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Tumor oxygenation status is considered one of the important prognostic markers in cancer since it strongly influences the response
of cancer cells to various treatments; in particular, to radiation therapy. Thus, a proper and accurate assessment of tumor oxygen
distribution before the treatment may highly affect the outcome of the treatment. The heterogeneous nature of tumor hypoxia,
mainly influenced by the complex tumor microenvironment, often makes its quantification very difficult. The usual methods used
to measure tumor hypoxia are biomarkers and the polarographic needle electrode. Although these techniques may provide an
acceptable assessment of hypoxia, they are invasive and may not always give a spatial distribution of hypoxia, which is very useful
for treatment planning. An alternative method to quantify the tumor hypoxia is to use theoretical simulations with the knowledge
of tumor vasculature. The purpose of this paper is to model tumor hypoxia using a known spatial distribution of tumor vasculature
obtained from image data, to analyze the accuracy of polarographic needle electrode measurements in quantifying hypoxia, to
quantify the optimum number of measurements required to satisfactorily evaluate the tumor oxygenation status, and to study the
effects of hypoxia on radiation response. Our results indicate that the model successfully generated an accurate oxygenation map
for tumor cross-sections with known vascular distribution. The method developed here provides a way to estimate tumor hypoxia
and provides guidance in planning accurate and effective therapeutic strategies and invasive estimation techniques. Our results
agree with the previous findings that the needle electrode technique gives a good estimate of tumor hypoxia if the sampling is done
in a uniform way with 5-6 tracks of 20–30 measurements each. Moreover, the analysis indicates that the accurate measurement of
oxygen profile can be very useful in determining right radiation doses to the patients.

1. Introduction

Hypoxia is a feature of many solid malignant tumors and
influences malignant disease progression, development of
metastases, clinical behavior, and response to conventional
treatments like radiotherapy [1–5]. Hypoxia may broadly be
thought of as either acute, due to microregional fluctuations
in blood flow over minutes to hours, or chronic, caused
by abnormal vascular architecture with long intravascular
transit times and long distances for oxygen diffusion through
the tumor interstitium [3–5]. A proper assessment of the
distribution of tumor hypoxia at initial presentation could
aid in the design of appropriate therapeutic approaches for
individual patients, thereby improving control rates and
survival while reducing side effects [6–8].

Several approaches are commonly used to measure hy-
poxia in patient and experimental tumors, including polaro-
graphic electrode techniques and nitroimidazole binding as
determined by flow cytometry, immunohistochemistry or
PET imaging [4, 9–14]. An alternative approach that has
not been as extensively studied uses theoretical simulations
derived from mathematical models of oxygen transport
phenomenon tailored to individual tumor characteristics
such as blood vessel distribution. Previous theoretical
investigations have shown that microvascular heterogeneity
can substantially affect the distribution of hypoxia [15,
16]. Dasu et al. [16] developed a coarse-grain model of
vascular networks as part of a more general theoretical
model of tumor oxygenation; the authors analyzed different
oxygenation dynamics based on a lognormal distribution
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of intervascular distances and studied their relationships
to different hypoxic conditions. Based on experimentally
derived data and numerical simulations, Secomb et al.
[17] showed that O2 consumption is the most important
factor influencing the local pO2 distribution in the tumors.
Kohandel et al. [18] developed a mathematical model
that incorporated tumor cells, vascular network, oxygen
concentration, and treatment effects and used it to study
the optimal combination of antiangiogenic and radiotherapy
treatments. A random initial distribution of perfused vessels
was used in this study to simulate oxygen distribution.
However, it may be of greater biologica and clinical relevance
to use tumor-specific microvascular distributions derived
from biopsies.

Here, we introduce a theoretical approach to model tu-
mor hypoxia using known spatial distributions of the per-
fused tumor vasculature obtained from histological sections.
We simulate oxygen distributions and calculate hypoxic
fraction in two ways corresponding to sampling with a
polarographic electrode and binding of a nitroimidazole
agent. We further demonstrate that the simulated results
correlate well with hypoxia measured directly in the same
tumor sections [19]. The simulated oxygen distribution is
then used to evaluate the radiation response under various
hypoxic fractions.

