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Abstract
The formation of semiconductor heterojunctions and Z-schemes is still a very prom-
inent and efficient strategy of materials chemists to extend the absorption range 
of semiconductor combinations. Moreover, the spatial separation of photoexcited 
charge carriers and thereby the reduction of their recombination ultimately lead 
to increased photocatalytic activities. The present article reviews recent trends in 
semiconductor heterojunctions and Z-schemes with a focus on hydrogen generation 
and water splitting, exhibiting specific needs for charge carrier separation. We also 
included recent material trends, i.e. 2D/2D combinations, direct Z-schemes, MOFs 
and COFs, and combinations with upconversion materials.

Keywords Charge separation · Heterojunctions · Z-scheme · Photocatalysis · 
Hydrogen

1 Introduction

With an estimated market of 100 million metric tons, hydrogen  (H2) is an impor-
tant basic chemical in industry and technology [1]. The worldwide most important 
process involving  H2 is the production of ammonia for the production of nitrogen-
based fertilisers. Steam reforming of natural gas is by far the most dominant pro-
cess employed to produce  H2 [2]. The literature describes and labels  H2 cleanness 
by different colours, the three main being grey, blue, and green. The “colour” of 
 H2 is determined by the source or additional technology utilised to produce the gas 
[3]. Since 96% of the overall  H2 is based on fossil fuels and mainly synthesised by 
steam reforming/water–gas shift reactions, a vast majority of  H2 is considered to be 
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a polluting type of  H2, labelled grey  H2 [2–4]. Blue  H2 combines grey  H2 feedstocks 
with carbon capture and storage (CCS) technologies [4]. Whilst CCS technologies 
might defer climate change problems and buy time,  H2 production without the emis-
sion of greenhouse gases (green  H2) is considered to be the solution for decarbon-
ising many large-scale chemical synthesis processes [4–6]. Promising technologies 
like fuel cells, the injection of  H2 in blast furnaces and several other technologies 
will need further research but rely first and foremost on the large-scale production 
of green  H2 [7–9]. An example of an environmentally friendly way to produce green 
 H2 is photocatalytic water splitting. Challenges like low solar-to-H2 efficiencies as 
well as rare and expensive co-catalysts are yet to be solved [6]. Based on 50 years of 
materials research, this field has developed multiple strategies that will be essential 
to further improve photocatalysts in the future. Recent developments and improve-
ments using two of these strategies—namely heterojunctions and Z-schemes—will 
be summarised in this review.

2  State of Research

2.1  H2 Production and  H2 Economy

H2 can be produced from a wide range of resources using different feedstocks, path-
ways and technologies, including renewable resources and fossil fuels [3]. Steam 
reforming is by far the most dominant process employed to produce  H2 for indus-
trial purposes. This method uses a mix of light hydrocarbons with methane being 
the dominant one. In the case of natural gas, a desulphurisation step is necessary to 
convert sulphur into  H2S, which is then adsorbed and removed. For the actual steam 
reforming, the gas mix of high-temperature steam and desulphurised feed is exposed 
to a nickel-based catalyst at high pressure. Depending on the process design, tem-
perature ranges of 750–900 °C and pressure ranges of 3–25 bar are used to convert 
hydrocarbon and steam into synthesis gas consisting of a mix of CO and  H2 [2]:

The steam-reforming reaction (reaction (1)) for the formation of CO and  H2 is 
endothermic and therefore requires heat. External heating can be avoided or reduced 
by using a compact design and the exothermic partial oxidation of the feedstock 
(reaction (2) and (3)) [2]:

However, efficient heat recovery is essential to enable an economic operation of 
the process. The  H2:CO ratio in the resulting synthesis gas can be adjusted via the 
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water–gas shift reaction (reaction (4)), which is exothermic for the formation of  CO2 
and  H2 and allows lower temperatures than the steam reforming reaction [2].

Depending on the subsequent use, the gas mix is subjected to separation pro-
cesses like pressure swing adsorption (PSA), membrane processes, or methanation 
of left-over CO.

According to reactions (1) and (4), steam reforming can produce up to four units 
of  H2 gas for each unit of methane. While natural gas is the most common feedstock 
for steam reforming, other fossil fuels can usually be converted to lighter hydro-
carbons. Gasification can be applied to all solid and liquid carbon-containing feed-
stocks, including biomass. As a result, the gasification of coal has a significant con-
tribution to global greenhouse gas emissions considering the coal-based production 
of ammonia and methanol [2, 10].

Only a small amount of the overall produced  H2 stems from electrochemical pro-
cesses. Nonetheless, electrolysis might be a key technology since it allows the pro-
duction of pure  H2 from water while using electrical energy from renewable energy 
sources like wind power or photovoltaic. One distinguishes between alkaline, PEM 
(proton-exchange membrane), and high-temperature electrolysis. Alkaline elec-
trolysis is a well-established production method reaching high overall efficiencies 
in the order of 70–80%. At temperatures between 60 and 90 °C,  H2 is co-generated 
with oxygen  (O2) [2]. Water splitting electrolytic processes are closely related to the 
respective fuel cell technology. High-temperature electrolysis, for example, uses the 
principles of inverted solid oxide fuel cells (SOFC). The energy required for the pro-
cess is partially supplied as heat, leading to a lower electricity consumption com-
pared to the other mentioned processes [2, 11].

In comparison, the price of electricity and natural gas largely defines the competi-
tiveness between steam reforming and electrolysis. The production of  H2 via alka-
line electrolysis is often considerably more expensive than the production by steam 
reforming [2, 11].

While electrolysis is a well-known method to purposely produce  H2, other chemi-
cal or electrolytic processes produce  H2 as a side product. One example is the elec-
trolytic production of chlorine. Common processes use membrane or diaphragm 
cells and produce  H2 at the cathode. In this context, the co-production of  H2 is often 
seen as a waste of energy and a safety hazard. Therefore, present developments aim 
at process modifications that reduce or eliminate  H2 co-production.  O2 depolarised 
cathodes are, for example, used since the beginning of this millennium. Here,  O2 
is reduced together with water to hydroxide ions, which enables a reduction in cell 
voltages of up to 30% [2, 12, 13].

H2 is used for fertiliser production, petrochemical refining, metal work, food pro-
cessing, power generator cooling in power plants, and semiconductor manufacturing 
[3]. Hence,  H2 is a basic substance for many industrial processes in the twenty-first 
century. Additionally, the term “H2 economy” is often used to describe ideas and 
challenges about a future economy heavily relying on  H2 [4, 14–17]. The concept 
of  H2 economy was originally created by John Bockris in the 1970s. It described a 

(4)CO+H2O⇌CO2+ H2
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vision in which  H2 is produced via water electrolysis, transported via pipelines and 
eventually converted back to electricity in fuel cells [18]. The idea of using  H2 as a 
fuel dates back to the beginnings of fuel cell developments by W.R. Grove in 1839. 
Even science fiction writings from the nineteenth century discussed  H2/water as an 
energy source (Jules Verne, “The Mysterious Island”) [14]. Nowadays, there are 
still different opinions on whether  H2-based technologies will play a major role in 
a certain sector or will be outperformed by other technologies. Nevertheless, recur-
ring statements about the future role of  H2 and its production are found in litera-
ture. While publications from the early 2000s still partially discuss a  H2 economy 
based on fossil fuels, nuclear reactors and renewable energy sources, publications 
from the last decade focus mainly on green  H2 [4, 14]. Green  H2 is seen as a solu-
tion to decarbonise many large-scale chemical synthesis processes [4]. It is also seen 
as an energy carrier and a storage medium for the intermittency of many renewable 
resources [15]. In this context, decentralisation and microgrids are discussed [4]. 
At the same time,  H2 is often no longer evaluated in isolation but in conjunction 
with various alternatives. The term “H2 economy” may therefore be misleading but 
illustrates that (green)  H2 will play an important role to enable a society supported 
entirely by renewable energy [4, 14–17].

2.2  Photocatalytic Water Splitting

With growing attention being paid to reducing greenhouse gas emissions, renew-
able resources rapidly gain potential as a clean source to produce renewable  H2 as 
a carbon-emissions-free energy carrier [3]. Solar energy can be seen as the most 
abundant renewable energy source. Therefore,  H2 production from solar energy is 
considered to be a promising solution for sustainable energy [19].

Semiconductor materials can convert sunlight energy into chemical energy by 
catalysing the formation of chemical bonds. Thus, generating  H2 and  O2 by perform-
ing photocatalytic water splitting is intensely investigated [20–23]. A semiconductor 
absorbs sunlight when the energy of the incident photon is equal to or larger than the 
band gap (Eg). An electron is thereby excited from the valence band (VB) into the 
conduction band (CB) of the semiconductor (Fig. 1). Together with the remaining 
hole in the VB, an exciton is formed [20].

