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Abstract: Graft versus host disease (GVHD) represents a major complication of allogeneic
hematopoietic stem cell transplantation (allo HCT). Graft cellular manipulation has been used
to mitigate the risk of GVHD. The αβ T cells are considered the primary culprit for causing GVHD
therefore depletion of this T cell subset emerged as a promising cellular manipulation strategy to
overcome the human leukocyte antigen (HLA) barrier of haploidentical (haplo) HCT. This approach
is also being investigated in HLA-matched HCT. In several studies, αβ T cell depletion HCT has been
performed without pharmacologic GVHD prophylaxis, thus unleashing favorable effect of donor’s
natural killer cells (NK) and γδ T cells. This article will discuss the evolution of this method in clinical
practice and the clinical outcome as described in different clinical trials.
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1. Introduction

Allogeneic hematopoietic stem cell transplantation (allo HCT) is a treatment modality for a variety
of malignant and non-malignant diseases [1]. Only about 30% of patients have an HLA-matched sibling
and in about 16–75% (depending on ethnicity), an HLA-matched unrelated donor can be identified [1].
In the absence of an HLA-matched sibling or volunteer donor, alternative donor of hematopoietic stem
cells (HSC), such as unrelated umbilical cord blood (UCB) [2–5] or haplo donor [6–11] can be utilized.
The main advantages of UCB products are the immediate availability and low risk of graft versus host
disease (GVHD) with mismatched products (immature lymphocyte content). The disadvantages are
high cost (30,000–40,000 US dollars per unit), difficult finding of units with adequate HSC for adults
(in particular for overweight/obese recipients), delayed engraftment and immune reconstitution, and
lack of the donor lymphocyte infusion (DLI) option. On the other hand, the main advantages of haplo
HSC products are the availability of donors in most cases (first degree relative either parent, sibling or
a child), relatively lower cost, faster engraftment (compared to UCB), and availability of DLI option.

The initial successful haplo HCT relied primarily on T cell depletion to control the high risk
of GVHD induced by the high HLA disparity in this setting [12,13]. This approach also allowed
elimination of post-transplant immunosuppression therapy (IST) which may unleash T cell-mediated
graft versus tumor (GVT) effect. This approach would also avert several side effects related to the use
of IST such as high risk of posterior reversible encephalopathy syndrome which is more pronounced in
sickle cell patients receiving calcineurin inhibitors [14]. T cell depletion techniques have been refined
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to selectively deplete αβ CD3+ cells that are believed to be involved in the pathogenesis of GVHD.
With that approach, the minor population of γδ T cells and natural killer (NK) cells are spared and
thus likely resulting in enhanced post-transplant immune recovery with less infection and perhaps less
relapse risk. In this review, we will describe the clinical utility of αβ T cell depletion HCT outlining
the evolution of this method, the technical method and clinical outcome.