2. Mathematical Model and Methods

2.1. Computational Domain. Representative, high-resolu-
tion, two-dimensional, histologic images of eight human
glioma xenografts were gratefully received from P. F. J.
W. Rijken, Department of Radiotherapy, University of
Nijmegen, The Netherlands. An immunofluorescence stain-
ing technique was used to assess vascularity, perfusion,
and hypoxia using 9F1 (mouse-specific endothelial marker),
Hoechst 33342, and either pimonidazole or a similar agent
7-[49-(2-nitroimidazol-l-yl)-butyl]-theophylline (NITP), as
described previously [19]. The stained tumor sections were
than scanned and a threshold was applied to generate binary
masks for each of the three parameters as illustrated in
Figure 1 for a representative tumor. These binary images
were used as computational domains on which a system of
equations governing tumor growth and oxygen distribution
was solved.

Here, the perfused vasculature is considered to be the
source of oxygen supply and thus gives the initial spatial
distribution of oxygen concentration. This perfused vascular
network (at a fixed point in time) is obtained by combining
the images of perfused areas (Figure 1(b)) and vascular
structures (Figure 1(a)) using the logical “AND” operation
[19]. The images of hypoxic regions (Figure 1(c)) are later
compared with the simulated hypoxic area to validate the
mathematical model. The total tumor area is estimated from
the binary image representing the tumor mask (Figure 1(d)).

2.2. Mathematical Model. Following Kohandel et al. [18], we
use a simple reaction diffusion equation to represent the
spatial and temporal changes in the oxygen and tumor cell
concentrations. If K(x, t) denotes the oxygen concentration

at position x and time t, then its rate of change can be
expressed as

∂K(x, t)
∂t

= ∇ · (DK (x)∇K(x, t)) + rmp(x, t)

− ηK(x, t)− φc(x, t)K(x, t),

(1)

where DK is the diffusion coefficient (considered to be a
constant), φ is the rate of oxygen consumption by cells,
and η denotes the rate of decay (assumed to be zero in
the numerical simulations). Here, mp(x, t) stands for the
density of perfused vessels (mp = 1 for the presence of
blood vessel, and zero otherwise); thus the term rmp(x, t)
describes the production of oxygen at rate r. The formulation
of the model is then completed by prescribing no-flux
boundary conditions and an initial condition (the initial
spatial distribution of oxygen as determined from the image
of perfused vasculature where the assumed intravascular
oxygen distribution was prescribed only within this perfused
vascular networks). Here, since we seek an instantaneous
oxygen distribution map for a given vascular distribution,
we do not consider the time evolution of the equations but
rather use a computational time to iteratively reach a steady-
state-like condition (details follow).

Similarly, the temporal rate of change of cell concen-
tration is considered as a net result of diffusion and prolifera-
tion. If we denote by c(x, t) the density of the cells at position
x at time t, then

∂c(x, t)
∂t

= ∇ · [Dc∇c(x, t)] + ρc
(

1− c

clim

)

+ γmp(x, t)c(x, t).

(2)

Here, Dc is the diffusion coefficient (constant) of tumor
cells, ρ is the proliferation rate, and clim is the carrying
capacity. The third term denotes the effect of the vascular
network on the growth of cells [18]. As above, we use a no-
flux boundary condition and an initial condition c(x, 0) =
c0(x), where c0(x) defines the initial spatial distribution of
tumor cells (assumed to be a Gaussian distribution). The
parameter values are given in Table 1.

