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A B S T R A C T

13C Metabolic Flux Analysis (13C-MFA) involves the quantification of isotopic enrichment in cellular metabolites
and fitting the resultant data to the metabolic network model of the organism. Coverage and resolution of the
resultant flux map depends on the total number of metabolites and fragments in which 13C enrichment can be
quantified accurately. Experimental techniques for tracking 13C enrichment are evolving rapidly and large vol-
umes of data are now routinely generated through the use of Liquid Chromatography coupled with High-
Resolution Mass Spectrometry (HR-LC/MS). Therefore, the current manuscript is focused on the challenges in
high-throughput analyses of such large datasets. Current 13C-MFA studies often have to rely on the targeted
quantification of a small subset of metabolites, thereby leaving a large fraction of the data unexplored. A number
of public domain software tools have been reported in recent years for the untargeted quantitation of isotopic
enrichment. However, the suitability of their application across diverse datasets has not been investigated. Here,
we test the software tools X13CMS, DynaMet, geoRge, and HiResTEC with three diverse datasets. The tools
provided a global, untargeted view of 13C enrichment in metabolites in all three datasets and a much-needed
automation in data analysis. Some inconsistencies were observed in results obtained from the different tools,
which could be partially ascribed to the lack of baseline separation and potential mass conflicts. After removing
the false positives manually, isotopic enrichment could be quantified reliably in a large repertoire of metabolites.
Of the software tools explored, geoRge and HiResTEC consistently performed well for the untargeted analysis of
all datasets tested.
1. Introduction

Metabolomic studies with stable isotopic tracers have made signifi-
cant contributions in furthering our understanding of cellular meta-
bolism. Based on the study objective, these can broadly be categorized as
(i) Qualitative, global metabolomics studies that aim to obtain binary
data on the presence/absence of metabolites, (ii) Quantitative metab-
olomics with the goal to achieve absolute or relative quantitation of a
large number of metabolites, (iii) Metabolic pathway analysis to discern
between alternative pathways and (iv) Quantitative, 13C Metabolic Flux
Analysis (13C-MFA). The requirements of accurate identification and
quantification of metabolites and their isotopologues become more and
more stringent as we go from the first to the fourth type of study. The
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knowledge gained through the study of metabolic fluxes is often critical
to the comprehensive understanding of the factors governing the phe-
nome of a biological system and for the construction of designer microbes
with applications in biotechnology (Wiechert, 2001) (Zamboni and
Sauer, 2009) (Young, 2014) (Jawed et al., 2019). The conventional,
stationary state 13C-MFA technique involves feeding cultures with
isotopically labeled substrate and quantification of the label incorpora-
tion in terminal metabolites such as the proteogenic amino acids at iso-
topic steady state (Alagesan et al., 2013). For the newer, non-stationary
13C MFA approach, the dynamics of incorporation of the isotopic label in
intermediate metabolites and their fragments need to be monitored
(Young et al., 2011) (Hendry et al., 2017) (Prasannan et al., 2019).
Therefore, quantification of 13C enrichment in a wider array of metab-
olites and their fragments would facilitate the generation of
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Abbreviations

13C MFA 13Carbon Metabolic Flux Analysis
MID Mass Isotopologue Distribution
HR-LC/MS Liquid Chromatography coupled to High-Resolution

Mass Spectrometry
RT Retention Time
m/z Mass to Charge ratio
3-PGA 3-Phosphoglyceric acid
ADP Adenosine diphosphate
ADP-G ADP-Glucose
ATP Adenosine triphosphate
G3P Glyceraldehyde-3-phosphate
G6P Glucose-6-phosphate
PEP Phosphoenolpyruvate
R5P Ribulose 5-Phosphate
S7P Sedoheptulose-7-phosphate
UDP-G Uridine diphosphate-Glucose
RMSD Root Mean Standard Deviation
XIC Extracted Ion Chromatogram
MS1 & MS2 Stages of data generation in tandem mass

spectrometry
GUI Graphical User Interface
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high-resolution flux maps (Choi and Antoniewicz, 2011) (Choi and
Antoniewicz, 2019). Until recently, non-stationary 13C MFA has been
carried out with dynamic enrichment data for a handful of central carbon
metabolites. However, there is a push towards obtaining labeling data for
a larger number of intermediate metabolites (Jaiswal et al., 2018).
Fluxomics or 13C-MFA conducted on a global metabolome in a high
throughput manner, would therefore be a valuable tool to complement
data available from other -omics studies (Hoffmann et al., 2018).

Liquid Chromatography coupled with high resolution Mass Spec-
trometry (HR-LC/MS) allows the collection of a large amount of spectral
data for each sample, and has therefore emerged as a powerful tool for
metabolomics studies (Spicer et al., 2017). Such data is considered to be
suitable for untargeted analysis of hundreds of metabolites (Gowda et al.,
2014). Several software tools such as XCMS online (TautenhahnRalf.
et al., 2013) and MetaboAnalyst (Xia et al., 2009) provide automation in
peak picking, comparison of metabolite intensities across samples, sta-
tistical tests and connection with other metadata, such as metabolic
pathways. Much of this untargeted analysis is often limited to mono-
isotopic peaks. HR-LC/MS data from a typical 13C labeling experiment
has information on the 13C label incorporation in a wide range of me-
tabolites. Suitable software tools that can perform an untargeted analysis
to capture these labeled metabolites have been lacking. Because of this,
such data is typically analysed in a targeted manner using vendor pro-
vided licensed software packages accompanying the LC-MS instrument
used. This limits the coverage of metabolites and requires prior knowl-
edge of their chromatographic retention times (RT) and mass to charge
ratio (m/z) values. However, several freely available software tools have
recently been developed to provide automation in detection and quan-
tification of isotopologues of cellular metabolites in an untargeted
manner in 13C labeled datasets. These include X13CMS (Patti and CMS,
2014), geoRge (Capellades et al., 2016), DynaMet (Kiefer et al., 2015),
mzmatch-ISO (Chokkathukalam et al., 2013), MetExtract II (Bueschl
et al., 2017), and HiResTEC (Hoffmann et al., 2018). These tools differ in
algorithms used for the key steps of analysis such as peak picking,
grouping of potential isotopologues, and statistical evaluation of the
data. Together, these contribute towards a software’s ability to detect the
maximum number of true features while minimizing false positives.
These tools have been evaluated individually with datasets generated by
the developers of the respective software tools. Each of these software
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claim to provide specific improvements to the quality and reliability of
both targeted and untargeted analyses. However, the suitability of these
software for the analysis of datasets generated in different laboratories
using diverse biological samples and data acquisition platforms remains
largely unexplored.