2. Evolution of T Cell Depletion Methods

While the T cell component of allo HSC product supports engraftment, and immune reconstitution
and combats relapse (via GVT effect), they also induce GVHD (Figure 1). The separation of GVHD and
GVT effect is an optimal target for an allo HCT platform. Peripheral blood stem cells (PBSC) product
has 1-log more T cell dose compared to bone marrow (BM) and has indeed been associated with higher
risk of GVHD [15,16]. The role of T cells as mediator of GVT was illustrated in the seminal study by the
Center for International Blood and Marrow Transplant Research (CIBMTR) that analyzed data of 2254
patients and showed higher risk of relapse of hematological malignancies among patients who received
T cell depleted graft [17]. Since then, escalating doses of DLI have been utilized in an attempt to treat
relapsed neoplastic diseases, in particular, chronic myeloid leukemia, with promising success [18].
Moreover, this observation prompted interest in post-transplant add-back T cell therapy to enhance
post-transplant immune reconstitution and control relapse risk. In this approach, 1-2 add-back T cell
doses of 1 × 107 cells/kg was infused post-transplant before day +100 [19–22]. A long-term (4 year
follow up) result using this approach showed comparable outcome to T cell replete allo HCT with
rates of grade II-IV aGVHD and cGVHD of 39% and 36% respectively and relapse rate of 40% [22].
In contrast, pan T cell depletion was used to overcome the HLA mismatching barrier of haplo HCT
after the initial use of T cell replete haplo HCT resulted in prohibitively high risk of graft failure and
GVHD [23–25]. Although in general, pan T cell depletion (<1 × 105 CD3+ cells/kg) has been successful
in reducing risk of GVHD [26,27], it has been associated with slow immune recovery and high rate
of post-HCT infection [13]. The outcome of this approach has improved with using “mega-dose” of
G-CSF-mobilized PBSC, as reported by the Perugia group with a cumulative incidence of aGVHD
(grade II-IV) and cGVHD below10% [26]. The impact of the CD34+ stem cell dose on the outcome of
T cell depleted haplo HCT is illustrated in a study (n = 127) by The Acute Leukemia and Pediatric
Working Parties of the European Blood and Marrow Transplantation (EBMT) Group that showed
improved DFS among patients who received CD34+ stem cell dose greater than 12 × 106/kg [7].
A modified approach of T cell depletion, CD3+/CD19+ cell depletion has also been used to eliminate
the increased risk of Epstein Barr virus (EBV) reactivation which was noted in initial T cell depletion
studies [28,29]. This additional B cell depletion is also thought to likely reduce the risk of cGVHD
which is believed to be primarily B cell-mediated. Selective depletion of CD8+ T cell has also been
attempted hypothesizing that this T cell subset is the effector mediator of the tissue damage of GVHD.
However, despite initial promising results, this method failed to improve the rate of GVHD in a
phase II clinical trial [30]. Naïve T cell depletion is also under investigation to decrease of chronic
GVHD [31]. Besides ex vivo T cell depletion, in vivo depletion methods have also been employed
using serotherapy as antithymocyte globulin (ATG) [32] or alemtuzumab [33]. Post-transplant high
dose cyclophosphamide (PTCy) is another increasingly used methods in clinical practice in both adults
and children that targets alloreactive T cells after T cell-replete HCT [11,34–36].
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Figure 1. Immune balance between donor and recipient lymphocytes showing favorable (black) and 
unfavorable (red) effects played by each side. GVT = graft versus tumor. 

3. Rationale of αβ T Cell Depleted Hematopoietic Stem Cell Transplantation 

Pre-clinical models of GVHD demonstrated that CD4+ and CD8+ T cells (= αβ T cells) to be major 
players in GVHD pathogenesis [37–39]. This causative correlation is the rationale for the use of αβ T 
cell depletion (rather than pan T cell depletion) allo HCT. The αβ T cell depletion is often combined 
with CD19+ B cell depletion for same reason explained above. The selective depletion of the αβ T cell 
from the infused graft spares γδ T cells and NK cells and likely favor their homeostatic reconstitution, 
thus potentially resulting in lower risk of infection [40,41] and relapse [42,43]. NK cells play a pivotal 
role in the defense against malignant transformed or virus-infected cells [44]. Allo-reactive NK cells 
have also been shown to positively affect the outcome of HCT via displaying GVT effect in children 
and adults without increasing risk of GVHD [8,45–51]. In murine models, NK allo-reactive cells were 
able to kill host dendritic cells (one of the antigen presenting cells = APCs), and this can contribute to 
reducing the risk of GVHD, since recipient APCs are known to play a major role in GVHD 
pathophysiology [52]. The γδ T cells population is a component of the innate immune system. They 
can directly recognize self-expressed stress-related (e.g., viral or oncogenic) antigen on the cell surface 
triggering immediate cytotoxic effect [53–55]. This is in distinction to the limited capability of the αβ 
T cells and NK cells that can only recognize MHC-related peptides of tumor-associated antigens. 
Several preclinical and clinical observations have suggested the antineoplastic effect of γδ T cell 
against hematological malignancies [56,57] and solid tumors [58,59]. These data have been corroborated 
in clinical studies showing improved relapse-free survival with higher post-transplant γδ T cell counts 
in the peripheral blood [42,60,61]. For example, one study has shown that higher γδ T cell (≥ 10% of 
total lymphocytes) in the peripheral blood in earlier post-transplant time (between 2–9 months) was an 
independent factor for improved DFS [61]. The γδ T cells, alike NK cells, have not been implicated in 
causing GVHD [62–64]. Moreover, the γδ T cells were shown to facilitate engraftment of allogeneic 
stem cells in preclinical models [65,66]. This favorable effect on engraftment was also suggested by 
clinical observation [67,68]. It is to be noted that despite the hypothesized favorable outcome of using 
αβ T cell depletion transplant, this approach was not directly compared to the traditional pan T cell 
depletion. Only Lang et al. [69] reported improved T and NK cell recovery following αβ T cell 
depletion transplant when compared to historical cases of pan T cell depletion. 