The linear quadratic (LQ) model is the most commonly
used approach for studying the survival response of tumor
cells to radiotherapy and the concomitant clinical results
[21]. In the LQ model, the survival fraction of cells after a
single radiation dose of D (Gy) is given by

S = exp
(−αD − βD2), (3)

where α and β are the radiosensitivity parameters. The
chosen set of parameters (α = 0.3 Gy−1 and β = 0.03 Gy−2)
gives a survival fraction of 48% at a dose D = 2 Gy, under
well-oxygenated (normoxic) conditions. However, this radio
sensitivity may vary based on the oxygenation status of
the cell, in which hypoxic cells are considered to be more
resistant to radiation [1]. This effect of various oxygen levels
on the radiosensitivity can be quantified in an LQ model
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(a) Blood vessels (b) Perfusion (c) Hypoxia (d) Tumor cells

Figure 1: Binary images of one of the eight glioma xenographt cross-sections, illustrating tumor blood vessels, perfused vessels, hypoxic
area, and total tumor area, respectively.

Table 1: List of parameters.

Parameters Symbol Value Reference

Diffusion constant for oxygen Dk 2.5 × 10−5 (cm2 s−1) [20]

Rate of oxygen supply r 8.2 × 10−3 (O2 s−1) [20]

Cellular oxygen consumption∗ φ 3.8 × 10−13 (cm2 O2 s−1 (cells)−1) [15]

Diffusion constant for cells Dc 4.05 × 10−9 (cm2 s−1) [18]

Proliferation rate ρ 1.85 × 10−6 (s−1) [18]

Carrying capacity clim 2.1 × 1011 (cells s−1) [18]

Cellular growth rate (effect of vasculature) γ 2.96 × 10−6 (s−1) [18]
∗

Assuming mass of 1 cell = 10−9 Kg.

using the concepts of “oxygen enhancement ratio (OER)” or
“oxygen modification factor (OMF)” [22–25], defined as

OMF = OER
(
pO2

)
OERm

= 1
OERm

OERm · pO2(x) + Km

pO2(x) + Km
, (4)

where pO2(x) is the oxygen concentration at position x,
OERm = 3 (the maximum value under well-oxygenated
condition), and Km = 3 mm Hg (the pO2 at which half the
maximum ratio is achieved) [25]. Consequently, the LQ
model can be modified, as below, by incorporating the effects
of the oxygen distributions:

Sox = exp
[
−α ·OMF ·D − β(OMF ·D)2

]
. (5)

In general, the OER can be also a function of radiation
dose, and some studies have suggested that the maximal
oxygen enhancement varies in the range of 2.5 to 3 with
differences in radiation dosage [26–28]. This can be simply
included into the revised LQ model by considering different
OERs for the radiosensitivity parameters α and β, that is,
OERα and OERβ. However, since we consider the normalized
OER (OMF), the introduction of these separate functions
will not produce a significant difference in the final survival
fraction. Thus, we assume OERα = OERβ in our simula-
tions.

Here, we use this revised LQ model to study effects of
heterogeneous oxygen distribution on the predicted survival
rates after radiation therapy. To this end, we calculate the
cell survival fraction while varying the dosage D for different
oxygen profiles. Comparisons are made for six different cases:

(a) entire tumor is normoxic (pO2 = 60 mm Hg), (b)
entire tumor is anoxic (pO2 = 0 mm Hg), (c) entire tumor
is moderately hypoxic (pO2 = 5 mm Hg), (d) a two-fold
profile, either hypoxic or normoxic at each grid point (pO2 ≤
5 mm Hg and pO2 > 5 mm Hg), (e) a histogram of oxygen
distribution with bin width of 5 mm Hg (5(i−1) ≤ pO2 ≤ 5i,
i = 1, 2, 3, . . . , 20), see Figure 8(a), and (f) full heterogeneous
oxygen distribution (simulated value of pO2 at each grid
point). For cases (d)–(f), where the oxygen distribution is
not uniform, we calculate the final survival fraction by taking
the weighted average (with wi, j = 1) of the survival fractions
at each compartment or grid points [24]:

SFox =
∑

i, j wi, jSox
(
pO2

(
i, j
))

∑
i, j wi, j

. (6)