All six freely available software tools were initially explored. How-
ever, due to either technical difficulties in installation (mzMatch-ISO), or
the infeasibility of their use with the selected datasets (MetExtract II),
some tools were left out from the study design. In this study, we have
therefore evaluated the applicability of four selected software tools, viz.,
X13CMS, geoRge, HiResTEC and DynaMet towards the untargeted
quantification of 13C enrichment in three different biological datasets,
each comprising of a time-course 13C labeling experiment. We find that
each of these software tools is indeed able to detect and quantify a large
number of chromatographic features that accumulate the 13C label,
including a substantial number of new features. We have attempted to
provide an independent assessment of these software tools from an end
user’s perspective. We believe that our results and recommendations will
be useful not only to potential users but also future developers of such
software tools.

2. Experimental section

2.1. Materials

All chemicals used were purchased from Sigma Aldrich (St. Louis,
MO) and Merck (Burlington, MA).

2.2. Growth, 13C labeling and metabolite extraction for Synechococcus sp
PCC 7002

The cyanobacterial strain Synechococcus sp. PCC 7002 (henceforth
referred to as Synechococcus sp.) was cultured as previously reported
(Hendry et al., 2017). The samples were collected and quenched at 0, 60,
120, 180, 240, 300, 900 and 1800 s following the introduction of 13C
sodium bicarbonate. However, for targeted analysis, time points up to
240s were used in order to capture the transient labeling in intermediate
metabolites. The samples were quickly filtered and metabolites extracted
from the cells using the method previously described (Hendry et al.,
2017).

2.3. Data acquisition and analysis of datasets

2.3.1. Synechococcus sp. dataset
This dataset was acquired using UHPLC (Nexera LC-30 AD, Shimadzu,

Kyoto, Japan) coupled with a Triple TOF 5600 þ mass spectrophotom-
eter (SCIEX, Framingham, MA). This dataset has been submitted to
Metabolomics Workbench (https://doi.org/10.21228/M87384). Chro-
matographic separation was achieved by injecting 10 μL sample on a C-
18 synergi-hydro RP column (Phenomenex, Torrance, CA) as described
previously using an ion-pairing reagent (Lu et al., 2010). The mobile
phases used were, solvent A: 10 mM tributylamine and 11mM acetic acid
and solvent B: methanol. The gradient programwas as follows, t¼ 0 min,
0% B; t ¼ 2 min, 0% B; t ¼ 8 min, 35% B; t ¼ 10.5 min, 35% B; t ¼ 15.5
min, 90% B; t¼ 20.5 min, 90% B; t¼ 22 min, 0% B, t¼ 30 min, 0% B at a
flow rate of 0.3 mL/min and column temperature 25 �C (Prasannan et al.,
2018). The Synechococcus sp dataset comprised of two technical repli-
cates (n ¼ 2). MS data was collected in negative ion mode with an ion
spray voltage of 4500 V and interface heater temperature of 450 �C. Both
ion source gases GS1 (gas 1) and GS2 (gas 2) were set at 40 psi while the
curtain gas was set at 35 psi. Untargeted analysis was performed using
geoRge (Capellades et al., 2016), DynaMet (Kiefer et al., 2015) and
HiResTEC (Hoffmann et al., 2018) while a proprietary software, Multi-
QuantTM 3.0.1 (SCIEX, Framingham, MA), was used for the targeted
analysis. Peak areas for the monoisotopic peaks and the isotopologues
were integrated for the respective mean m/z values and m/z tolerance of
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�0.05 Da and retention time window of �30 s. The options for Gaussian
smoothing and baseline subtraction were enabled. The fractions for the
isotopologues were calculated from the respective peak areas obtained at
a specific time point.

Raw files for this dataset was available in .wiff and .wiff.scan formats
which were then converted to .mzXML format using ProteoWizard
(version 3.0.10875) (Kessner et al., 2008). The parameter settings for
conversion included the default signal to noise ratio and minimum peak
spacing (both set as 0.1) with the peak picking filter set for continuous
wavelet transform algorithm at MS1 level. These converted .mzXML files
were then used for analysis with X13CMS, geoRge, DynaMet, and
HiResTEC.

2.3.2. Bacillus methanolicus dataset
This dataset consists of 13C labeled data from the model strain Bacillus

methanolicus MGA3 (henceforth referred to as Methanolicus), grown in
the presence of 13C methanol (Kiefer et al., 2015). It included two bio-
logical replicates, (.mzML files available at the MetaboLights repository,
study ID – MTBLS228). Metabolites were extracted from samples
quenched at 0, 5, 10, 20, 30, 60, 120, 300, and 600s time points after the
introduction of the 13C tracer. For this dataset X13CMS (Patti and CMS,
2014), geoRge (Capellades et al., 2016) and HiResTEC (Hoffmann et al.,
2018) were used as the test software for comparative analysis with the
reference software, DynaMet (Kiefer et al., 2015).