4. Technical Methods 

The HSC product contains a variety of cells including myeloid precursors and lymphocytes in 
addition to the minor component (~1%) of stem cells (Figure 2) [70]. Various methods have been 
employed for ex vivo T cell depletion and reviewed in recent literature [71]. The earliest clinical 
method involved the use of soybean lectin agglutination with T cell resetting with sheep red blood 
cells [72]. Subsequently, T cell monoclonal antibodies (in combination with immunotoxins or 
complement) were used [73]. The addition of complement or immunotoxins to the anti-T cell 

Figure 1. Immune balance between donor and recipient lymphocytes showing favorable (black) and
unfavorable (red) effects played by each side. GVT = graft versus tumor.

3. Rationale of αβ T Cell Depleted Hematopoietic Stem Cell Transplantation

Pre-clinical models of GVHD demonstrated that CD4+ and CD8+ T cells (=αβ T cells) to be major
players in GVHD pathogenesis [37–39]. This causative correlation is the rationale for the use of αβ T
cell depletion (rather than pan T cell depletion) allo HCT. The αβ T cell depletion is often combined
with CD19+ B cell depletion for same reason explained above. The selective depletion of the αβ T cell
from the infused graft spares γδ T cells and NK cells and likely favor their homeostatic reconstitution,
thus potentially resulting in lower risk of infection [40,41] and relapse [42,43]. NK cells play a pivotal
role in the defense against malignant transformed or virus-infected cells [44]. Allo-reactive NK
cells have also been shown to positively affect the outcome of HCT via displaying GVT effect in
children and adults without increasing risk of GVHD [8,45–51]. In murine models, NK allo-reactive
cells were able to kill host dendritic cells (one of the antigen presenting cells = APCs), and this can
contribute to reducing the risk of GVHD, since recipient APCs are known to play a major role in GVHD
pathophysiology [52]. The γδ T cells population is a component of the innate immune system. They
can directly recognize self-expressed stress-related (e.g., viral or oncogenic) antigen on the cell surface
triggering immediate cytotoxic effect [53–55]. This is in distinction to the limited capability of the
αβ T cells and NK cells that can only recognize MHC-related peptides of tumor-associated antigens.
Several preclinical and clinical observations have suggested the antineoplastic effect of γδ T cell against
hematological malignancies [56,57] and solid tumors [58,59]. These data have been corroborated in
clinical studies showing improved relapse-free survival with higher post-transplant γδ T cell counts
in the peripheral blood [42,60,61]. For example, one study has shown that higher γδ T cell (≥10% of
total lymphocytes) in the peripheral blood in earlier post-transplant time (between 2–9 months) was
an independent factor for improved DFS [61]. The γδ T cells, alike NK cells, have not been implicated
in causing GVHD [62–64]. Moreover, the γδ T cells were shown to facilitate engraftment of allogeneic
stem cells in preclinical models [65,66]. This favorable effect on engraftment was also suggested
by clinical observation [67,68]. It is to be noted that despite the hypothesized favorable outcome of
using αβ T cell depletion transplant, this approach was not directly compared to the traditional pan T
cell depletion. Only Lang et al. [69] reported improved T and NK cell recovery following αβ T cell
depletion transplant when compared to historical cases of pan T cell depletion.