The photoexcited electron can be used to reduce protons to  H2 if the CB mini-
mum has a more negative potential than the electrochemical potential of reaction 
(5). Similarly, the photogenerated hole in the VB can perform the electrochemical 
oxidation of water to  O2 if the maximum of the VB is more positive than the electro-
chemical potential of reaction (6) [20, 23]:

Compared to the  H2 evolution reaction (HER), the  O2 evolution reaction (OER) is 
comparatively more complex because this reaction requires a four-electron oxidation 

(5)2H+ + 2e−→H2(g) ΔE0 = +0.41Vat pH 7

(6)H2O+ 2h+→ 0.5O2(g) + 2H+ ΔE0 = +0.82Vat pH 7
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step combined with the removal of four protons to form a relatively weak oxy-
gen–oxygen bond [25]. The overall water splitting reaction is an uphill reaction with 
a positive shift in Gibbs free energy (+ 237  kJ/mol). Therefore, water splitting is 
thermodynamically a photosynthetic reaction [26]. In theory, the minimum band gap 
energy (Eg) of the semiconductor should be 1.23 eV (approximately equivalent to a 
wavelength of 1000 nm). Due to energy losses, kinetic overpotentials are needed; 
thus, the Eg of a single semiconductor should lie in the range of 1.5–2.5 eV [23].

It is known that the CB potential of a semiconductor material in aqueous solu-
tions usually exhibits a pH dependence according to the following equation [23]:

Since the redox potentials of water show the same linear dependence with a slope 
of 0.059  V per pH, band edge positions of the semiconductor usually cannot be 
shifted relative to the redox potentials of water by changing the pH value [23].

2.3  Strategies for the Improvement of Photocatalysts

2.3.1  Single Absorber, Co‑catalysts and Sacrificial Agents

So far, many semiconductors have been found to be capable of producing  H2 or  O2 
under light irradiation [23, 27, 28]. Thereby, metal oxide semiconductors can usu-
ally be divided into two classes: materials containing metal cations with d0 con-
figuration and those with d10 configuration [6, 23]. Many recent research activities 
are focused on composite materials, but single absorbers are still investigated. This 

ECB = E0
CB
(pH 0) − 0.059 pH

Fig. 1  Schematic energy diagram of photocatalytic water splitting; oxidation site and reduction site 
might refer to co-catalysts discussed in the next section. Reprinted with permission from [24] © 2010 
American Chemical Society
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is due to newly discovered materials or known materials that are back in the focus 
of research. One example is  SrTiO3 which experienced a renaissance due to new 
insights into defect engineering and the electronic structure of doped  SrTiO3 [6, 
29–31].

Charge carrier recombination limits photocatalytic efficiencies in many photocat-
alytic systems but especially for undecorated semiconductors used as photocatalysts. 
Increasing the crystallinity of a photocatalyst can reduce recombination. Defects and 
grain boundaries are related to interband and surface states, which act as traps for 
holes. Therefore, increasing the crystallinity can result in higher photocatalytic effi-
ciencies [20]. Another possibility to prevent charge carrier recombination is charge 
separation. One popular strategy is the use of co-catalysts often applied as nanoparti-
cles on the surface of a semiconductor photocatalyst. The Fermi energy of the metal 
nanoparticle is usually lower than that of the semiconductor, facilitating electron 
transfer from the semiconductor to the metal via a Schottky contact [20]. Usually 
noble metal nanoparticles such as rhodium, palladium, platinum or gold are used. 
Noble metals serve as electron sinks, thus spatially separating the electron from the 
photoexcited hole in VB of the semiconductor [20, 32]. Besides noble metals as co-
catalysts for the reduction reaction, other materials like metal oxides  (RuO2, NiO, 
CuO/Cr2O3,  Rh2-yCryO3), metal sulphides  (MoS2) and molecular co-catalysts have 
been investigated [20, 32–35]. For the oxidation reaction, metal oxides such as  RuO2 
and  IrO2 are used. Efforts are being made to use more earth-abundant alternatives 
for both the reduction and the oxidation reaction [20, 32]. Charge carrier separation 
due to co-catalysts can also stabilise certain photocatalysts since some sulphides, 
oxysulphides, oxynitrides and nitride semiconductors are known for their photoin-
stability, which is usually due to photocorrosion. Therefore, loading of oxidation 
cocatalysts like PdS can protect semiconductors that tend to be oxidised by pho-
togenerated holes [32, 36].

As already mentioned, the reduction and oxidation of water is a complex multi-
step reaction involving four electrons. Thus, photocatalytic water splitting is a rather 
inefficient process and far away from large-scale industrial applications. Using elec-
tron donors can improve the  H2 production as holes are scavenged by these mol-
ecules. Additionally, charge carrier recombination can be reduced and the back 
reaction to water is supressed because  O2 is not produced [37]. Various organic and 
inorganic compounds (alcohols, organic acids, hydrocarbons, sulphides and sul-
phites) are being employed as hole scavengers/electron donors [28, 37]. Methanol 
is one of the most frequently used sacrificial agents. Nonetheless, the application 
of methanol is highly debatable for environmental reasons even if the substance is 
derived from biomass. Furthermore, molecular  H2 formation in systems using sac-
rificial agents should not be called water splitting. The term water splitting should 
only be used when pure water is used as solvent and reactant, without any additional 
reagents [6]. Acting as an electron donor, methanol reacts irreversibly with the pho-
togenerated VB holes (Fig. 2) [37]. In the overall methanol decomposition reaction 
(not shown in Fig. 2), methanol can be stepwise oxidised to carbon dioxide [38].

Similarly, sacrificial electron acceptors can be used to support the oxidation of 
water. Silver cations,  Ag+, are employed by a vast majority of research groups. The 
photocatalytic formation of molecular  O2 is accompanied by the reduction of  Ag+ 
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and thereby accompanied by the deposition of metallic silver nanocontacts. The 
optical changes and changes in catalytic activity arising from this deposition should 
always be discussed [37].

2.3.2  Heterojunctions

Key issues for improving photocatalytic activity are improved light absorption, high 
crystallinity, large surface areas, and effective charge separation. Furthermore, suit-
able band positions are needed, as well as earth-abundant elements and high chemi-
cal stability of the photocatalyst [20]. A composite photocatalyst system consisting 
of two or more semiconductors allows different favourable properties from each 
participating compound to be combined, extending the absorption range of the vis-
ible spectrum, reducing photoexcited electron hole recombination and increasing the 
photo-corrosion stability, thus improving water splitting efficiency [40–43].

Heterojunctions formed by two semiconductors can be classified into three differ-
ent types depending on the band position (Fig. 3).

Fig. 2  Schematic representing the proposed steps for the photocatalytic molecular  H2 production from 
aqueous methanol solution, (1) photogeneration of charge carriers,  e− and  h+; (2) trapping of  e− by Pt 
islands; (3) first oxidation step of  CH3OH by either trapped hole or hydroxyl radical, ·OH; (4) reduction 
of  H+; (5) formation of HCHO through  e− injection into the conduction band of  TiO2 or to the Pt islands 
(current-doubling); (6) recombination channel. Reprinted with permission from [39] © 2011 Elsevier
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In type I heterojunctions, material A has a smaller band gap than material B. Due 
to a more negative CB and a more positive VB of material B, holes and electrons 
transfer from material B to material A. An example of a type I heterojunction is 
 TiO2/Fe2O3 where photogenerated electron and hole flow occurs from  TiO2 to  Fe2O3 
[40, 44, 45]. A type I heterojunction yields therefore no improvement to charge car-
rier separatio and thus, in theory, no improvement in photocatalytic activity. Due to 
many wide band gap semiconductors known and limitations in valence band and 
conduction band positions, type I heterojunctions are common when composite 
materials consist of a small band gap and a wide band gap semiconductor [20, 40, 
46].

In type II heterojunctions, the CB position of material B is more negative than 
that of material A, while material A has a more positive VB position. As a result, 
electrons and holes transfer in opposite directions, which leads to improved charge 
carrier separation, reduced recombination probability, increased charge carrier life-
times, and, in the end, to improved photocatalytic activity. Most of the examples of 
composite photocatalysts described in the literature are type II heterojunctions. A 
 WO3/BiVO4 heterojunction is one example of this type of system [20, 40, 47].

In type III heterojunctions the charge carrier transfer is the same as in type II 
semiconductors, but the band positions are further set off. Due to the band posi-
tion, these systems are also called broken-gap situations [20]. A BP/ReS2 system 
(BP = black phosphorus) is one example of this type. In general, type III heterojunc-
tions are rather rarely reported but for example discussed for electronic applications 
[48].

2.3.2.1 Recent Trends in  Heterojunction Photocatalysts Tremendous efforts have 
been dedicated to the development of type II heterojunction photocatalysts due to 
their ability to separate photogenerated electrons and holes. However, in the past 
few years, a trend towards Z-schemes (next section) can be observed. Broad review 
articles discussing improvements in heterojunction photocatalysts have usually been 
written in 2017 or earlier [20, 47, 49, 50]. Recent review articles are rare and het-
erojunctions are rather discussed in articles that only cover one specific material. 
However, there are recent trends that are worth mentioning.