2.3. Computational Approaches for the Quantification of Hy-
poxic Area. The spatial distribution of hypoxia in each tumor
section was simulated using the mathematical model (6 mm
square computational domain with 100 × 100 grid points
using a finite difference method) and then quantitated using
two approaches corresponding to techniques commonly
used in the laboratory and clinic. First, the percentages of the
total tumor areas with pO2 threshold less than values 2.5%,
5%, and 10% were calculated, simulating image analysis of
a hypoxic marker. Second, pO2 was sampled along linear
measurement tracks and the percentage of values less than
these thresholds again calculated to simulate polarographic
needle electrode measurements. The spatial distribution of
hypoxia and the summary measures derived from each of
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(a) Random (b) Uniform (c) Radial (d) Radial (full circle)

Figure 2: Different needle electrode reading methods illustrated over one representative sample (for a random approach, only one realization
is shown).

these approaches were compared to the known distribution
of hypoxia and hypoxic fraction from the nitroimidazole
analysis (Figure 1(c)) in the same tumors. Here, the spatial
distribution of the predicated hypoxia is analyzed by com-
paring the pixel-by-pixel values of the original binary images
of hypoxia with the simulated ones.

The focus of this work is to simulate the spatial distribu-
tion of hypoxia at a snapshot in time that will result from a
particular distribution of perfused vessels and intravascular
O2 concentrations, rather than tracking the time evolution
of hypoxia. Yet it takes some computational “time” to arrive
at this snapshot from our initial domain (the computation
begins on a domain in which only the vasculature has
nonzero oxygen concentration). The absolute oxygen distri-
bution evolves as computational time proceeds. Therefore,
to avoid dependence of our hypoxia quantification on
computational time, we require a definition of hypoxia that
considers relative, rather than absolute, quantities. Since
the blood vessels act as constant source of oxygen, we
assume for computational convenience that at any time
t, maximum oxygen concentration among all grid points
represents the hundred-percent oxic condition in that tumor
microenvironment. We define a square grid area as hypoxic
(HP2.5) if the average oxygen concentration is below 2.5%
of the maximum concentration (maxx(K(x, t))(2.5/100)).
Similar definitions hold for the other hypoxia thresholds
(HP5 and HP10). This approach yields a consistent hypoxic
fraction at any computational time once the oxygen con-
centration in the model is reasonably diffused. In other
words, this quantity achieves a steady-state condition for
oxygen concentration, which is what we require since we
estimate hypoxia according to a fixed spatial distribution of
vasculature.

Polarographic needle electrode measurements of hypoxia
were simulated as linear tracks through the tumor. Four
sampling patterns were used as illustrated in Figure 2:
random, parallel, half radial (clockwise from 10–2 o’clock
representing the situation where the tumor is accessible from
only one side), and full radial (circumferential radial sam-
pling). Measurements were taken at approximately 0.2 mm
intervals along each track and 20–30 measurements were
made per track to roughly match the total number of
measurements used to estimate the hypoxia in previous
laboratory and clinical studies [29]. Each individual mea-
surement was assumed to correspond to the average oxygen

concentration in a volume of tissue extending up to 60 μm
from the tip of the electrode, corresponding to the size of
the computational grid [30]. Therefore, for simplicity, we
assume here that (i) each electrode measuring point in the
computational domain represents a group of cells (5 to 6
cells each with a diameter of 10–12 μm in 2D) rather than
a single cell and (ii) the oxygen concentration at the point
of measurement represents the average oxygenation of a
group of cells constituting that point. For all simulations,
the percentages of oxygen readings less than 2.5%, 5%, and
10% were calculated using all measurements from all tracks,
to yield estimates of HP2.5, HP5, and HP10, respectively.

2.4. Statistical Methods. The total variance in sampling the
oxygenation status is the combined effect of within-tumor
variance and between-tumor variance. Measurement of
tumor pO2 is considered to be a predictive outcome assay
only when the within-tumor pO2 variability is smaller
than the variability among different tumors [31]. Using the
estimated pO2 values from the electrode simulations, the
variability of oxygenation status within and between tumor
samples is estimated through variance components analysis
by computing the ratio of within-tumor variance over the
total variance for each reading method (uniform, random,
and radial) [29]. This variance analysis is repeated for each
additional track to compare the effects of the number of
tracks on pO2 estimates and thus to obtain an optimum
number of needle probes. To study the percentage of
variation in evaluating the hypoxic proportions, the variance
analysis is also performed using the two different approaches
to quantify hypoxia (simulated percentage hypoxic area and
needle electrode measurements):

Percentage of total variance︸ ︷︷ ︸
(Needle measurements)

= Var(Within tumor)
Var(Between tumors) + Var(Within tumor)

100,

(7)

Percentage of totalvariance︸ ︷︷ ︸
Estimation Methods

= Var(Between methods)
Var(Between tumors) + Var(Between methods)

100.