4. Technical Methods

The HSC product contains a variety of cells including myeloid precursors and lymphocytes in
addition to the minor component (~1%) of stem cells (Figure 2) [70]. Various methods have been
employed for ex vivo T cell depletion and reviewed in recent literature [71]. The earliest clinical method
involved the use of soybean lectin agglutination with T cell resetting with sheep red blood cells [72].
Subsequently, T cell monoclonal antibodies (in combination with immunotoxins or complement) were
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used [73]. The addition of complement or immunotoxins to the anti-T cell antibody is essential for
elimination of the T cells. This was recognized after encountering high risk of GVHD with the earlier
use of T cell monoclonal antibody alone [74]. The discovery of T10B9 by University of Kentucky (USA)
allowed the selective depletion of the αβ TC [75]. The procedure of αβ T cell depletion has been
described before [76–78]. An updated report of the procedure efficiency has also been published [76].

Biomedicines 2017, 5, 35  4 of 14 

antibody is essential for elimination of the T cells. This was recognized after encountering high risk 
of GVHD with the earlier use of T cell monoclonal antibody alone [74]. The discovery of T10B9 by 
University of Kentucky (USA) allowed the selective depletion of the αβ TC [75]. The procedure of αβ 
T cell depletion has been described before [76–78]. An updated report of the procedure efficiency has 
also been published [76]. 

 

Figure 2. Key Component of the stem cell graft. 

In summary, the graft processing for αβ T cell depletion is done using the CliniMACS device® 
TCRαβ-Biotin system (Miltenyi Biotec, Bergisch Gladbach, Germany). The allogeneic donors are 
mobilized with filgrastim G-CSF for 4 days with leukapheresis starting on day 5 (and possibly day 6) 
per standard guidelines [79]. Peripheral blood CD34+ cell count is checked on the day of apheresis 
(day 5). A count of ≥ 40/µL is predictive of an adequate collection in one apheresis session, while a 
count < 20/µL often predict suboptimal collection (even in 2 sessions). In these donors, plerixafor is 
considered as described previously [80]. However, it is to be noted that plerixafor is not currently 
approved for this indication (volunteer donor) by the Food and Drug Administration in the USA. The 
target number of CD34+ stem cells in the apheresis product (i.e., prior to αβ T cell depletion) for 
pediatric population is 40 (minimum of 12–15) × 106 cells/kg recipient weight. The leukapheresis 
product then undergoes negative selection (i.e., depletion) of the αβ T cells prior to infusion to the 
patient. This depletion typically results in ~20 (minimum of 8–10) × 106 cells/kg CD34+ cells (i.e., 
allowing for up to 40% loss during the depletion procedure). Prior to the immunomagnetic labeling 
of the apheresis product, it is washed to remove platelets and the cell concentration will be adjusted 
in preparation for antibody labeling. The apheresis product is then labeled using the CliniMACS 
TCRαβ Biotin kit (Miltenyi Biotec, Bergisch Gladbach, Germany) and CD19+ immunomagnetic 
microbeads. After immunomagnetic labeling, the cells are washed to remove unbound microbeads 
(Figure 3). The labeled product is loaded onto the CliniMACS device where labeled cells are depleted 
and the negative fraction is eluted off the device. This negative fraction is then centrifuged and 
volume- reconstituted to obtain the final product. We do not have a maximum limit of CD34+ cells 
to be infused, however, we target a maximum dose of αβ T cells of 1 × 105/kg at the end of the negative 
depletion procedure. If the residual number of αβ T cells is > 1 × 105/kg, a selected part of the product 
can be eliminated and cryopreserved. If this exclusion compromises the minimum CD34+ stem cells, 
we perform CD34+ cell selection on that part of the graft. Our transplant protocol typically involves 
using rituximab at day +1 to eradicate residual B cell in the product unless the CD19+ B cells in the 
final product is < 1 × 105 CD19+ cells/kg. 

Figure 2. Key Component of the stem cell graft.