Photocatalysts made of 2D materials are of particular interest due to their electri-
cal and optical properties. Type II heterojunctions based on 2D materials have been 

Fig. 3  Different types of semiconductor heterojunctions. Reprinted with permission from [20] © 2013 
Wiley-VCH
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designed and studied as efficient photocatalysts theoretically and experimentally 
[51–55]. Hua et al., for example, reported a 2D  La2Ti2O7/In2S3 type II heterojunc-
tion [52]. The intimate contact of the two layers was realised by strong Coulomb 
static forces due to inverse zeta potentials of both components. The strong interac-
tion between the two layers and the type II heterojunction co-promoted the charge 
separation, resulting in  H2 production rates 3.5 times higher than pristine  In2S3 and 
18 times higher than the physical mixture of both components [51, 52]. Although 
type II heterojunctions can separate photoinduced charges efficiently, p-n hetero-
junctions can separate the charges even faster with the aid of internal electric fields 
[51].

In 2018, Qin et  al. constructed a p-n heterojunction by attaching p-type  Cu3P 
nanoparticles to the surface of n-type g-C3N4. The photocatalyst exhibited 95 times 
higher hydrogen evolution activity from 10 vol% triethanolamine (TEOA) solu-
tion than bare g-C3N4 with an apparent quantum efficiency of 2.6% at 420 nm [56]. 
Two years later, a  MoS2/Bi2O3 p-n heterojunction for overall water splitting was 
described.  Bi2O3 nanorods were anchored on  MoS2 microflowers. As a result,  H2 
evolution rates increased by a factor of ten [57].

Qin et  al. prepared a 2D/2D g-C3N4/ZnIn2S4 heterojunction photocatalyst [58]. 
The improved photocatalytic performance (6.095 mmol   g−1   h−1 using triethanola-
mine as sacrificial agent) was attributed to the larger contact area and sulphur vacan-
cies that acted as active sites for trapping electrons, which led to elongated charge 
lifetimes. Furthermore, the vacancies shortened the band gap, enhancing the absorp-
tion of visible light. Van der Waals (vdW) forces acted as an intermolecular driving 
force for charge carrier transport. This was considered to be an alternative route for 
enhancing  H2 evolution efficiency since heterojunctions are therefore not restricted 
by the lattice matching of the component materials [58].

A similar approach was used by Zeng et al. for theoretical description of a SiH/
CeO2(111) type II heterojunction [59]. Both components were chosen because of a 
< 1% lattice mismatch. The staggered band structure (Fig. 4) demonstrates that SiH/
CeO2(111) is a type  II vdW heterojunction, which effectively promotes the sepa-
ration of photogenerated hole-electron pairs and should improve its photocatalytic 
activity.

The band gap of the SiH/CeO2(111) heterojunction is 2.64 eV and thus smaller 
than the band gap of the SiH monolayer and  CeO2(111). Light absorption of the 
composite material should be significantly extended into the visible light wavelength 
range compared to that of pure  CeO2(111), and oxygen vacancies on the surface 
of  CeO2(111) can also enhance its visible light absorption performance. Moreover, 
valence band maximum (VBM) and conduction band minimum (CBM) potentials 
meet the requirements of water splitting (Fig. 4) [59]. Simulations like these might 
help to synthesise deliberately chosen composite materials in the future.

Deep investigations might explain and solve problems that have limited the per-
formance of (heterojunction) photocatalysts in the past. For example, it is known 
that certain p-type materials can be used as photocathode materials for  H2 evolu-
tion, but only show low activity as photocatalysts. Zhao et  al. investigated p-type 
gallium phosphide to better understand this limitation [60].  H2 evolution rates could 
be inversely correlated with the standard reduction potential of the used donors (KI, 
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 K4[Fe(CN)6],  Na2SO3; more reducing donors give lower rates). Due to a depletion 
layer at the p-type gallium phosphide/electrolyte interface, photogenerated electrons 
are directed away from the cocatalyst (here  Ni2P) toward the sacrificial donors and 
surface states (Fig. 5).

The electrons react with the surface states or with the oxidised form of the sac-
rificial electron donor (e.g. triiodide is reduced to iodide). As a result, electrons 
deep inside the p-type semiconductor must reach the cocatalyst by diffusion. This 
is a slow process because electrons are the minority carriers with a short lifetime. 
According to surface photovoltage measurements, the depletion layer had a barrier 

Fig. 4  a Electronic structure of the SiH/CeO2(111) heterojunction. The projected band structure (left 
panel), partial density of states (PDOS, middle panel), as well as the highest occupied molecular orbital 
(HOMO) and lowest unoccupied molecular orbital (LUMO) (right panel). The green squares and red 
circles in the left panel represent the  CeO2(111) and SiH constituents, respectively. The Fermi level is 
set to zero. b Calculated VBM and CBM potentials versus normal hydrogen electrode (NHE) of SiH, 
 CeO2(111), and SiH/CeO2(111) heterojunction. The upper and lower blue dashed lines stand for the pro-
ton reduction potential  (H+/H2) and  O2 reduction potential  (O2/H2O) for water splitting with values of 0 
and 1.23 eV (pH 0), respectively. c Schematic diagram of charge transfer between SiH/CeO2(111) hetero-
junction layers. Reprinted with permission from [59] © 2021 Royal Society of Chemistry

Fig. 5  Depletion layer and charge carrier movement in illuminated a p-type and b n-type semiconductor/
co-catalyst configurations in aqueous solutions of a reducing sacrificial agent. Straight arrows indicate 
drift and wavy arrows indicate diffusion. Minority carriers (holes for n-type SC and electrons for p-type 
SC) generated inside the depletion layer are attracted to the surface and away from the proton reduction 
co-catalyst (Cat). For p-type semiconductors this promotes the back reaction (red arrows) and for n-type 
semiconductors the forward reaction (black arrows). Reprinted with permission from [60] © 2021 Royal 
Society of Chemistry
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height of up to 0.45 eV for  Na2SO3. Findings like these explain basic observations 
in semiconductor photocatalysis and might play a key role in the development of 
p-type and composite photocatalysts [60].

In recent years, the number of examples for heterojunctions with three type of 
absorber materials has significantly increased. One of the earliest examples for such 
a triple heterojunction was the combination of anatase-TiO2/rutile-TiO2/WO3 [61]. 
Instead of  WO3, Huang et al. used carbon nitride in combination with anatase-TiO2 
and rutile-TiO2, increasing the visible light absorption further for  H2 and  O2 evo-
lution [62]. Other triple absorber heterojunctions reported including  TiO2 are for 
example  Fe2TiO5/Fe2O3/TiO2 [63],  Ag2O/Fe2O3/TiO2 [64], and  Bi2O3/C3N4/TiO2 
[65].

An interesting example is the combination of CoP/CdS/WS2, containing no oxide 
at all forming a p-n-n heterojunction for  H2 generation [66]. The apparent quan-
tum efficiency at λ = 420 nm was reported to be 1.34%; unfortunately, no oxidation 
product was confirmed in pure water. Containing two other sulphide materials, ZnS/
CdS/TaON heterojunctions were reported to show 14 times higher  H2 evolution 
activity (from sulphide/sulphite solutions) compared to CdS/TaON, in the absence 
of noble-metal co-catalysts and an optimum amount of ZnS of 6 wt% [67]. Over-
all, 839.6 μmol  h−1  g−1 could be reached under AM 1.5G illumination; no quantum 
efficiencies were reported. Since ZnS has quite a large band gap compared to CdS 
and TaON, ZnS might act as a hole sink/co-catalyst rather than an absorber in such 
a system. CdS on the other hand is very prominent for its ideal band gap for water 
splitting but well-known photocorrosion issues. In combination with  Bi20TiO32 
and  Bi4Ti3O12, it was reported as ternary heterojunction for  H2 evolution recently 
[68]. Photocatalytic  H2 production (from aqueous methanol solution) of up to  H2 
production 1890 µmol  g−1  h−1 under 250-W xenon lamp (λ > 400 nm) illumination 
was reported, with strongly increased activities compared to  Bi4Ti3O12, CdS, or 
 Bi20TiO32/Bi4Ti3O12. However, not a heterojunction behaviour but a scheme involv-
ing a type I bridged coupled Z-scheme system was proposed to explain the observed 
activities. Z-schemes will be covered in the following section.

2.3.3  Z‑Schemes

Z-schemes use two different semiconductors and typically a reversible donor/accep-
tor pair, a so-called shuttle redox mediator (Fig. 6). This system is inspired by natu-
ral photosynthesis in green plants, where photosystems I and II harvest 700 and 680-
nm photons, respectively [69].