2.3.3. Human-stem-cell-derived reticulocytes dataset
This dataset was generated to study the metabolic networks active in

reticulocytes, which would eventually mature to form erythrocytes
(Srivastava et al., 2017). It contains data from the LC/MS analysis of
metabolite extracts of labeled erythrocytes and reticulocytes. This dataset
is available on the Metabolomics Workbench repository (Project ID –

PR000315, Study ID – ST000403). The details of the chromatography
method and MS analysis have been described in detail (Srivastava et al.,
2017). Raw files in the repository include replicate data (n ¼ 3) for
samples labeled with 50% uniformly labeled 13C glucose. Two time
points were considered (1 and 20 h), and data was acquired in polarity
switching mode (alternative positive ion and negative ion mode-based
acquisition). The data for reticulocytes was downloaded and converted
to .mzXML format using ProteoWizard (version 3.0.10875) (Kessner
et al., 2008). As these files contained information from both positive and
negative ion modes, we processed the .mzXML conversion by setting a
negative polarity filter through the command line. This allowed segre-
gation of the negative ion data in converted files. This was necessary as a
direct conversion without setting the polarity filter affected analysis.
Apart from the raw data files, a complete list of features detected in
untargeted analysis using mzMatch-ISO (Chokkathukalam et al., 2013)
(reference software for this dataset) is available together with the mass
isotopic distribution for a few metabolites provided as supplementary
information (Srivastava et al., 2017). This information helped to create a
benchmarked list for comparison, when the dataset was processed with
the test software, X13CMS (Patti and CMS, 2014), geoRge (Capellades
et al., 2016) and HiResTEC (Hoffmann et al., 2018).

2.4. Installation and usage of software packages

The software tools X13CMS (Patti and CMS, 2014), geoRge (Capel-
lades et al., 2016), DynaMet (Kiefer et al., 2015), and HiResTEC (Hoff-
mann et al., 2018) were installed using guidelines provided by their
respective developers. R based packages (X13CMS, geoRge, and HiR-
esTEC) required the prior installation of the XCMS package (Smith et al.,
2006) for pre-processing of data. DynaMet was the only software that
provided a graphical user interface for the input of parameters while
others required software specific scripts. For each software tool, param-
eters used by their respective developers were used as a default for the
initial untargeted analysis. Parameters were subsequently optimized to
capture the maximum number of features possible, through a manual
3

inspection of the feature list for the presence of targeted metabolites and
their isotopologues. Mass Isotopologue Distribution (MID) profiles were
generated manually for each feature after exporting data regarding the
intensities/peak areas of its isotopologues onto an xlsx spreadsheet. For
the visual estimation of peak quality, Extracted Ion Chromatogram (XIC)
of each feature was generated using XCMS with a tolerance of 0.05 Da
and a retention time range of 4 min.

3. Results and discussion

3.1. Study design

The purpose of this study was manifold: (i) to test the ability of freely
available software in detecting isotopic enrichment in metabolites in an
untargeted manner, (ii) compare results from different software, and (iii)
assess the ease of use of these tools from the user’s perspective. The
workflow adopted for this study has been summarized in Fig. 1. We chose
to test the software tools, X13CMS (Patti and CMS, 2014), geoRge
(Capellades et al., 2016), DynaMet (Kiefer et al., 2015) and HiResTEC
(Hoffmann et al., 2018) to quantify 13C enrichment in intracellular me-
tabolites from HR-LC/MS data derived from three independent studies
that were diverse in the biological systems, LCmethods andMS hardware
used (Table S1). Despite the applicability of these software tools for
13C-MFA, very few cited studies could be found that have implemented
them for this purpose.

Three separate 13C labeled LC/MS datasets were selected, two avail-
able in the public domain (Reticulocytes (Srivastava et al., 2017) and
Methanolicus (Kiefer et al., 2015)) and one generated in-house (Syn-
echococcus sp.). For the public domain datasets, a curated list of the m/z
features that accumulate isotopic 13C was available from the respective
publications. From this, metabolites pertaining to the central carbon
pathway were selected. Reference software for a particular dataset
detected a subset of these metabolites (referred to as the benchmark list)
and were used to compare the output from the ‘test’ software. For
example, the ‘Reticulocytes dataset’ was reanalyzed using the test soft-
ware tools X13CMS (Patti and CMS, 2014), geoRge (Capellades et al.,
2016) and HiResTEC (Hoffmann et al., 2018). The data was then
compared with the results obtained by the authors of the study through
mzMatch-ISO (Chokkathukalam et al., 2013). DynaMet could not be used
here as this tool incorporates a kinetic model and requires a detailed time
course study. On the other hand, the ‘Methanolicus dataset’ was rean-
alyzed using X13CMS, geoRge and HiResTEC, and subsequently
compared with data obtained using DynaMet. In case of the Synecho-
coccus sp. data, the analyses by X13CMS, geoRge, DynaMet, and HiR-
esTEC were compared to the vendor provided software, MultiQuant. This
reference software could only be applied towards targeted comparisons
as it does not support untargeted analysis. In this study, coverage of
metabolites in the benchmarked lists for each dataset have been used
(true positives) to provide a quantitative assessment of the performance
of each software in untargeted analysis.