In summary, the graft processing for αβ T cell depletion is done using the CliniMACS device®

TCRαβ-Biotin system (Miltenyi Biotec, Bergisch Gladbach, Germany). The allogeneic donors are
mobilized with filgrastim G-CSF for 4 days with leukapheresis starting on day 5 (and possibly day 6)
per standard guidelines [79]. Peripheral blood CD34+ cell count is checked on the day of apheresis
(day 5). A count of ≥ 40/µL is predictive of an adequate collection in one apheresis session, while
a count < 20/µL often predict suboptimal collection (even in 2 sessions). In these donors, plerixafor
is considered as described previously [80]. However, it is to be noted that plerixafor is not currently
approved for this indication (volunteer donor) by the Food and Drug Administration in the USA.
The target number of CD34+ stem cells in the apheresis product (i.e., prior to αβ T cell depletion) for
pediatric population is 40 (minimum of 12–15) × 106 cells/kg recipient weight. The leukapheresis
product then undergoes negative selection (i.e., depletion) of the αβ T cells prior to infusion to the
patient. This depletion typically results in ~20 (minimum of 8–10) × 106 cells/kg CD34+ cells (i.e.,
allowing for up to 40% loss during the depletion procedure). Prior to the immunomagnetic labeling of
the apheresis product, it is washed to remove platelets and the cell concentration will be adjusted in
preparation for antibody labeling. The apheresis product is then labeled using the CliniMACS TCRαβ
Biotin kit (Miltenyi Biotec, Bergisch Gladbach, Germany) and CD19+ immunomagnetic microbeads.
After immunomagnetic labeling, the cells are washed to remove unbound microbeads (Figure 3).
The labeled product is loaded onto the CliniMACS device where labeled cells are depleted and the
negative fraction is eluted off the device. This negative fraction is then centrifuged and volume-
reconstituted to obtain the final product. We do not have a maximum limit of CD34+ cells to be infused,
however, we target a maximum dose of αβ T cells of 1 × 105/kg at the end of the negative depletion
procedure. If the residual number of αβ T cells is >1 × 105/kg, a selected part of the product can be
eliminated and cryopreserved. If this exclusion compromises the minimum CD34+ stem cells, we
perform CD34+ cell selection on that part of the graft. Our transplant protocol typically involves using
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rituximab at day +1 to eradicate residual B cell in the product unless the CD19+ B cells in the final
product is <1 × 105 CD19+ cells/kg.Biomedicines 2017, 5, 35  5 of 14 
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We sometimes use BM product if the donor is a child or an adult donor declines PBSC apheresis.
However, it is to be noted that, in order to optimize the selection process, the maximum volume of
packed red blood cells (RBCs) in the product (pre-selection) that is allowed to go on the CliniMACS
column is 30 mL (i.e., 100 mL of BM with 30% HCT). Therefore, BM product is RBC-depleted
using Ficoll® density gradient separation (GE Healthcare Bio-Sciences, Pittsburgh, PA, USA) prior to
proceeding with selection on the CliniMACS device. The RBC-reduced product is stored at +1 to +8 ◦C
until used.

5. Clinical Outcome of AB T Cells Depletion HCT

The utilization of αβ T cells depletion in allogenic HCT has been evaluated in treating both
malignant and non-malignant etiologies [81]. The majority of the published studies have been
conducted in pediatric haplo HCT setting [61,82]. Selected seven studies are summarized and discussed
below (Table 1) [69,83–88]. Transplant outcome using this approach has also been described in other
studies [28,29,82]. Several other individual case reports have reported the use of αβ T cells depletion
in different non-malignant conditions as Wiskott–Aldrich, β thalassemia and Hoyeraal-Hreidarsson
syndrome with favorable outcome [89–91].
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Table 1. Outcome of selected clinical studies using αβ T cell/CD19+ B cell depletion HCT. Only one study (Kaynar et al.) performed αβ T cell depletion without
CD19+ B cell depletion.