A traditional Z-scheme photocatalyst was first proposed by Bard in 1979 [70]. 
Since then, redox couple mediated Z-schemes have attracted considerable attention. 
In contrast to heterojunctions, the semiconductors are usually not in direct contact 
to each other but electronically coupled via the redox mediator (the next section will 
concentrate on solid Z-schemes). Thus, semiconductors can be combined that can 
only perform either water reduction or oxidation due to their band potential [69]. For 
example,  WO3, which does not have the ability to reduce  H+, is capable of produc-
ing  O2 from an aqueous solution containing appropriate electron acceptors under 



 Topics in Current Chemistry          (2022) 380:53 

1 3

   53  Page 12 of 42

visible light and acts as an effective building block for  O2 evolution in Z-scheme 
water splitting [69].

The redox mediator is an essential component in the Z-scheme water splitting 
system because it transfers electrons from an  O2 evolution photocatalyst to a  H2 
evolution catalyst. Therefore, the flow of charge carriers is reversed in Z-schemes 
compared to the above mentioned heterojunctions of two semiconductors [6]. The 
process leads to spatially separated, high-redox-capacity electrons and holes in the 
 H2 evolving photocatalyst and the  O2 evolving photocatalyst, respectively.

The most employed redox couples are  Fe3+/Fe2+ and  IO3
–/I–, which both have 

unique characters affecting the efficiency of Z-scheme water splitting. The follow-
ing reactions describe a water splitting system using the  IO3

–/I– couple as a mediator 
[69]:

Taking the  IO3
–/I– couple, there is a dependence of activity on the concentration 

of the redox mediator. With increasing the concentration of  I–, the efficiency of the 
 I– oxidation by VB holes in a  H2 evolution photocatalyst is enhanced, while the oxi-
dation reaction in the  O2 evolution site is suppressed because of competitive oxi-
dation of  I– by photogenerated holes in the VB of the  O2 evolution photocatalyst. 
Hence, using NaI as an initiator, there is a volcano-type trend between the concen-
tration of NaI and Z-scheme activity in most cases [69, 71–73].

An  Fe2+/Fe3+ redox system is limited to acidic conditions because iron ions 
undergo precipitation (iron hydroxide) in neutral and basic conditions. The 

(7)I−+3H2O + 6h+→IO−
3
+6H+

(8)2H+ + 2e−→H2(g)

(9)IO−
3
+6e−+3H2O→I−+6OH−

(10)2H2O + 4h+→O2(g) + 4H+

Fig. 6  Schematic energy diagram of photocatalytic water splitting for a two-step photoexcitation system. 
Reprinted with permission from [24] © 2010 American Chemical Society
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 IO3
–/I– couple can be employed in a wider range of pH values but also shows a pH 

dependence [69].
Apart from their role of shuttling electrons, redox mediators show multiple side 

effects in Z-scheme water splitting. One example is that  I– ions apparently undergo 
adsorption onto the surface of Pt, used as a co-catalyst, forming an iodine layer 
which suppresses the backward reaction of water formation [69, 74]. A similar 
behaviour was reported for the  Fe2+/Fe3+ redox mediator. Water formation and the 
reduction of  Fe3+ are efficiently suppressed by adsorption of [Fe(SO4)(H2O)5]+ and/
or [Fe(OH)(H2O)5]2+ on Pt surfaces [69, 75]. Although the backward reaction of 
water formation on Pt is not completely suppressed by adsorbed iron species, fur-
ther studies revealed that Ru does not suffer from water formation. Using Ru as a 
co-catalyst, the reduction of  Fe3+ by  H2 and the oxidation of  Fe2+ by  O2 are also 
suppressed [69, 76].

However, traditional Z-scheme photocatalysts have further drawbacks. Note-
worthy are light-shielding effects by the redox mediator, slow charge carrier 
transfer rates limited by diffusion of ion pairs, and, as already mentioned, limita-
tions because of pH sensitivity. Moreover, redox mediators are often unstable and 
tend to deactivate, which results in decreased reaction rates [77]. In addition, the 
photogenerated electrons in the CB of the photocatalysts I (PS I) and holes in the 
VB of photocatalysts II (PS II) with strong redox ability can also be consumed 
by the redox mediator (Fig. 7). This is called backward reaction and again has a 
negative impact on the photocatalysis [78, 79]. Several attempts have been made 

Fig. 7  a The roadmap of the evolution of the Z-scheme photocatalytic system from the first generation 
to the third generation. b Schematic illustration of electron transfer in a traditional Z-scheme photocata-
lytic system (PS I-A/D-PS II), where A and D represent the electron acceptor and donor, respectively. c 
Schematic illustration of electron transfer in an all-solid-state Z-scheme photocatalytic system with an 
electron mediator (PS I–EM–PS II), where EM represents the electron mediator that provides an electron 
transport channel. d Schematic illustration of electron transfer in a direct Z-scheme photocatalytic system 
without any electron mediator (PS I–PS II). Reprinted with permission from [78] © 2020 Wiley-VCH
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to overcome these drawbacks. The historical evolution of Z-scheme photocata-
lysts is shown in Fig. 7.

2.3.3.1 All‑Solid‑State Z‑Schemes, Direct Z‑Schemes In 2006, Tada et  al. pro-
posed the concept of an all-solid-state Z-scheme heterojunction. The CdS-Au-TiO2 
system used gold as a solid-state electron mediator [80]. As shown in Fig. 7c, the 
photocatalytic system consists of two semiconductors and a solid-state electron 
mediator between two semiconductors with an intimate contact. The intimate con-
tact between the mediator and both semiconductors favours the interfacial charge 
carrier transfer [77, 78]. Commonly used solid-state electron mediators are noble 
metal (such as Au, Ag, Cu, Pt) shells/nanoparticles and graphene and carbon nano-
tubes. When the two semiconductors are excited by light irradiation, the photogen-
erated electrons in the CB of PS II can recombine with the photogenerated holes 
in the VB of PS I with the help of the electron mediator because of low contact 
resistances with both semiconductors [78, 81].

All-solid-state Z-schemes eliminate the aforementioned backward reactions 
and the long-term stability issues of redox mediators in traditional Z-schemes. 
Furthermore, it can be applied in liquid and gas phases because of the solid con-
ductor [77, 78]. Light-shielding effects can be reduced compared to traditional 
Z-scheme photocatalytic systems, but effective light utilisation might be hindered 
by light absorption from the electron mediator. These conductors might also act 
as co-catalysts instead of charge-transfer shuttles. Therefore, intimate contact and 
carefully designed sandwiched structures are necessary, which is synthetically 
challenging. Additionally, the use of rare and noble metals limits practical appli-
cations of all-solid-state Z-schemes [77, 78, 82].

In 2013, a direct Z-scheme heterojunction (g-C3N4/TiO2) without using any 
electron mediator was reported by Yu et  al. [83]. In contrast to the traditional 
Z-scheme system, the backward reactions were significantly suppressed because 
of the absence of redox mediators. The shielding effect caused by redox media-
tors/charge carrier mediators can also be reduced [77].

Analogous to the all-solid-state Z-scheme, the directly contacted semiconduc-
tors are both exited by light irradiation, and the photogenerated electrons in the 
CB of PS II can recombine with the holes in the VB of PS I. As a result, the pho-
togenerated electrons in CB of PS I and photogenerated holes in the VB of PS II 
are spatially separated and maintain their strong redox capability [78]. A work 
function difference between the two semiconductors is a pre-requisite for the 
Z-scheme charge transfer mode. PS I must have higher CB and VB positions and 
a smaller work function (higher Fermi level) than PS II. When both semiconduc-
tors are in contact, an electron transfer from PS I to PS II takes place due to Fermi 
level equilibration (c.f. the n-n type direct Z-scheme in Fig.  8). Thus, the PS I 
side is positively charged, whereas the PS II side is negatively charged. Hence, 
an internal electric field (IEF) as well as band bending occurs. PS II energy band 
edges bend downwards because the accumulation of electrons and PS  I energy 
band edges bends upwards because of decreased electron density [77, 82]. The 
IEF, the extra potential barrier induced by band bending, and Coulomb repulsion 
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hinder photogenerated electrons from transferring from PS I CB to PS II CB. This 
also applies to the photogenerated holes in PS II VB [77].

A similar process occurs in the construction of a p-n type direct Z-scheme. How-
ever, when the Fermi level of a p-type semiconductor (p-PS) is lower than that of an 
n-type semiconductor (n-PS), a type II heterojunction is formed. The energy band 
edges are bent in an inverted fashion at their interface (Fig.  9). Therefore, under 
light irradiation, photogenerated electrons move from p-PS to n-PS and holes in the 
opposite way driven by the IEF. The requirement for Fermi levels is easily met in 
n-n type heterojunctions but very hard to fulfil in p-n heterojunctions because of the 
huge band offset (Fig. 9). Hence, most direct Z-schemes are made of n-n heterojunc-
tions [82].