(8)
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Figure 3: Comparison of hypoxic estimations at mild (HP10),
moderate (HP5) and severe (HP2.5) hypoxic levels for a represen-
tative sample case.

3. Results and Discussions

The oxygenation status of a heterogeneous tumor is often
quantified using polarographic electrode measurements or
through nitroimidazole binding and biopsies. These invasive
techniques have varying accuracy due to the restricted
sampling space as well as limited accessibility. In this paper,
we present an alternative theoretical approach that permits
an exploration of the spectrum of hypoxic distributions
that could possibly be associated with a particular vascular
configuration. We used two-dimensional binary images of
tumor cross-sections, with perfused tumor vasculature as a
computational domain, on which a simple model for the
oxygen distribution and tumor cell density was solved. The
resulting hypoxic area was quantified through two different
approaches and compared against the hypoxic proportions
determined from the original biopsy images (Figure 3).

3.1. Hypoxic Area and Theoretical Needle Electrode Measure-
ments. Herein, we have presented and utilized definitions
of hypoxia corresponding to three different commonly
considered threshold levels, that is, mild (HP10), moderate
(HP5), and severe (HP2.5) hypoxic conditions. The per-
centage of total area that is hypoxic and the percentage
of hypoxic readings (as determined by simulated needle
electrode measurement) are then calculated with respect to
these hypoxic thresholds. The results are compared against
the known proportions estimated from the biopsy images
(Figure 1(c)) to study the validity of the model as well as the
accuracy of both the theoretical and the probing techniques.
The HP10, HP5, and HP2.5 hypoxic fractions for one tumor
cross-section are shown in Figure 3.

The hypoxic proportion, as estimated from the original
image, is shown in yellow. The red and green boxes repre-
sent simulated hypoxia, which is quantified by estimating

the percentage of total area that is hypoxic and through
theoretical needle electrode measurements, respectively. In
the case of HP2.5 (Figure 3), the proportion of model-
generated hypoxia is in reasonable agreement with the
proportion determined from the original images (a result
that is consistent across the remaining samples of tumor
cross-sections). It should be noted that the available binary
image of hypoxic area (Figure 1(c)) allows us to estimate
hypoxia only at a single-threshold level. Hence, hypoxic areas
obtained from biomarker staining (yellow) are the same, and
we do not expect to see agreement across all three-threshold
levels in Figure 3.

The binary images of hypoxic area obtained through
biomarker staining reflect a number of factors related to
tissue preparation, staining absorption, staining threshold,
image acquisition, and image brightness. In several experi-
mental studies [4, 11–13], it has been observed that intensity
of hypoxic marker binding increases with increasing levels of
hypoxia. According to the Raleigh et al. [12], pimonidazole
bindings usually occur at levels less than 10 mm Hg, and half-
maximal pimonidazole binding occurs around 2 mm Hg.
Raleigh et al. [12] showed that HP10 measurements with
pO2 needle electrodes correlate with pimonidazole binding
surface area with a systematic offset of 36%, and this offset
is smallest for HP2.5 (18%). Our analysis of simulated
hypoxia using eight tumor samples (Figure 4) shows that a
best overall agreement between the simulated and measured
values is obtained at a threshold of 5% (HP5). Alternatively,
a threshold of 2.5% (HP2.5) provides very good correlation
with the measured values in four of the eight tumor samples
and underestimates hypoxia in the other four. This difference
between the simulated and experimental values may be either
due to a component of superimposed acute hypoxia and/or
to a higher rate of oxygen consumption than that used in
the simulations. Moreover, the samples that underestimate
hypoxic regime have a relatively higher vascular area as
compared to the other four samples. This indicates the
presence of acute hypoxia, which has not been included in the
present model, as we do not have the access to the temporal
images. Nevertheless, the spatial correlations between the
simulated hypoxic distribution and the biopsy hypoxic area
given in Table 2 indicate that these correlations fall within
the range of 75 to 85%, showing that the presented model
provides a satisfactory prediction of the spatial distribution
of hypoxia.

