based on subjective complaints reported by patients seen by John 
P. Carey and Eric R. Anson in their respective clinical practice. The 
OFI was modeled after a scale designed to characterize symptoms 
of autophony for individuals with superior canal dehiscence (26) 
and is scored out of a total of 215 points with a maximum score 
of 5 for each question with “n/a” scored as a 0. Individuals were 
instructed to use the following scale to answer each question on 
the OFI: Not at all, A little of the time, Some of the time, A good 
deal of the time, Almost all the time, I have given up this activity 
because of symptoms, Don’t know, as I just don’t do this activ-
ity. Questions 12, 13, 14, 15, 16, 21, 22, 23, and 24 were phrased 
negatively and are scored in reverse order.
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TaBle 2 | Between group differences on subjective measures of oscillopsia and 
balance.

group OFi total Osc Os Vas aBc scale

Healthy 12.0 (1.6) 1.2 (0.04) 0.1 (0.03) 96.0 (0.67)
[8.8–15.3] [1.10–1.26] [0.03–0.16] [94.7–97.4]

BVH 65.9 (7.7)* 2.7 (0.22)* 5.0 (0.63)* 67.4 (4.0)*
[49.8–81.9] [2.3–3.2] [3.6–6.3] [59.2–75.6]

Average (SEM) [95% CI] scores are presented and significant differences from healthy 
individuals are indicated by an *, all p < 0.001.
ABC scale, Activity-Specific Balance Confidence scale; BVH, bilateral vestibular 
hypofunction; OFI, Oscillopsia Functional Impact scale; OSC, Oscillopsia Severity scale; 
OS VAS, Oscillopsia Visual Analog Scale.

TaBle 1 | Spearman correlation coefficients between subjective rating scales of 
oscillopsia and balance confidence.

Os Vas Osc aBc scale

OFI total 0.69* 0.84* −0.84*
p < 0.001 p < 0.001 p < 0.001

OS VAS 0.77* −0.69*
p < 0.001 p < 0.001

OSC −0.84*
p < 0.001

Significant correlations are indicated with an *.
ABC scale, Activity-Specific Balance Confidence scale; OFI, Oscillopsia Functional 
Impact scale; OSC, Oscillopsia Severity scale; OS VAS, Oscillopsia Visual Analog 
Scale.
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Data analysis
Cronbach’s α was calculated to determine internal consistency for 
the OFI scores. To determine face validity, Spearman’s correla-
tion coefficients were calculated to determine the relationships 
between OFI total scores, OS VAS scores, OSC scores, and ABC 
scores. A t-test was used to determine whether there was a differ-
ence in age between groups. A one-way MANOVA was conducted 
with planned post hoc t-tests for group differences on all question-
naires. Significance was tested at α = 0.05 for Cronbach’s α and 
Spearman’s correlation and a Bonferroni corrected α  =  0.0125 
was used for post hoc t-tests.

resUlTs

One healthy individual declined to provide his age. The mean age 
for the rest of the healthy individuals was 44.1 [range (19–75); 
SD = 18.1] and the mean age for the individuals with BVH was 
60.84 [range (35–80); SD = 13.0]. The control group was signifi-
cantly younger than the BVH group (t = −3.8086, p = 0.002).

Cronbach’s α for OFI scores was 0.97 demonstrating high 
internal consistency for the individual items of the OFI. The 
OFI scores were highly correlated with the other subjective 
measures of oscillopsia and balance confidence, see Table  1. 
The MANOVA was highly significant for between group differ-
ences on the distribution of scores on all questionnaires [F(4, 
64) = 36.5, p < 0.001]. Subsequent post hoc group comparisons 
are as follows. Individuals with BVH reported greater oscil-
lopsia severity [t(2, 67) = 11.69, p < 0.001], higher oscillopsia 
frequency [t(2, 67) = 9.91, p < 0.001], greater impact of oscil-
lopsia on activity performance [t(2, 67)  =  9.62, p  <  0.001], 
and lower balance confidence [t(2, 67)  =  −10.31, p  <  0.001] 
compared to healthy individuals. Group average scores and 
95% confidence intervals for each of the questionnaires are 
presented in Table 2.

Because the control group was significantly younger than the 
individuals with BVH, we performed a sensitivity analysis by 
repeating the MANOVA excluding all subjects under 60  years 
old. The overall sample was reduced to 16 healthy controls and 
12 individuals with BVH. The statistical results were the same. 
The MANOVA was highly significant for between group differ-
ences on the distribution of scores on all questionnaires [F(4, 
23) = 17.6, p < 0.001]. Subsequent post hoc group comparisons 

are as follows. Individuals with BVH reported greater oscillopsia 
severity [t(2, 26) = 8.04, p < 0.001], higher oscillopsia frequency 
[t(2, 26) = 5.89, p < 0.001], greater impact of oscillopsia on activ-
ity performance [t(2, 26) = 5.68, p < 0.001], and lower balance 
confidence [t(2, 67)  =  −8.01, p  <  0.001] compared to healthy 
individuals.