Study Bertaina et al. [83] Balashov et al. [84] Lang et al. [69] Maschan et al.
[85] Lang et al. [86] Kaynar et al. [87]

(no CD19 depletion) Gonzalez et al. [88]

Year published 2014 2015 2015 2016 2016 2017 2017

Number of patients 23 37 41 33 30 34 27

Age group Children Children Children Children Children Adult Children

Disease Non-malignant Primary immunodeficiency
syndromes

AML, MDS, and non
malignant AML ALL, AML, solid tumors,

non malignant AML and ALL AML

Study design Prospective Prospective Retrospective Prospective Prospective Retrospective Retrospective

Conditioning regimen RIC RIC MA RIC RIC MA MA

CD34+ cell dose per KG 15.8 × 106 11.7 × 106 14.9 × 106 NA 14.6 × 106 12.69 × 106 6.41 × 106

αβ CD3+ T cells dose per kg 4 × 104 10.6 × 103 16.9 × 103 NA 14 × 103 11.72 × 103 11 × 104

ANC recovery day 13 16 10 16 12 12 13

platelet recovery day 10 NR NR 14 15 11 10

Graft failure
(primary/secondary) 16% 27% 12% 0% 23% 17% 3.7%

Acute GVHD II-IV risk 13% (no G III–IV) 24% 25% 39% 3% 38% (all grades) 18% (III–IV)

Chronic GVHD risk 0% (at 18 months) 5% 27% 30% NA 6% 14%

CMV reactivation 38% (including
adenovirus) 46% NA 52% 23% 73.5% NA

EBV reactivation NR NR NR 50% 0% 0% NR

BK virus reactivation NR NR NR NR 16% 25% NR

NRM 9% 3% 9.7% 10% 3% 20% 18.5%

Relapse 9% 3% 47% 30% 3% (at 100 days) 58% 22%

Survival 91% (2-year OS) 97% (1-year OS) 51% (1-year OS) 67% (2-year OS) 94% (100-day OS) 54% (1-year OS) 62% (18-month OS)

ALL = acute lymphoblastic leukemia, AML = acute myeloid leukemia, ANC = absolute neutrophil count, CMV = cytomegalovirus, EBV = Epstein Barr virus, GVHD = graft versus host
disease, MDS = myelodysplastic syndrome, NA = not applicable, DFS = disease-free survival, MA = myeloablative, NR, not reported, NRM = non-relapse mortality, OS = overall survival,
RIC = reduced intensity regimen. Shaded columns indicates studies of non-malignant disorders.
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6. Conditioning Regimens and CD34+ Cell Dose

Conditioning regimens used in these studies were either myeloablative [69,87,88] or reduced
intensity [83–86]. The majority of patients in these studies received haplo HCT except for matched
unrelated donors used in two studies [84,85]. The median dose of CD 34+ cells ranged from 12 to
16 × 106/kg with median residual αβ T cells dose of 1 to 4 × 104/kg.

7. Engraftment and Immune Reconstitution

The engraftment failure rate was variable among different studies ranging from 0% reported by
Maschan et al. [85], and up to 27% by Balashov et al. [84]. The median day for neutrophil and platelet
count recovery reported in these studies ranged from 12–16 and 10–14 days respectively. The recovery
of γδ T cells preceded αβ T cells with a median of 7–10 days. Two studies reported similar results
of immune reconstitution with T cell > 500/µL and B cell > 200/µL on day +120 [69,84]. Another
study reported similar data for T cell recovery at day 120 but delayed B cell recovery >150/µL until
6 months [83].

8. Graft Versus Host Disease (GVHD)

Different studies used different prophylaxis regimens against GVHD. Antithymocyte globulin
(ATG) was used in all studies as part of the preparative regimen. Only one study used OKT3 instead
of ATG before 2012 in a subset of 34 patients [69]. While a German group [69] used ATG distal to day 0
(day −9 to −12) with the primary purpose of prevention of graft failure, an Italian group [83] used it
more proximal to day 0 (day −3 to −5) in order to prevent both graft failure and GVHD hypothesizing
that this will not influence the post-transplant recovery of γδ T cells which is expected to occur after
biological elimination of ATG. No pharmacologic GVHD prophylaxis was used by an Italian study [83].
Three studies used single agent mycophenolate mofetil [69,86,87] and another study used tacrolimus
in all patients plus methotrexate (n = 34), mycophenolate mofetil (n = 2), or cyclosporine (n = 1) [84].
In another study, single agent tacrolimus (n = 2), methotrexate (n = 5) or both (n = 21) were used while
5 patients did not receive pharmacologic prophylaxis [85]. B cell depletion was done simultaneously in
most studies via ex vivo CD 19 depletion (along with αβ T cell depletion). Two studies used rituximab
for in vivo B-cell depletion [83,84].