Known p-n type direct Z-schemes are for example  CuInS2–WO3, 
 CuAl2O4–Bi2WO6, and  Cu2O–TiO2 [82, 84–86].

The band alignment configuration in Z-scheme heterojunctions is similar to 
that of type  II heterojunctions, but their charge transfer mechanisms are different. 
To investigate the exact charge transfer process, various methods can and should 
be used. Several methods have been reported: self-confirmation by photocatalytic 
reaction products and radical species; selective photodeposition of a noble metal; 
in  situ irradiated x-ray photoelectron spectroscopy (XPS) analysis; surface photo-
voltage (SPV) technique; time-resolved diffuse reflectance (TDR) spectroscopic 
analysis [78]. Sometimes, photo-corrosion effects are reduced, which can be a hint 
for a Z-scheme mechanism (e.g. in composite materials containing CdS) [87].

The investigation of charge transfer processes is essential to describe the pho-
tocatalytic activity in a given system and to improve photocatalysts in the future. 
As mentioned before, heterojunctions and Z-schemes can show undesired charge 
transfers and backward reactions. We would like to mention that the term S-scheme 
(step scheme) was also introduced and is mainly synonymously used with direct 
Z-schemes [88–90]. In this article, the term direct Z-scheme instead of S-scheme is 
used.

Fig. 8  Schematic of n–n type heterojunction: a before contact, b after contact, and c formation of direct 
Z-scheme charge transfer upon light irradiation.  Ef and IEF stand for Fermi level and internal electric 
field, respectively. Reprinted with permission from [82] © 2021 Elsevier
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2.3.3.2 Facets and Regulation of Charge Flow Direction Facet design has been dis-
cussed many times for various photocatalysts [91, 92]. Direct Z-schemes can also 
be constructed and improved through facet design. Here, charge flow directions 
and the recombination of photogenerated charges at interfaces can be regulated 
[82]. The co-exposed {0 0 1} and {1 0 1} facets of anatase  TiO2, for example, 
would form a “surface heterojunction” as shown in Fig. 10a. Due to different band 
structures and band edge positions, photogenerated electrons and holes would 
transfer to {1 0 1} and {0 0 1} facets, respectively [82, 93].

Anchoring a suitable semiconductor with a smaller work function (higher 
Fermi level) on the {1  0  0} facet of  TiO2, would lead to the formation of a 
Z-scheme (Fig. 10b). In contrast, if said semiconductor is deposited on {0 0 1} 
facets, a type  II heterojunction will be formed instead [82]. In 2015, a facet-
induced direct Z-scheme between  TiO2 {1  0  1} and g-C3N4 was realised by 
Huang et al. [94].

Jiang et al. used chemical deposition and photodeposition to regulate the elec-
tron flow direction in g-C3N4/CdS composite materials [95]. In the photodeposi-
tion case, a type  II heterojunction was constructed because CdS was selectively 

Fig. 9  Schematic of a–c p-n direct Z-scheme heterojunction and d–f p-n type II heterojunction. 
Reprinted with permission from [82] © 2021 Elsevier
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deposited at the electron transfer site of g-C3N4, resulting in a photogenerated 
electron transfer from g-C3N4 to CdS. Using a chemical deposition technique, 
CdS was randomly deposited onto g-C3N4, which resulted in a Z-scheme charge 
transfer mechanism [95].

The same group showed in 2019 that deliberate construction of direct Z-scheme 
photocatalysts was possible by photodeposition [96]. Two routes to construct direct 
Z-schemes were proposed via photooxidation and photoreduction (Fig. 11).

When g-C3N4 was selected as SC-I,  Fe2O3 as SC-II was selectively deposited on 
hole-rich sites of g-C3N4 through photooxidation (Fig. 11a). When CdS was selected 
as SC-I, it was selectively deposited on electron rich sites of SC-II  (TiO2) (Fig. 11b) 

Fig. 10  Charge transfer a at the edge of a single  TiO2 nanocrystal, b in a direct Z-scheme, and c in a 
type II  TiO2-based heterojunctions induced by facet design. Reprinted with permission from [82] © 2021 
Elsevier
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[96]. In the future, further investigations might allow to transfer this approach to 
other materials. A foundation would be extensive investigations of electron- and 
hole-rich sites and the deliberate construction of these sites for different materials.

2.3.3.3 Dual Direct Z‑Schemes Direct Z-schemes can also be built from a com-
bination of three semiconductors. These photocatalysts are usually called “dual 
Z-schemes” or “ternary Z-schemes” [82]. One advantage of these systems is the bet-
ter spatial separation of reduction and oxidation reactions which occurs on nonad-
jacent semiconductors. As a result, recombination rates can be reduced or, in other 
words, the lifetime of photogenerated charge carriers can be prolonged [82, 97, 98]. 
Furthermore, a broader light absorption spectrum is achievable [98].

Li et al. divide dual direct Z-schemes into three categories (Fig. 12). According 
to the shape formed by the position of conduction bands and valence bands rela-
tive to each other, these systems are called arrow-down, arrow-up, and cascade dual 
Z-schemes [82].

In an arrow-down system, the electrons in the CB of PS II combine with holes in 
the VBs of PS I and PS III. Therefore, the electrons at the CBs of PS I and PS III 
participate in the reduction reaction while the holes in the VB of PS II participate in 
the oxidation reaction. In an arrow-up photocatalyst, the band positions are inverted 
compared to the former described system. Therefore, the reduction takes place at 
PS II while oxidation takes place at PS I and PS III. In a cascade dual Z-scheme, the 
electrons in the CB and holes in the VB of PS II combine with the holes in the VB 
of PS I and electrons in the CB of PS III, respectively [82].

Fig. 11  The construction routes of direct Z-scheme photocatalysts through photodeposition: a pho-
todeposition of SC-II (e.g.  Fe2O3) on SC-I (e.g. g-C3N4) through photooxidation; b photodeposition of 
SC-I (e.g. CdS) on SC-II (e.g.  TiO2) through photoreduction (SC = semiconductor). Reprinted with per-
mission from [96] © 2019 Royal Society of Chemistry
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All three types of dual Z-schemes have been realised in the past few years. 
An arrow-down dual Z-scheme was demonstrated by Xue et al. in the form of a 
g-C3N4/Bi2WO6/AgI combination [99]. An arrow-up dual Z-scheme was reported 
by Zheng et  al. for a  Co3O4@CoO/g-C3N4 combination [100]. In 2019, Wang 
et al. reported a g-C3N4/Zn2SnO4N/ZnO cascade dual Z-scheme [97].

Unfortunately, none of these three systems were tested for water splitting or  H2 
evolution reactions. In the past 3–4 years, more and more dual direct Z-schemes 
have been reported aiming at  H2 evolution. Recently, Kumar et  al. reported a 
g-C3N4/Bi4Ti3O12/Bi4O5I2 arrow-down dual Z-scheme for photocatalytic antibi-
otic degradation and  H2 production (Fig. 13) [101].

XPS measurements confirmed that the double Z-scheme mechanism is facili-
tated or mediated by in-built redox mediators  Bi5+/Bi3+ and  I3

–/I– or  IO3
–/I–. 

Thus, a complicated dual direct Z-scheme assisted by redox mediators was con-
structed. Aside from antibiotic degradation, the system was also tested for photo-
catalytic  H2 evolution in pure water and in solutions containing triethanolamine 
(TEOA, 6.7·10–5 M) reaching 24.12 mmol  g−1  h−1 and 69 mmol  g−1  h−1, respec-
tively (Table 1 in the Appendix).

Fig. 12  Band alignments in three types of dual direct Z-schemes: a arrow-down, b arrow-up, and c cas-
cade. Reprinted with permission from [82] © 2021 Elsevier
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Another ternary structure for photocatalytic  H2 evolution reported by Dong et al. 
used a ZnO/ZnS/g-C3N4 cascade dual Z-scheme. The composite displayed specific 
surface areas of 76.6  m−2  g−1 and reached a  H2 evolution rate of 0.3 mmol  g−1  h−1 
using sacrificial agents  (Na2S and  Na2SO3) but no co-catalysts [102].

In summary, dual direct Z-schemes are a recent trend and further reports focusing 
on  H2 evolution reactions and water splitting are expected for the future. Neverthe-
less, these structures suffer from the limitation of material availability to achieve 
suitable band alignments [82]. Also, complex synthesis protocols and even more 
challenging charge transfer analyses are necessary to optimise and understand these 
systems.