3.2. Overview of software tools used in this study

A number of software are currently available that claim to automate
untargeted detection of isotopic label incorporation from HR-LC/MS
data. Of the ones that are a part of this study, some key features such
as post data acquisition workflows, statistical tests used, and ease of data
visualization have been summarized in Table 1. These features affected
critical aspects of analysis such as detection of features and their iso-
topologues, MID patterns, number of false positives and redundancies
which in turn influenced the software performance across datasets. For
instance, X13CMS (Patti and CMS, 2014), geoRge (Capellades et al.,
2016), and HiResTEC (Hoffmann et al., 2018) use XCMS (Smith et al.,
2006) to detect metabolite peaks and to perform retention time align-
ment. However, labeled feature detection in geoRge uses a comparison of
potential isotopic peaks between labeled and unlabeled samples while



Fig. 1. Workflow used in this study. Three datasets
were selected, two published (‘Methanolicus’ and
‘Reticulocytes’) and one generated in-house (Syn-
echococcus sp.). Software tools DynaMet, X13CMS,
geoRge and HiResTEC were used for untargeted MID
analysis of the 3 datasets and the total features
detected were compared between them. A targeted
MID analysis was also carried out with all three
datasets, using benchmarked metabolites obtained
with the ‘reference’ software (DynaMet for the
Methanolicus dataset and mzMatch-ISO for the
Reticulocyte dataset) and subjected to reanalysis by
one or more ‘test’ software. In case of the in-house
dataset, the vendor provided software tool Multi-
QuantTM was considered the ‘reference’.
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X13CMS looks for features separated by m/z values corresponding to
tracer mass difference within the same retention time window, in an
iterative manner. As a result, geoRge yields overall fewer features and
also a smaller number of false positives compared to X13CMS. In this
study, features showing inconsistencies in labeling patterns or an unusual
number of isotopologues have been considered as false positives. HiR-
esTEC provides a further improvement, by reducing the redundancies
and false positives through the use of a deconvolution algorithm that
accesses the raw data and uses automated quality control steps to filter
out the noise. In this study, the performance of DynaMet showed the
largest variance compared to other test software possibly because of its
distinctly different pre- and post-data processing algorithms. DynaMet
uses the FeatureFinderMetabo application from OpenMS (Kenar et al.,
2014) for the detection of peaks and m/z traces while for postprocessing,
the “isotope_regrouper” algorithm is implemented (Kiefer et al., 2015).
Additionally, DynaMet also uses first order fitting of labeling profiles to
determine the kinetics. This allows the user to identify the compounds
4

based onm/z value, through links to the KEGG database. It should also be
noted that X13CMS can readily handle data from only two time points for
analysis because of intrinsic limitations of this software. Therefore, when
analysing multi-time point data used in this study (Methanolicus and
Synechococcus sp. datasets), we have analysed only the initial and final
time points using this software.

Data output formats varied between the tested software. X13CMS
generates a file in the pdf format which shows the 13C enrichment in all
detected features. Numerical values for the intensities of the same fea-
tures are provided separately in an Excel spreadsheet. geoRge, on the
other hand, provides a single Excel spreadsheet showing the intensity
data of all detected features, from which subsequent MIDs and 13C
enrichment can be quantitated. HiResTEC provides the added advantage
of Quality Control (QC) plots as a pdf file for visual examination of data
quality and also allows correction of MIDs for natural abundance.
DynaMet also provides natural abundance correction in MIDs and allows
visualization of the labeling patterns of all detected feature as heat maps.



Table 1
Comparison of features of selected freely available software tools for processing high resolution mass spectrometry data for the untargeted quantification of 13C
enrichment in metabolites.

Feature X13CMSa geoRgea HiResTECa DynaMeta mzMatch-ISOa

Platform R R R Python R
Pre-processing XCMS XCMS XCMS OpenMS XCMS
Statistical Analysisb Y Y Y N Y
Time course kinetics N Y Y Y Y
Metabolite Identificationc N Y N Y Y
MID Correction Y N N Y N
Ease of use
GUI N N N Y N
Peak evaluationd Y N Y Y Y
Reliance on previous Knowledge Y Y Y Y Y
Automated Data Visualizatione N N Y Y Y
Output Format .xslx, pdf .xslx .xslx, pdf Python table file .tsv/.pdf

a Y and N in the table indicate whether the feature is available or not available, respectively.
b Used for labeled vs unlabeled peak detection.
c geoRge and mzMatchISO provide limited in-built data for metabolite identification at MS1 level. DynaMet allows identification based on KEGG database.
d The Peak evaluation capability such as extracted ion chromatograph and peak areas in the software panel.
e Data visualization in terms of 13C enrichment plots and Mass isotopologue distribution plots.
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3.3. Parameter optimization

When analysing the different datasets used in this study, finding
optimal parameters for each individual software was of critical
Fig. 2. Flow chart representing the strategy used fo

5

importance. The parameters selected influenced the total number of
metabolites and their isotopologues detected with each software. When
optimizing parameters for a particular software, quantitative factors such
as the total number of detected features and extent of true feature
r optimizing parameters for the datasets used.



Table 3
Total number of features obtained from an untargeted analysis of the three
datasets and percentage of features detected from the targeted analysis of
benchmark metabolites.

Total number of features in untargeted analysis

Software tool Datasets

Synechococcus sp. Methanolicus Reticulocytes

geoRge 310 391 148
DynaMet 71 293 Not Useda

X13CMS 561b 681b 193
HiResTEC 286 100 28

True positives (%) detected in targeted analysisc

Software tool Datasets
Synechococcus sp. Methanolicus Reticulocytes

geoRge 61.1 68 33.3
DynaMet 22.2 100 Not Useda

X13CMS 66.6 81 66.6
HiResTEC 72 81 13.3

a DynaMet requires more than two time points for the analysis.
b Only initial and final time points have been used for the analysis as X13CMS