Our definition of hypoxia also plays an important role
in dictating the reliability of the estimates of hypoxic pro-
portions obtained through computation. To test sensitivity
of hypoxia estimates found using this definition with respect
to changes in computational diffusion time, we analyzed
HP10 values at different (nondimensional) time values and
found that, for both theoretical measurement approaches,
the hypoxic proportions estimated are similar for each time
(result not shown). This supports the validity of our hypoxic
definition, since a given tumor microenvironment with a
fixed vascular network (fixed in the sense that we consider
timescales too small to permit changes in perfused vascular
geometry) should yield an approximately fixed hypoxic
proportion over these small time intervals.
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Figure 4: Change in hypoxia as a function of relative changes in
production and consumption rates of oxygen. The figure indicates
that a relative decrease in consumption might be an effective way to
decrease the hypoxia.

Table 2: Spatial correlation (%) of hypoxic area.

Tumor sample
Percentage of correlations

HP2.5 HP5 HP10

1 77.6738 73.8076 68.3374

2 81.1242 79.7579 74.8348

3 80.701 83.1489 81.847

4 87.6884 85.6093 78.3471

5 73.3323 71.2458 68.0627

6 80.498 74.8546 66.3771

7 75.8521 71.6368 65.637

8 76.2209 73.0056 66.1667

To study the relative sensitivity of various parameters
involved in the present mathematical model, we have
performed a comparative analysis of the variations in tissue
hypoxia with respect to the relative changes in produc-
tion/supply (increasing r) and consumption (decreasing φ)
of oxygen concentration as illustrated in Figure 4. The analy-
sis shows that the consumption of oxygen plays a vital role in
defining local tissue oxygenation as compared to the oxygen
supply and thus reducing the oxygen consumption rate may
be more effective in lowering the hypoxic proportions within
the tissue, which is consistent with previous studies [17].
Moreover, this uncertainty in the parameter values does not
significantly influence the final simulation results of hypoxia
(Figure 4).

Figure 5 illustrates model-obtained hypoxia estimates
with the HP5 threshold for eight different tumor cross-
sections, using three different methods of simulated needle
electrode tracking (viz., the uniform, radial, and random
methods, depicted in Figure 2). As can be seen from the
graph, these three methods of needle tracking give similar
results and all are in good agreement with the simulated

estimates of hypoxia found by calculating the percentage
of the total area that is hypoxic (red and green bars in
Figure 5). This supports the general opinion that polaro-
graphic electrodes give reasonable estimates of tumor oxygen
status, and in fact, several researchers consider this to
be the “gold standard” method for characterizing hypoxia
in human tumors [10, 32]. However, it should be noted
that our simulated needle electrode measurements are
not subject to instrumental error, which is inherent in
practice.

3.2. Analysis of Variance. Here, we use statistical analysis
with two purposes in mind: to consider the fraction of
within-tumor variance (relative to total variance) associated
with each pattern of needle insertion in an effort to predict
an optimum number of tracks required for satisfactory
measurement, and secondly, to determine the best tracking
pattern by considering the fraction of variability between
two different estimation methods among the tumor samples
(relative to total variance). We note that the differences
between these three different approaches to needle tracking
are not clearly evident in Figure 6(a), and so we use variance
components analysis (ANOVA) to compute the within- and
between- tumor variability of needle electrode measure-
ments.