The rate of acute and chronic GVHD (aGVHD and cGVHD) was variable among studies,
but occurred at low rate and was mostly low grade. The lowest incidence of aGVHD of 3% reported
by one study [86]. Bertaina et al. reported 13% risk of aGVHD (mostly grade I-II and only skin
involvement) with no reported cGVHD with a median follow-up of 18 months [83]. In another
study, the risk of aGVHD was 25% (with 15% risk of grade III) with a cGVHD risk of 27% (extensive
disease of 9%) [69]. In the adult cohort by Kaynar et al. 38% developed aGVHD (grade I–II was
27%), and 6% developed cGVHD (2 patients; one was extensive) [87]. In the study by Balashov et
al. 23% developed aGVHD (with one patient with grade IV that turned into refractory cGVHD) [84].
The highest incidence of grade II-III aGVHD was reported by Maschan et al. as 39% (none developed
grade IV) with risk of cGVHD of 30% with a median follow up of 2 years (some patients received
donor lymphocyte infusion) [85]. In the report by Gonzalez et al. risk of aGVHD and cGVHD was 18%
and 14% respectively [88].

9. Infections

The incidence of CMV reactivation ranged from 23–74%. Death due to CMV was reported in
1 case (4%) by Bertaina et al. and 2 cases (6%) by Maschan et al. [83,85]. Many studies used rituximab
for CD19+ B cell depletion to mitigate the risk of EBV reactivation. Only Maschan et al. reported
significant EBV reactivation (50%) [87]. BK viremia was reported in two studies at a rate of 16% and
25% [86,87].
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10. Relapse and Survival

The relapse of malignancy post-transplant was the major cause of mortality. Relapse rates are
ranging from 22–58% while relapse-related mortality rates 19–41%. As expected, the OS was discrepant
between patients with malignant and non-malignant diseases. For non-malignant diseases OS reported
by Bertaina et al. and Balashov et al. at 92% and 97% respectively [83,84]. For malignant diseases,
Kaynar et al., Lang et al. and Maschan et al. reported lower OS rates of 54%, 51% and 67% [69,85,87].

11. Conclusions and Future Perspective

These clinical data are suggestive of a promising role of αβ T cell depletion to overcome the HLA
disparity haplo HCT. Although this approach is adopted by several European centers, it has not gotten
a wide utilization in the USA except for few pediatric centers. Several ongoing studies are under way
using either haplo or HLA-matched HCT (Table 2). Comparative studies are lacking to compare αβ T
cell depletion HCT and other modalities of haplo HCT such as Pan T cell depletion or PTCy. Clinical
trials evaluating the therapeutic utility of γδ T cells for hematological malignancies are lacking. An
ongoing phase I trial is underway to evaluate the safety and feasibility of infusing add-back αβ T
cell-depleted product after haplo HCT (NCT02193880). Suicide gene (caspase-9) programming of
the add-back T cells has been used in order to eliminate the T cells (via therapeutic activation of the
suicide gene) in case severe GVHD develops [92]. This approach is currently under investigation
(NCT01744223).

Table 2. Selected ongoing clinical trials of αβ T cell depletion (all are pediatric studies).

Trial Disease Donor Country Phase

NCT02327351 Primary Immunodeficiency MUD/Haplo Russia II/III
NCT01810120 Malignant/Non-malignant Haplo Italy I/II
NCT02065869 Malignant/Non-malignant Haplo USA-Bellicum I/II
NCT02508038 Malignant Haplo USA-Wisconsin I
NCT02600208 Leukemias/lymphomas MUD/Haplo USA-Wisconsin II/III
NCT02990819 Primary Immunodeficiency MUD/Haplo USA-Philadelphia II
NCT03047746 Bone marrow failure MUD/Haplo USA-Philadelphia I

MUD = HLA-matched unrelated donor.
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