can handle only two samples at a time.
c True positives based on benchmarked list of metabolites.
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detection are often considered. In this study, the focus was on the
untargeted analysis of three individual datasets and expectedly a major
challenge faced was the absence of a list of true features with which to
carry out quantitative evaluation such as Receiver Operator Character-
istic (ROC). Such analyses would normally help in determining true and
false positive rates for sensitivity and specificity of feature detection
respectively. In lieu of this, a targeted approach was used to provide a
quantitative framework for tuning parameters for each individual anal-
ysis (Fig. 2). First, a list of targeted set of metabolites was created for
every individual dataset. This list was then used to evaluate the output
from an individual software after different parameters were applied. For
a particular dataset, the parameter settings used by the authors of each
individual software was used as a starting point (default settings). When
these were not sufficient to detect a majority of the benchmarked me-
tabolites, a range of other values were tried till no further improvement
in coverage could be achieved. Parameters for a test software was
considered optimized when it ensured maximal coverage of the bench-
marked list of metabolites and their isotopologues. These parameters
were then subsequently applied to untargeted analysis using the same
software. This general strategy could be applied by new users of these
software tools and applied to any selected dataset.

The different MS platforms used for data acquisition often cause in-
dividual datasets to have their own mass errors and RT shifts. This is
often due to several unavoidable reasons such as differences in the MS
settings used during data acquisition, matrix effects, and the instrument
drift. These have to be accounted for, requiring internal calibrations for
individual datasets. This often necessitates the use of different parame-
ters when analysed with different software. This can be seen in the list of
optimized parameters used for each software of this study in Table 2.
Also, the inherent algorithmic differences of each software made it
imperative to fine-tune parameters for each individual software tool
within a single dataset. The software tools geoRge, X13CMS and HiR-
esTEC use an XCMS generated feature list, hence the XCMS parameters
such as mass error (ppm) and minfrac were first fine-tuned to improve
peak picking (Kenar et al., 2014). This led to an increase in the number of
features and their isotopologues detected from all datasets. After opti-
mizing the parameters of the pre-processing software, parameters spe-
cific to the software tools needed to be additionally optimized. In the case
of geoRge, tuning of software specific parameters like basepeak mass
error (ppm) and basepeak min intensity led to a further increase in total
number of features detected. In DynaMet, tuning of the parameters did
Table 2
Optimized parameters used for analysis using geoRge, X13CMS DynaMet, and HiResT

Parameters S

Pre-processing XCMS Mass error 2
mzwid 0
minfrac 0

geoRge fc threshold 1
p-value threshold 0
PuInc limit 5
Basepeak mass error 2
Basepeak min intensity 1

X13CMS RT win 1
ppm 2

DynaMet maxMzDifferencePairfinder 0
mz_diff 0
rt_diff 1
common_noise_threshold_int 6
common_chrom_peak_snr 2
common_chrom_fwhm 2
mtd_mass_error_ppm 5
isolation width 0
max_nrmse 0
maxMzDifferencePairfinder 0

HiResTEC dmz 0
dRT 5

a DynaMet was not used for the reticulocuytes dataset as the software includes a k
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not show improvement for Synechococcus sp. dataset.
3.4. Qualitative comparison of results from different tools

After parameter optimization, we examined the number of features
detected by a given software tool in an untargeted manner (Table 3) and
the overlap of features between the different tools used for particular
datasets (Fig. 3). Here, a feature implies an unique m/z in which 13C
enrichment has been detected. It should be noted that the number of
detected isotopologues or the MIDs obtained from the different software
were not compared at this stage of analysis. In general, the tools detected
a large number of features although the overlap between any two soft-
ware tools was always less than 50% for the detected features. Among the
tools, geoRge (Capellades et al., 2016) detected the highest number of
features for the Methanolicus (Kiefer et al., 2015) and Synechococcus sp.
datasets. Although the number of features detected by X13CMS was
greater than geoRge for these datasets, it should be noted that this
analysis was the output of only two time points (initial and final).
EC.

ynechococcus sp. Reticulocytes Methanolicus

5 5 5
.05 0.015 0.015
.1 0.1 0.4
.5 1.5 1.5
.05 0.05 0.05
00 4000 500
5 15 15
000 2000 1000
0 10 10
0 15 10
.02 Not useda 0.01
.02 Not useda 0.005
00 Not useda 100
00 Not useda 1000

Not useda 3
5 Not useda 25

Not useda 15
.01 Not useda 0.003
.5 Not useda 0.8
.02 Not useda 0.01
.0125 0.0125 0.0125

5 5

inetic modeling step that requires a time course study.



Fig. 3. Comparison of the total number of features detected in an untargeted analysis of a given dataset by different software tools. Venn diagrams for (A)
Methanolicus data, (B) Reticulocytes data and (C) Synechococcus sp. data.

Fig. 4. Workflow for the untargeted analysis of the Synechococcus sp.
dataset using geoRge. False positives were removed on the basis of number of
isotopologues detected for each feature and their respective labeling patterns.
Satisfactory labeling refers to a gradual progression in the 13C enrichment while
unsatisfactory labeling refers to unexpected progressions in 13C enrichment,
conflicts in masses, and more than expected number of isotopologues.
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For the Methanolicus dataset, out of 293 labeled features obtained
through the reference software DynaMet, about 44% could also be
detected through geoRge while HiResTEC (Hoffmann et al., 2018)
detected approximately 15% of the features (Fig. 3A). X13CMS on the
other hand, showed an overlap of ~58%when considering just the initial
and final time points. For the Reticulocytes dataset, the reference soft-
ware mzMatch-ISO detected 538 features. Of these, 80 features (~8%)
were common with X13CMS and only 17 features (~3%) were common
with geoRge (Fig. 3B). HiResTEC however detected very few features
from this dataset (28) with minimal overlap.In terms of features detected,
no single tool performed the same across the datasets. Further, no two
tools showed significant overlap between detected features in a partic-
ular dataset.