DiscUssiOn

Overall, the OFI demonstrated high internal consistency as 
well as excellent face validity based on high correlations with 
other measures of oscillopsia and also the ABC scale. Scores 
on the OFI and OS VAS and OSQ were all positively correlated 
indicating that oscillopsia related activity restriction, oscil-
lopsia severity, and oscillopsia frequency all increase together. 
The strong relationship between the OFI and the ABC scale 
indicates that the OFI captured limitations in execution of 
daily life activities for the individuals with vestibular loss. OFI 
scores appear to capture activity restriction due to oscillopsia 
symptoms; however, the cause of the activity restriction remains 
to be determined. The individuals with BVH may be limited 
in their ability to perform the specific tasks due to oscillopsia 
from gaze instability. However, individuals with BVH often also 
present with gait and balance impairments that may contribute 
to changes in activity independent of oscillopsia. Additionally, 
cognitive or emotional factors may result in self-imposed 
participation restriction, with limited involvement in life situ-
ations. Future work is needed to determine whether oscillopsia 
independently contributes to limitations in task performance or 
participation in daily life.

Individuals with BVH reported more severe oscillopsia 
(OS VAS), more frequent episodes of oscillopsia (OSQ), and 
greater functional impairment (OFI) compared to healthy 
individuals, even when the sample was restricted to individuals 
60 years and older. The present results extend those prior results 
regarding symptom frequency (OSQ) to symptom severity (OS 
VAS) and activity restriction (OFI). The average OSQ score 
for individuals with BVH in this cohort was only 2.6 which is 
lower than that reported previously (9). The difference in OSQ 
scores for individuals with BVH between studies highlights the 
variable nature of subjective reports across diagnoses of BVH. 
Some individuals in this cohort may have greater tolerance for 
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oscillopsia, more residual vestibular function, or more com-
pletely developed adaptive anticipatory behavior following the 
vestibular loss.

Inconsistent oscillopsia complaints have been attributed to 
learned anticipatory mechanisms (27), which would include 
feed-forward saccades that occur during head motion (28). It 
is also possible that due to limitations in vestibular diagnostic 
testing, individuals diagnosed with BVH may have substantial 
residual vestibular function (11, 23). Tolerance for perceived 
retinal image motion has also been proposed as an explanation 
for the discordance between oscillopsia symptoms (whether 
severity, frequency, or participation based) and VOR gain or 
DVA (14). Recently, using a SHIMP paradigm allowed identi-
fication of two distinct saccadic responses in individuals with 
vestibular loss (19). A subset of individuals with vestibular loss 
demonstrated consistent covert saccades that would be compen-
satory for a deficient VOR, and subsequent saccades to shift gaze 
back to the visual target, which had moved. This suggests that 
a pre-planned covert saccade may result in more optimal gaze 
stability; however, the impact on oscillopsia symptoms remains 
to be investigated.

Activity restriction, as measured by the OFI, may depend on 
multiple factors. Individuals with vestibular loss are known to 
have balance impairments attributable to the vestibular pathol-
ogy (29, 30). Reduced vestibular afference will impact both the 
VOR and vestibulo-spinal reflex pathways. It is possible that 
scores on some of the items in the OFI are impacted by changes 
in balance rather than gaze instability and resulting oscillopsia 
symptoms. In an effort to minimize this confound, the OFI items 
related to balancing behaviors are also tied to the presence of 
oscillopsia symptoms or a gaze target task. Additionally, belief 
(or fear) that secondary symptoms (i.e., falls, dizziness, oscil-
lopsia, anxiety/depression) will result in negative effects (injury, 
embarrassment) may contribute to activity restriction in ways 
not identified here (31, 32). Many of the context-based questions 
involve dual tasking (like walking and texting or reading) and 
brain fog or mental fatigue could result in activity restriction 
more related to cognitive or attentional resources and less related 
to oscillopsia (33). Future studies should investigate this in 
cohorts of individuals with chronic brain fog and non-vestibular 
oscillopsia.

limitations
The OFI as described here is lengthy and a shorter version would 
enhance clinical utility. Some of the questions may characterize 
similar constructs, and future work is needed to examine whether 
a shorter version of the OFI would have similar validity and dis-
criminatory ability while characterizing the impact of unstable 
vision on activity restriction. The results presented here may not 
generalize to less severe presentations BVH such as may occur 
with aging. Test retest reliability and change over time will need 
to be established to enhance clinical utility.

cOnclUsiOn

The OFI captures the construct of oscillopsia in the context of 
mobility and activity restriction. Combining the OFI with exist-
ing oscillopsia metrics that quantify severity and frequency allows 
for a more complete characterization of the impact of oscillopsia 
symptoms.
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