2.3.3.4 Z‑Schemes with  MOFs and  COFs Metal organic frameworks (MOFs) are 
one-, two-, or three-dimensional coordination networks consisting of metal ions/
clusters linked together by organic linker molecules. MOFs have received grow-
ing attention in the construction of direct Z-schemes. Advantages like tuneable 

Fig. 13  Photocatalytic mechanism for  H2 evolution and pollutant degradation by dual Z-scheme mecha-
nism. Reprinted with permission from [101] © 2021 Elsevier
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composition and light-harvesting property, high surface areas, and controllable 
pore sizes make MOFs attractive in applications of photocatalysis [82, 103]. The 
visible light photocatalytic performance of pure MOFs is quite poor. However, 
in direct Z-schemes significant improvements have been reported [82, 104–106]. 
Various morphologies are easily achievable, which enables the use of 3D, 2D, 
and 1D structures in direct Z-schemes. Chen et al. constructed a direct Z-scheme 
by anchoring  CdLa2S4 nanoparticles on 1D MIL-88A(Fe) micro-rods (Fig.  14). 
The nanocomposite obtained high  H2 evolution rates of up to 7.678 mmol  g−1  h−1 
using a 20 wt% content of MIL-88A(Fe). Moreover, the  CdLa2S4/MIL-88A(Fe) 
composite exhibited high durability during the photocatalytic  H2 evolution [104].

The high photocatalytic activity mainly contributed to the formed Z-scheme 
structure [104].

In 2019, a 3D hierarchical structure of a UiO-66-(COOH)2/ZnIn2S4 Z-scheme 
was reported [106]. Here, UiO-66-(COOH)2 nanoparticles were decorated in the 
interweaving petal nanosheets of  ZnIn2S4 microspheres, while co-catalyst  MoS2 
nanosheets were folded at the edge of these interweaving petals as shown in 
Fig. 15.

The optimised photocatalyst showed high  H2 evolution rates of 
18.794 mmol  g−1  h−1, which was about 15.3 times higher than the  H2 evolution rate 
of pure  ZnIn2S4.

Fig. 14  Band alignments in the  CdLa2S4/MIL-88A(Fe) Z-scheme (left) and synthesis process of the 
composite (right). Reprinted with permission from [104] © 2019 Elsevier

Fig. 15  Proposed photocatalytic Z-scheme mechanism (left) and field-emission scanning electron micro-
scope (FESEM) image of the UiO-66-(COOH)2/ZnIn2S4 (yellow/blue) photocatalyst decorated with 
 MoS2 co-catalyst (red) (right). Reprinted with permission from [106] © 2019 Elsevier
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Overall, only a small group of MOFs are suitable for  H2 evolving or water split-
ting photocatalytic applications since most MOFs are known to become unstable 
if exposed to moisture/water. However, > 40 MOFs are known to show enhanced 
water stability (amongst others MIL-100, MIL-101, UiO-66, Zn-DMOF, DUT-
67) [107]. Considering possible morphologies and composite materials containing 
MOFs, there still seems to be potential for stable and low-cost direct Z-schemes in 
the future.

Covalent organic frameworks (COFs) are crystalline covalent polymers with a 
high surface area. These porous materials with tuneable topology and functionalities 
have gathered significant interest among researchers in the field of photocatalysis 
[108, 109]. The moderate band gap and the presence of extended π-conjugated elec-
tronic networks enable visible-light responsive ability and possibilities for bandgap 
engineering. Therefore, COFs and COF-linked hybrid materials are used as photo-
catalysts for  H2 production. Due to the stability of covalent bonds compared to coor-
dinate bonds in MOFs, COFs are known to exhibit high stability in various solvents 
even under harsh acidic, basic, oxidative, or reductive conditions. However, a major-
ity of reported photocatalytic COFs are based on imine, hydrazone, or azine linkages 
and are considered unstable for extended photocatalysis in water [108]. Currently, 
only a few COF materials have been investigated for photocatalytic  H2 evolution or 
water splitting. Nonetheless, there has been considerable progress regarding stability 
and photocatalytic activity in the past few years. One example is sulfone-containing 
COFs reported in 2018 by Wang et  al. [110]. These covalent organic frameworks 
are based on a benzobis(benzothiophene sulfone) moiety and are stable for at least 
50 h in water under visible light irradiation. Using ascorbic acid (0.1 M) as a sac-
rificial electron donor and Pt as a co-catalyst (8 wt%),  H2 evolution rates of up to 
10.1 mmol  g−1  h−1 were obtained (300 W Xe light source). Without the addition of 
co-catalyst, still significant rates of up to 1.32 mmol   g−1   h−1 were reported [110]. 
Their internal pore structure could be decorated with nanoparticles/quantum dots, 
making these COFs a platform for developing hybrid photocatalysts.

In 2020, a COF-based noble-metal-free Z-scheme (TpPa-2-COF/�-Fe2O3) was 
reported for the first time [111]. The transfer of photogenerated electrons from the 
CB of �-Fe2O3 to the VB of the TpPa-2-COF was confirmed, and the effective-
ness of the Z-scheme structure attributed to the tight integration between the metal 
oxide and the COF. As illustrated in Fig. 16, the hybrid material was synthesised 
by a simple one-pot synthesis using �-Fe2O3, 1,3,5-triformylphloroglucinol and 
2,5-dimethyl-p-phenylenediamine.

The co-catalyst free Z-scheme showed  H2 evolution rates of up to 
3.77 mmol  g−1  h−1, which is about 53 times higher than that of the parent TpPa-2-
COF und the same conditions and even better than that with a Pt (2 wt%) co-catalyst 
[111].

Compared to MOFs, COFs are still “young”, but their cheap synthesis, tunea-
ble pores, and other characteristics like visible-light absorption make them attrac-
tive for the application as photocatalysts. Hybrids with metal-oxides have already 
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demonstrated significant performance improvements [82]. Hybrid materials based 
on already optimised COFs from recent publications might lead to even higher pho-
tocatalytic activity.

2.3.3.5 Coupling Surface Plasmon Resonance (SPR) Effect into  Direct Z‑Scheme 
Systems Another strategy to improve photocatalytic activity is coupling surface 
plasmon resonance (SPR) into direct Z-schemes. SPR is the collective oscillation 
of electrons that are in resonance with the oscillating electric field of incident light 
[112]. Resonances near the visible or near IR range can enhance the light absorp-
tion ability of the photocatalytic system. In addition, SPR-induced hot plasmon 
electrons or SPR-enhanced localised electromagnetic fields can boost the charge 
separation near the interfaces between the SPR material and the semiconductor 
[82, 113, 114]. Well-known materials are noble metals (Ag and Au) and heavily 
doped semiconductors  (HxWO3,  W18O49 and  BiO2-x) [82].

Among these materials, noble metals are most commonly used for applica-
tion in photocatalysis. The Schottky junction supplies an internal electric field 
between the noble metal and the semiconductor, which improves the interfacial 
charge transfer. Localised surface plasmon resonances (LSPR) can enhance solar 
light absorption. Both features can lead to significant enhancement of the photo-
reactivity [82, 113]. This was described, for example, in  TiO2/Au/WO3 or  TiO2/
Ag/Cu2O Z-schemes for  H2 generation [115, 116]. Other examples or Z-scheme 
couples with LSPR for photocatalytic  H2 generation include  TiO2/Pt/WO3 [117], 
 TiO2/Au/CdS [118],  C3N4/Au/TiO2 [119],  C3N4/Ag/NiTiO3 [120],  C3N4/Ag/SnS2 

Fig. 16  Schematic illustration of the synthesis of an �-Fe2O3/TpPa-2-COF hybrid material. Reprinted 
with permission from [111] © 2020 Royal Society of Chemistry
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[121],  SrTiO3/C3N4/Ag/Fe3O4 [122], and  C3N4/Ag/CdS [123]. In contrast, for a 
Ag/C3N4/TiO2 system, a SPR-enhanced heterojunction was reported, with Ag not 
acting as electron mediator simultaneously [124].

Xie et  al. combined modified  C3N4 (NCN-CNx) with gold nanoparticles and 
 CuInS2 to achieve photocatalytic hydrogen evolution from water/triethanolamine, 
reaching 4.28 mmol  h−1  g−1 at wavelengths > 550 nm [125]. Interestingly, surface 
photovoltage spectroscopy was additionally used to confirm the SPR effect and 
the synergistic effects of SPR and Z-scheme mechanism.

Modulating the stoichiometric ratio of certain semiconductors is also used to 
improve light absorption abilities since it can increase the free-charge density and 
lead to LSPR arising from collective oscillations of the excess free-charges on 
the semiconductor surface [126]. Blue  W18O49 is a nonstoichiometric tungsten 
oxide with a bandgap of 3.0 eV and exhibits LSPR absorption in both the vis and 
NIR region because of abundant oxygen vacancies on its surface. Zhang et  al. 
used this material to synthesise a g-C3N4/W18O49 plasmonic Z-scheme photo-
catalyst, which could harvest photon energies spanning from the UV to the near 
IR region [126]. A wavelength range of 450–900  nm electrons near the Fermi 
level of  W18O49 reached the high-energy surface plasmon state and became plas-
monic “hot electrons”, which then could partly transfer to the conduction band of 
g-C3N4. The system reached  H2 evolution rates of up to 3.04 mmol  g−1  h−1 when 
triethanolamine (15 vol%) was used as sacrificial agent.