In the Synechococcus sp. dataset, the test software X13CMS, geoRge,
DynaMet, and HiResTEC were compared amongst themselves (Fig. 3C).
The tool geoRge, provided 310 unique features with label incorporation,
after elimination of obvious redundancies. Upon further removal of all
probable false positives, only 46 features remained which showed
satisfactory labeling patterns (Fig. S1, Table S2). The number of iso-
topologues and their Mass Isotopologue Distributions (MIDs) were taken
into account for manual removal of probable false positives (Fig. 4). Of
the features that were eliminated in this process, some showed the
occurrence of only a single isotopologue possibly due to the natural
abundance of 13C. Few others lacked a gradual progression in 13C
enrichment over time. Such unexpected labeling patterns could be the
result of potential artifacts, conflicts in isotopologues, and degeneracies
(Table S3).

HiResTEC showed a similar range of feature detection for this dataset,
providing 286 features with only ~15% of the features overlapping with
geoRge. On the other hand, DynaMet which only allowed replicates to be
analysed one at a time yielded varying number of features for each
replicate revealing their inherent non-homogeneity. After the removal of
redundant features, and merger of data from both replicates, DynaMet
revealed 71 features in total. This was significantly less than geoRge and
HiResTEC (Fig. 3C). Additionally, very few features showed satisfactory
labeling patterns. In our experience, geoRge and HiResTEC performed
better than other software tools in untargeted analyses of time-course
datasets. X13CMS detected a total of 561 labeling features showing
around 20% overlap with geoRge and HiResTEC. However, since only
initial and final time points were used for this analysis, the detected
features cannot be reliably compared with the other tools.
7

3.5. Comparison of MID from different tools

For a software tool to be of use in 13C MFA, it should be able to
reliably detect all the isotopologues for a detected metabolite and accu-
rately obtain their MID values. A quantitative comparison of MID profiles
was performed for 23 metabolites of interest belonging to the central
carbon pathway (Table S4). Of these, MIDs were available for 18 me-
tabolites using MultiQuantTM on the Synechococcus sp. dataset, 16 me-
tabolites using DynaMet on the Methanolicus dataset and 15 metabolites
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with the mzMatch-ISO-analysed reticulocytes dataset. This was then used
as the gold standard to evaluate the test software for each dataset
(Tables S5–S7) and Root Mean Square Deviation (RMSD) was calculated
as a measure of accuracy of MIDs obtained using different tested software
(Fig. 5, Table S8). RMSD was calculated for the MID values of the
detected metabolites using equation (1). For the Synechococcus sp.
dataset, DynaMet detected only 4 of the 18 metabolites that were
quantified with the reference software MultiQuant and hence DynaMet
was not included for comparison. For all three datasets, a greater dis-
tribution of RMSD values was observed for X13CMS followed by geoRge
(Fig. 5).

RMSD¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

j¼1

Pn
i¼0

�
yij � xijÞ2

m� n

s
(1)

where x & y are the fractional abundances for an isotopologue provided
by the reference and test software respectively, and m & n are the total
number of time points and total number of isotopologues of a particular
metabolite, respectively.

Based on the trends observed from the analysis of the three datasets,
we categorized the detected features into two groups; group 1 features,
which show a close match in the MIDs between reference and test soft-
ware and group 2 features that show non-detection of some iso-
topologues or mismatches in MIDs. We could ascribe some of the
deviations in group 2 features to the poor chromatographic separation,
low abundance or variation in retention time (RT). A visual inspection of
the peak quality was made for each metabolite during analysis.

3.5.1. Group 1: Metabolites for which the quantitation of MIDs correlated
between the reference software and at least one test software

For the metabolites used for comparison within a particular dataset,
many showed similar labeling patterns between the reference and test
software. For instance, for the Synechococcus sp. dataset, 3-Phosphoglyce-
ric acid (3-PGA) (Fig. 6, A–C) and Glucose-6-phosphate (G6P) (Fig. S2, G-
I) show a goodmatch in labeling profiles across all tested software. Visual
examination of the chromatographic data shows that many of these
metabolites have good quality peaks as seen from the Extracted Ion
Chromatogram (XIC) of 3-PGA (Fig. 6, D). A similar example can be seen
in the ‘Methanolicus’ dataset with Uridine di-phosphate glucose (UDP-
G), where a good peak shape correlates with well-matched MIDs between
the reference and test software (Fig. 7, E–H). Other metabolites in this
category include Phosphoenolpyruvate (PEP) despite the presence of a
second closely-placed peak in the chromatogram (Fig. 7, A–D). Within
the ‘Reticulocyte’ dataset, similar MID patterns across software are seen
in the case of Citrate (Fig. 8, A) showing good peak quality for both time
points (Fig. 8, D & G) and 3-PGA (Figs. S3 and C).

Amino acids such as tyrosine and glutamate, are often found to have a
lower enrichment of the label in 13C samples because they are relatively
farther away from the main node of label incorporation in the metabolic
8

network. However, although both could be detected from the Synecho-
coccus sp. dataset by geoRge and HiResTEC, the MIDs correlated with
MultiQuant only in the case of tyrosine (Fig. 6, E–G) and not glutamate
(Fig. S2, Y-AA). The peak quality of tyrosine was found to be distinctly
better (Fig. 6, H) than that of glutamate (data not shown) suggesting that
data quality might have had a role to play in this deviation.

3.5.2. Group 2: Metabolites which could not be reliably detected or had non-
correlated MIDs between reference and a majority of the test software

For each dataset used in this study, test software led to non-detection
of some of the isotopologues or mismatched MID patterns for a signifi-
cant number of the metabolites with respect to the reference software.
Since geoRge was the only test software tool that could be used reliably
across all datasets, we evaluated the percentage of its detected metabo-
lites that showed a strong MID correlation with the reference software of
each dataset. For instance, only 50% of the detected metabolites showed
a correlation with the MIDs generated with MultiQuant for the Syn-
echococcus sp. dataset. In case of Methanolicus and Reticulocytes,
correlated MIDs could be seen for only 7% and 20% of the metabolites,
respectively. It appears that the quality of the chromatographic peak
(peak shape, intensity, shoulder/split peaks) and other qualitative as-
pects of the data such as mass conflicts, homogeneity among replicates
may adversely affect accurate calculation of MIDs.

The concurrence of poor peak quality with non-correlated MID pro-
files, was seen for several metabolites in all three datasets. For instance,
for Sedoheptulose-7-Phosphate (S7P) a low intensity, split peak is seen
for the Synechococcus sp. dataset (Fig. 6, I–L). Spilt peaks can often be
erroneously integrated, a possible reason for the mismatch seen with the
reference MID profile. For the Reticulocytes dataset, UDP-G showed a
poor peak quality across replicates while split peaks were noticed in
glucose (Fig. S4). These factors might have contributed to the mis-
matched MID profiles seen for these metabolites.

Apart from the non-correlated MIDs, certain metabolites of interest
were completely missed by the test software. Examples of this include
Aspartate (Fig. 6, M–O) in Synechococcus sp. dataset (non-detection by
geoRge), Glyceraldehyde-3-Phosphate (G3P) in the reticulocytes dataset
(non-detection by both X13CMS and geoRge, Fig. 8, C, F, I), and Citrate
for the Methanolicus dataset (non-detection by geoRge, Fig. 7, M–P). The
issue of non-detection is commonly encountered when using geoRge,
even if the peak quality is uncompromised. This could be attributed to
lack of replicates (Ribulose-5-Phosphate, Fig. S5 D-F), lack of homoge-
neity amongst replicates (ADP: Fig. S5, M-O and 3-PGA: Fig. S5, AB AD)
for the Methanolicus dataset and PEP (Fig. S3, H) in the Reticulocytes
dataset or insufficient labeling (Malate in the Reticulocytes dataset,
Fig. 8, B, E and H).

3.5.3. User’s perspective on ease of use of the software
At the outset, each of the software tools used in this study imposed a

substantial learning curve on the user. This included the need for
Fig. 5. Comparison of quantitated MIDs
for benchmarked metabolites between
different test software using Root Mean
Square Deviation (RMSD). A.) The RMSD
values for quantitated MIDs of benchmarked
metabolites was calculated for ‘Re-
ticulocytes’ dataset using the test software
X13CMS and geoRge and MIDs obtained from
mzMatch-ISO were considered as the refer-
ence. B.) The RMSD values for MIDs quanti-
tated using test software X13CMS, geoRge
and HiResTEC for ‘Methanolicus’ dataset in
comparison to DynaMet as reference C.) The
RMSD values for MIDs quantitated using
X13CMS, geoRge, and HiResTEC for the
Synechococcus sp. dataset in comparison to
MultiQuant (reference).



Fig. 6. Comparison of the dynamic labeling patterns of selected metabolites 3-PGA, Tyrosine, S7P and Aspartate for the Synechococcus sp. dataset. These
metabolites were identified and their MIDs quantitated using MultiQuant. The raw data was re-analysed using geoRge and HiResTEC. The XICs of all the relevant
isotopologues of the metabolite for the t ¼ 0 min timepoint (the unlabeled sample), are shown to assess the peak quality and potential conflicts with isotopologues.
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navigation through the parameters and the vocabulary accompanying
each software package. The optimization of parameters for automated
analysis required multiple trials and manual checks. Apart from the
extensive parameter tuning required, the dependence on the number of
replicates used, as well as quality of chromatograms in the raw data
affected downstream processing. To assess the ease-of-use of the software
tools from the perspective of a new user, the following were considered:
(i) Installation and operation (ii) Data input format (iii) Data output
formats and (iv) Visualization of results. Some prior knowledge of soft-
ware platforms and programming languages could help the first-time use
of these software tools. X13CMS (Patti and CMS, 2014), geoRge (Capel-
lades et al., 2016) and HiResTEC (Hoffmann et al., 2018) are R-based
packages and also need the R-based XCMS package (Smith et al., 2006)
for pre-processing. It should be noted that XCMS Online (Tau-
tenhahnRalf. et al., 2013), a widely used web-based package cannot be
implemented for this set of software tools. Preliminary knowledge of R is
required for the installation and usage of these packages for data analysis.
Likewise, basic knowledge of Python is required while using DynaMet.

All the software tools accept data in the open formats of .mzXML or
.mzML files. Raw HR LC/MS data can be easily converted to this format
using ProteoWizard, which provides a user-friendly graphical interface.
On the other hand, output of data from the test software are in different
forms. geoRge provides the intensities of isotopologues for all features
9

detected in all the samples at once, in the form of an Excel spreadsheet.
This saves time while computing MIDs for eventual use in 13C-MFA. In
case of DynaMet and HiResTEC, this information needs to be exported
individually for each detected feature thereby making this process time-
consuming. In terms of visualization of results, DynaMet does provide a
representation of MID profiles as heat maps, a very useful tool for the
quick visualization of labeling profiles. The user-friendly graphical
interface of DynaMet also helps in the easy input of parameters and other
operations. Likewise, X13CMS and HiResTEC provide 13C enrichment
plots for detected features. Some software tools like HiResTEC, and
DynaMet allow the user to visualize peak integration. This helps in the
assessment of peak quality for individual detected features.