Although considerable progress has been made in plasmonic metal-based and 
nonmetal-based photocatalysts, challenges remain such as low utilisation of hot 
carriers, uncovered mechanisms of hot carrier-driven reactions, and the explo-
ration of novel (nonmetallic) plasmonic materials. Therefore, the full potential 
of plasmonic materials for efficient photocatalytic systems is yet to be realised 
[127].

2.3.3.6 Upconversion Photoluminescence (UCPL) Materials in  Z‑Schemes Besides 
the (L)SPR materials, most direct Z-scheme photocatalysts can only utilise the light 
energy in the UV and visible region. These materials’ inability to utilise light from 
the near IR (NIR) region is an impediment in the progressive photocatalysis research 
since NIR light constitutes the maximum portion of solar energy (approximately 
50%) [128]. Therefore, efficient full-spectrum-activated (UV–Vis–NIR) photocata-
lysts have gained a lot of attention. An attractive strategy is to integrate non-linear 
UCPL materials in direct Z-scheme systems [82, 129].

UCPL materials exhibit a multi-photon-assisted anti-Stokes excitation mecha-
nism, which enables the conversion of low energy (NIR) photons into radiation of 
UV and visible light [130]. Rare-earth-based lanthanide-doped materials, such as 
 Yb3+- and  Er3+-doped  NaYF4, are popular UCPL substances [82]. Unfortunately, 
rare earth-doped upconversion materials generally suffer from low upconversion 
efficiency due to small absorption cross sections and low energy transfer efficien-
cies [131]. In doped  NaYF4, the upconversion characteristics entirely depend on 
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the selection of dopants [132]. Yb/Tm-doped  NaYF4, for example, exhibits several 
UV–visible upconversion emission peaks that fall under the absorption range of 
semiconductor photocatalysts. Recently, this material has been used by Murali et al. 
for a NIR-activated g-C3N4/Ag3PO4 Z-scheme [128]. The mechanism behind the 
NIR-light utilised photocatalytic  H2 production is shown in Fig. 17.

The NIR photons in solar irradiation excite  Yb3+ ions in the  NaYF4 host from the 
ground state (2F7/2) to the excited state (2F5/2). These excited  Yb3+ ions act as sen-
sitisers and populate higher energy levels of  Tm3+ ions. Non-radiative relaxation of 
 Tm3+ ions populates several other of its energy levels. The energy is then transferred 
to the g-C3N4/Ag3PO4 via Förster resonance energy transfer (FRET). The absorption 
of additional energy by the UV–visible g-C3N4/Ag3PO4 Z-scheme spurs the number 
of free charges. In this particular system,  Ag0 comprised in  Ag3PO4 additionally acts 
as a channel between both semiconductors [128].

Yb/Tm-doped  NaYF4/Ag3PO4 was also combined with black phosphorus for 
another Z-scheme/UCPL heterostructure [133]. Interestingly, a laser source (980 nm) 
was used as light source to prove the NIR upconversion; 0.146 mmol   g−1   h−1  H2 
evolution from aqueous glycerol solution (50 vol%) could be achieved, with 0.077% 
apparent quantum efficiency at 980 nm.

TiO2 was also used in combination with other semiconductors and UCPL materials 
for photocatalytic  H2 evolution. Together with g-C3N4 and carbon quantum dots, pho-
tocatalytic water splitting was achieved in a 2:1 ratio at a maximum  H2 evolution rate of 

Fig. 17  Schematic representation of the photocatalytic  H2 evolution mechanism of g-C3N4/Ag3PO4 
Z-scheme photocatalyst under the sunlight illumination using Yb/Tm-doped  NaYF4 as an UCPL material 
and lactic acid as a sacrificial agent. Reprinted with permission from [128] © 2021 Elsevier
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6.497 µmol  h−1  g−1 under 300 W Xe illumination (> 400 nm) [134]. Therein, the carbon 
quantum dots are supposed to have a dual function as upconversion material and catalyst 
for  H2O2 decomposition, therefore facilitating oxygen evolution and water splitting.

Iron-doped  TiO2 combined with vanadium-doped  Ta2O5 and  Er3+:YAlO3 as 
UCPL were applied for photocatalytic  H2 generation from aqueous methanol solu-
tions, including decoration with gold nanoparticles [135].  Er3+:YAlO3 was used as 
UCPL agent from visible-light to ultraviolet-light to be able to excite the wide band 
gap oxides with visible light, and a Z-scheme was established by the dopants result-
ing in a  TiO2-Fe3+/V5+-Ta2O5 redox cycle system. By irradiation with a 300-W Xe 
lamp and a cut-off filter,  H2 evolution activity of approximately 32 µmol  h−1  g−1 was 
shown in visible light.

These examples show that the combination of UCPL materials and Z-schemes 
or heterojunctions is another promising method to enhance the sunlight absorption 
of semiconductor photocatalyst systems for  H2 generation and water splitting. More 
efforts are however needed to optimize the FRET to the semiconductors to improve 
the overall solar-to-H2 efficiency.

2.3.3.7 2D/2D Z‑Schemes Among the various developed photocatalysts, 2D materi-
als are receiving increasing attention because of their unique physical and chemi-
cal properties [136]. Compared with bulk photocatalysts, 2D photocatalysts have a 
higher specific surface area due to their planar structure and ultralow thickness. Addi-
tionally, more surface atoms can provide more adsorption and active sites for photo-
catalytic reactions [78]. Constructing 2D/2D Z-scheme heterojunctions can combine 
the respective advantages of 2D materials and Z-scheme systems.

Zhu et al. fabricated a 2D/2D BP/BiVO4 Z-scheme (BP = black phosphorus) and 
realised overall water splitting [137, 138]. Thin BP and  BiVO4 were hybridised by 
electrostatic interactions. In both photocatalytic  H2 and  O2 production processes, 
the 2D/2D Z-scheme exhibited better photocatalytic activities than BP and  BiVO4 
alone.  H2 and  O2 production rates of 0.16 mmol  g−1  h−1 and 0.102 mmol  g−1  h−1, 
respectively, and an apparent quantum efficiency of 0.89% were realised [137, 138].

Fig. 18  TEM images of the 2D/2D  ZnIn2S4/WO3(10 wt%) Z-scheme. Reprinted with permission from 
[139] © 2019 Elsevier
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Li et  al. prepared a Janus sulphur vacancy-rich  ZnIn2S4/WO3 Z-scheme [139]. 
The Janus bilayer was fabricated via electrostatic self-assembly by adding  WO3 
nanosheets into the precursor of  ZnIn2S4. TEM images of the 2D/2D  ZnIn2S4/WO3 
(10 wt%) composite are shown in Fig. 18.

Vacancy-rich  ZnIn2S4 was chosen because the sulphur vacancies significantly 
promoted  H2 production due to optimised charge separation and light utilisation. 
The Z-scheme photocatalyst obtained  H2 evolution rates of up to 7.81 mmol  g−1  h−1, 
which was about 20.8 and 1.69 times higher than those of  ZnIn2S4 and Pt-ZnIn2S4. 
In addition, the loading of NiS quantum dots as co-catalyst could further improve 
the photocatalytic  H2 production, which reached 11.09  mmol   g−1   h−1. This is the 
highest photocatalytic activity toward visible-light-driven  H2 evolution among the 
family of  ZnIn2S4 materials reported so far.

In addition to the previous examples, 2D/2D Z-schemes were also reported for 
g-C3N4/Fe2O3 [140], g-C3N4/WO3 [141], g-C3N4/BiVO4 [142],  Zn0.67Cd0.33S/Cu2S 
[143],  ZnxCd1-xS/ZnO [144], g-C3N4/La2Ti2O7 [145], and several other composite 
materials. Some of these 2D/2D Z-schemes are listed in Table 1 in the appendix.

More than 3000 papers on 2D/2D Z-scheme photocatalyst have been published, 
more than 700 of them in 2021 alone (data from  SciFindern). Research on 2D/2D 
composites is therefore a major trend in the field of Z-scheme photocatalysis, which 
cannot be fully covered in this review. Interested readers are referred to other excel-
lent reviews [78, 146–149].

3  Comparison, Trends, and Conclusion

Considering heterojunctions and Z-schemes reported in the last 5 years, high 
 H2 evolution rates were achieved, for example, for  CdLa2S4/MIL-88(Fe) 
(7.678 mmol  g−1  h−1) [104], g-C3N4/CdS (10.89 mmol  g−1  h−1) [150], g-C3N4/Ag3PO4 
(23.56 mmol  g−1  h−1) [128],  CoTiO3/UiO-66 (26.545 mmol  g−1  h−1) [151], CdS/(Au/)
TiO2 (47.6 mmol   g−1   h−1) [118], CdS/BiVO4 (23 and 57 mmol g  1   h−1) [87, 152], 
g-C3N4/Bi4Ti3O12/Bi4O5I2 (69 mmol  g−1  h−1) [101], CdS/ZnO (98.82 mmol  g−1  h−1) 
[153], and several other photocatalytic systems (Table 1 in the Appendix).