3.5.4. Recommendations for new users and future software developers
For new users, selection of any one of the tested software tools will

depend on the overall objective and experimental design of their studies.
In labeling experiments, the number of time points being considered will
significantly influence software choice. For instance, X13CMS can be used
for experiments where only two time points are considered (unlabeled
and labeled). On the other hand, geoRge, DynaMet and HiResTEC can be
used for time-course experiments that aim to capture transient labeling
for studies aimed at metabolic flux analysis. Furthermore, X13CMS im-
plements statistics at a later stage of processing compared to geoRge and



Fig. 7. Comparison of the experimentally measured MIDs of PEP, UDP-G, S7P and citric acid which were obtained through the targeted analysis of the
‘Methanolicus’ dataset. The data for DynaMet has been taken from (Kiefer et al., 2015) and treated as reference software. The raw data was reanalyzed using geoRge
and HiResTEC. The XICs of all the relevant isotopologues of the metabolite for the t ¼ 0 min timepoint (the unlabeled sample), are shown to assess the peak quality and
potential conflicts with isotopologues. The arrow indicates the peak for PEP.
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HiResTEC and this may affect the quality of results (Capellades et al.,
2016). Annotation of the features detected through untargeted metab-
olomics is often a challenge. While several stand-alone tools are available
that can perform metabolite identification like MS-DIAL (Tsugawa et al.,
2015) and MetDIA (Li et al., 2016), geoRge and DynaMet can provide
putative identification of labeled features through m/z matches with the
Human Metabolome Database (HMDB) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) database respectively. Additionally, geoRge also
allows the use of custom libraries in place of HMDB. Note that this
identification is based on MS1 matches and needs to be validated by
annotation with MS2 data by using other software.

For any selected tool, optimization of parameters is a key step to
ensure the reliable detection of features in an untargeted analysis. As
shown in this study, a targeted validation using a list of benchmarked
metabolites can be used to test the suitability of selected parameters for
the dataset being analysed. Initially, parameters used by the authors of
the software can be used as default. These can subsequently be fine-tuned
to obtain maximum coverage of metabolites and their isotopologues from
benchmarked lists. The labeled features detected with optimized pa-
rameters can then be considered for downstream analysis. Additionally,
data from some software tools like geoRge and DynaMet require manual
curation to remove redundancies. HiResTEC on the other hand allows the
removal of any such redundancies saving the user additional steps in
10
analysis.
From our experience, analysis with the tested tools revealed some

common challenges. We have faced issues with (i) non-detection of some
of benchmarked metabolites in automated analysis despite satisfactory
peak shape and intensity (ii) missing or disproportionate number of
isotopologues for known metabolites (iii) presence of redundant features
(iv) inability to detect labeling in fragments (MS2) in an untargeted
manner and (v) lack of annotation for a significant fraction of the
detected features. Future developers of software tools could aim to pro-
vide features that address some of these challenges.

4. Conclusion

For 13C Metabolic Flux Analysis, the precision that is required in MID
quantitation poses a major challenge in analysing large datasets. To fully
harness the available HR-LC/MS data in a high throughput, untargeted
manner, a significant degree of automation is needed in the analysis
process. Therefore, for a 13C-labeled dataset, selection of software tools
that allow automated quantification of MIDs for a wide variety of me-
tabolites is key. In this study, we have tested X13CMS, DynaMet, geoRge
and HiResTEC, for their ability to detect and quantify MIDs of metabo-
lites for three diverse LC/MS datasets. Software performance was gauged
on the basis of (i) detection of m/z features that show 13C enrichment and



Fig. 8. Comparison of the dynamic labeling patterns of Citrate, Malate and G3P which were obtained through the targeted analysis of the ‘reticulocytes’
dataset. The data for mzMatch-ISO has been taken from (Srivastava et al., 2017) and treated as reference software. The raw data was re-analysed using X13CMS and
geoRge. The XICs of all the relevant isotopologues of the metabolites for two timepoints, t ¼ 0 h (unlabeled sample) and t ¼ 20 h (fully labeled sample), are both
shown to assess the peak quality and potential conflicts with isotopologues. The arrow points to the peak for G3P.
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(ii) accurate quantitation of MIDs. Although each software could quantify
MIDs of a large number of metabolites, the results from the different
software tools correlated only to a limited extent, both in terms of the
number of metabolites detected and the labeling profiles. In addition, the
test software lacked both sensitivity and selectivity, as seen from the
large number of potential false positives that were detected in compari-
son to the reference software data. The MID values deviated between the
test and reference software for a number of metabolites especially when
the peak shape and signal to noise ratios were less than optimal.

Overall, geoRge and HiResTEC performed better than the other tools
with all the datasets tested in this study with the former providing a facile
data export option. This was gauged on the basis of consistent high
numbers of metabolites detected across datasets in the untargeted ana-
lyses. In the targeted validation attempts, these software tools showed
satisfactory labeling patterns for the majority of the detected metabolites
and their isotopologues and less errors in MID quantitation as evident
from the RMSD values. Although a number of false positives and
redundant base peaks often result from the use of geoRge, the data can be
readily curated. Fewer redundant base peaks were observed with HiR-
esTEC, which implements a heuristic test to identify false positives.
Despite the limitations and the learning curve involved, the software
11
tools tested in this study provide the much-needed automation in the
untargeted quantification of 13C enrichment and guidance for any further
analysis. Note that these tools work with MS1 data leaving a big gap in
untargeted analysis of 13C enrichment of fragments. Such data can be
acquired in an untargeted manner using data independent acquisition
(DIA) technique of tandem MS (Jaiswal et al., 2018). Tools that can
detect 13C enrichment in an untargeted manner in the features from MS2
data can be a big boost to the analysis of positional labeling and will
result in better resolution of the flux map. To address this and other
challenges currently faced, future developers should focus on new tools
that are user friendly, provide simplified parameterization and greater
reliability of data analysis through reduction of noise and false positives.
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