Unfortunately, these values are not comparable because of differences in measure-
ment setups, light sources, intensity, filters, co-catalysts, and several other factors.  H2 
evolution rates from > 50 publications have been evaluated and are listed in Table 1 
in the appendix. Nevertheless, we hope that the readers of this article find it useful to 
compare some parameters used for hydrogen production in literature recently. Some of 
the production rates are very high and could also be a result of normalising the given 
rate in the publication to the used catalyst mass. Furthermore, high rates were often 
reported when low catalyst weights (< 20 mg) were used [139, 152, 153]. This may 
indicate that rather small setups were used or that weighing errors can lead to incor-
rect production rates. In some cases, no production rates were given, and we had to 
estimate hydrogen production rates from graphical depictions [128, 154, 155]. It is 
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moreover well known that in photocatalysis the observed rates should not be normal-
ized to the photocatalyst mass because of scattering and shadowing effects leading to 
non-linear correlation of photocatalyst mass and activity [156].

Therefore, no particular heterojunction or Z-scheme can be seen as superior 
based on stated  H2 evolution rates. However, composite materials containing CdS, 
 BiVO4, or g-C3N4 often show high photocatalytic activity when combined with a 
suitable second semiconductor. Furthermore, new strategies like 2D/2D Z-schemes, 
the use of upconversion photoluminescent materials, or deliberate syntheses led to 
enhanced  H2 production rates.

A benchmark was set in 2016 by Wang et  al. who presented a photocatalyst 
sheet with a Z-scheme charge carrier transfer based on La- and Rh-codoped 
 SrTiO3 and Mo-doped  BiVO4 embedded into a gold layer [157]. A solar-to-H2 
energy conversion of 1.1% and an apparent quantum yield of > 30% for pure 
water splitting was reported. Unfortunately, only in one third of the reviewed pub-
lications were apparent quantum yields stated. Values for solar-to-H2 energy con-
version are also only given for a few cases.

Since different sacrificial agents (MeOH, TEOA, lactic acid, NaS,  Na2SO3, 
etc.) and different concentrations of sacrificial agents were used to enhance  H2 
production rates, this caused additional problems for good comparability. Here, 
the need for sacrificial agents is viable for mechanistic studies and should be 
avoided when the aim to maximise hydrogen production is discussed.

In 2015, Horst Kisch discussed that apparent quantum yields cannot be com-
pared in a quantitative way. Clear standards are needed to make apparent quantum 
yields and evolution rates to some extent comparable. Kisch proposed that opti-
mal rates should be measured in one unique photoreactor at a given lamp inten-
sity [158]. Common standards, including a standard photoreactor, are needed in 
the field of photocatalysis and will be inevitable at some point. These standards 
will not be perfectly suitable for every photocatalyst, but standardised measure-
ments could establish a better comparability.

In terms of materials, in the past 5 years a clear trend toward direct Z-schemes 
has been recognisable. Heterojunctions have been discussed extensively for dec-
ades and are still prominent in photocatalysis research, but nowadays more atten-
tion is paid to Z-schemes because of their stronger redox capabilities. Z-schemes 
are now in the third generation, called direct Z-schemes, and have lost several 
of the drawbacks of their predecessors (redox mediated Z-schemes and all-solid-
state Z-schemes) such as backward reactions and light-shielding problems.

Various new heterojunctions and Z-schemes have been reported in the last 
years. Overall, a number of trends can be identified that also leave room for new 
approaches and ideas:

Nanoparticles, nanosheets, and other 0D, 1D, 2D, or 3D structures are commonly 
used in all kinds of photocatalysts and in (direct) Z-schemes. However, mesoporous 
Z-schemes are rarely reported. In some of these reports, the mesoporous structure 
is not even discussed or further investigated [159, 160]. High specific surface areas, 
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enhanced diffusion of reactants, and improved charge carrier transfer (for exam-
ple because of an “antenna mechanism” [39]) would make mesoporous Z-schemes 
promising photocatalysts. Obviously, one mesoporous semiconductor (PS  I or 
PS II) would not be capable of being in intimate contact with a bulk material since 
the contact area would be significantly reduced because of the pores. Two-dimen-
sional materials such as nanosheets might even block pores, which would take away 
the advantages of a mesoporous semiconductor. Therefore, careful material design 
of macroporous/mesoporous heterojunctions might be a way to partially maintain 
a porous structure and achieve sufficient contact between two semiconductors. 
Another approach would be core-shell Z-schemes with a porous or incomplete 
outer shell. This might be a promising strategy, especially for semiconductors in the 
core that are prone to corrosion or other effects.

The 2D/2D type Z-schemes are probably the most interesting trend in Z-scheme 
photocatalysis research. Nonetheless, their synthesis is challenging, and large-
scale synthesis protocols are lacking so far. Furthermore, 2D structures are mostly 
reserved to layered semiconductors. Effective synthetic methods need to be devel-
oped to produce 2D photocatalysts from non-layered semiconductors, as has been 
done for  SrTiO3 for example [161].

In general, intimate contact seems to be crucial for Z-scheme charge carrier trans-
port. Typical mechanical/physical methods, such as ball-milling, grinding, or sim-
ple mixing of the materials, are frequently used. However, composites assembled 
by these methods have no intimate interface and both semiconductors are easily 
detached from each other. Strong interaction is favoured by in-situ growth strategies, 
hydrothermal and solvothermal treatment, solid-state synthesis, ion-exchange, and 
electrospinning [77].

Interestingly, chemical deposition of a semiconductor was used to deliberately 
construct Z-schemes (g-C3N4/CdS) while photodeposition led to the formation of 
a type II heterojunction [95]. It is worth mentioning that the type II heterojunction 
exhibited higher photocatalytic activity. Deliberate construction of Z-schemes is 
also possible using photooxidation and photoreduction [96]. These techniques might 
be applicable to other semiconductors such as  CeO2 in case of photooxidation and a 
variety of metal sulphides for photoreduction.

The field of photocatalysis has experienced a revival of certain materials. Doped 
 SrTiO3, for example, was intensively studied for many years and was used in the 
probably most prominent example for a Z-scheme  (SrTiO3:La,Rh/Au/BiVO4:Mo) 
[157]. The question therefore arises as to the extent to which other semiconductors 
could be optimised for improved charge carrier transfer in Z-schemes and hetero-
junctions. Oxygen/sulphur vacancies and mid gap states have been used in several 
Z-schemes [58, 145, 162–164]. Intrinsic defects and doping strategies could be 
applied to other semiconductors to further improve charge carrier transport in direct 
Z-schemes.

Black phosphorous is another semiconductor that research has focused on 
recently. For example, a black/red phosphorus multiphase heterojunction has been 
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prepared and tested for water splitting [154, 155]. Furthermore, supported black 
phosphorus nanosheets as  H2-evolving photocatalyst achieved 5.4% energy conver-
sion efficiency, demonstrating the potential of black phosphorus-based materials 
[165].

Apart from improving existing Z-schemes by doping and new combinations of 
known semiconductors, new material classes have been introduced. Metal organic 
frameworks (MOFs) and more recently covalent organic frameworks (COFs) have 
been used in Z-scheme photocatalysts [104–106, 111, 151]. Other continuing trends 
are localised surface plasmon resonances (LSPR) and upconversion photolumines-
cent (UCPL) materials to improve the light absorption of photocatalysts in the vis-
ible and near IR range.

In summary, heterojunction and (direct) Z-scheme photocatalysts with multiple 
semiconductor combinations are still highly investigated in photocatalysis research 
for hydrogen generation, with different materials strategies addressing varying issues 
including light absorption over broad wavelength range and charge carrier separa-
tion. New types of materials classes such as MOFs and COF and 2D materials are 
included in heterojunctions and Z-schemes more frequently. Both remain extremely 
promising material designs and present unique advantages over single material pho-
tocatalysts for hydrogen generation; the recent trends and developments have been 
presented in this work. Although promising approaches such as the application of 
LSPR and UCPL materials as well as new material combinations, new syntheses, 
sophisticated morphologies, and improved doping strategies will inevitably make 
photocatalytic systems more complex, the increase in complexity is and will be the 
result of knowledge-based improvements [6] developing new and better absorber 
combinations for hydrogen generation, which might allow, one day, the large-scale 
production of green  H2 from photocatalytic water splitting.
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Appendix

Table 1  Recent heterojunction (red) and Z-scheme (blue) photocatalytic systems for  H2 evolution (light 
colour) or water splitting (dark colour), respectively
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Table 1  (continued)
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Table 1  (continued)
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