Similar analyses comparing the variability of different
oxygen measurements have been carried out in several exper-
imental studies [29, 31, 33]. One may use this kind of analysis
when the assumption that the error terms are normally dis-
tributed holds; hence, before using this method to estimate
the variances, we analyzed our simulated data and found
that the errors approximately follow a normal distribution.
The variances were then calculated using statistical software,
and variability was expressed in terms of percentage of total
variance. Figure 6(a) shows this percentage of total variance
as a function of number of needle tracks for the three
different needle track arrangements.

The variance analysis results of Figure 6(a) show that the
percentage of total variance due to the variance within the
tumor is small for the random approach when compared
to the radial and uniform approaches, whereas the uniform
method of tracking has maximum contribution of within
variance to the total variance. However, this analysis may not
necessarily permit one to conclude that the radial approach
is better than other methods to sample hypoxia but rather
may just be representative of this tracking method producing
less spatial variation between electrode tracks. Furthermore,
these results also indicate that the percentage of total variance
due to within-tumor variance is decreased with an increase
in the number of needle tracks and that this decrease is
minimal when the number of tracks is increased from five
to six. Thus, the (minor) statistical benefits of increasing the
number of tracks beyond this point are likely to be offset
by the disadvantages of increased invasiveness. This indeed
brings us to the same conclusion made by Wong et al. [29]
for the case of cervical cancers that the use of five (20–30
measurements) tracks is optimal when sampling a cervix
cancer for obtaining a reliable and reproducible oxygenation
status.
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Figure 5: HP5 estimations for eight tumor cross-sections using three different needle measurement approaches. (Yellow: percentage of
hypoxic area from the original image, red: percentage of hypoxic area from model, and green: HP5 estimation using needle electrode.)

The differences among the three different needle track-
ing approaches are further studied with variance analysis
by calculating the percentage of total variance (between-
estimation methods and between-tumor sections) due to the
variations between two different estimation methods (i.e., by
finding the hypoxic area and through the needle electrode
method). This is repeated for all three sample electrode
tracking approaches and the results are shown in Figure 6(b).
It is clear from Figure 6(b) that the contribution of variations
between the two different methods of quantifying hypoxia
(specifically, the area approach and electrode sampling
method) to the total percentage of variations is much higher
in the case of the radial method than for the other tracking
strategies. This implies that the radial method of electrode

sampling is less accurate in sampling hypoxia than the other
two approaches even though it has only small variations for
within-tumor measurements (Figure 6(a)). This may be due
to the manner in which we select the needle tracks in the
radial position: here, we assume that the tumor is accessible
only from one side of the sample (as would likely be the
case in situ), reaching the whole tumor (Figure 2(c)), and
so all six tracks are situated between the 10 o’clock and 2
o’clock positions. This dictates that the needle tracks be close
to each other, resulting in a smaller effective sampling area
which in turn makes the variations within the tumor smaller
and the variation between the estimation methods higher. To
verify this inference, we have introduced another theoretical
tracking approach, for which we assume that the tumor
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Figure 6: (a) The percentage of total variance due to within tumor
variance (for the entire eight samples), as a function of number of
tracks. The plot shows that 5-6 tracks of 20–30 measurements give
an optimal reading of hypoxia. (b) The percentage of total variance
due to the variance between two methods of hypoxia estimation
for three different electrode measurements approaches (analysis of
eight samples). This shows that radial sampling is less accurate than
uniform and random sampling.

is accessible from all the o’clock directions (Figure 2(d),
from 9 to 3 o’clock positions, which we shall call radial
(full circle), and compared this against the above results
of the radial approach (Figure 7). It can be seen from the
figure that when we increase the sampling area by spreading
the tracks across a greater proportion of the “circle,” the
percentage of total variance due to the variance of within-
tumor measurements increased while the contribution of
between-methods (estimation) variance to the percentage of
total variance decreased—although it did not decrease to a
value as low as that for the uniform approach. Hence, we
may reasonably conclude that a uniform spacing of electrode
tracks gives a good estimation of the hypoxic proportion
when compared to the other methods.

3.3. Radiation Response. The oxygenation status of a tumor
is generally considered to be an important intrinsic factor
in determining radiation response, where viable hypoxic
cells are more resistant to radiation than well-oxygenated
cancer cells [1]. The hypoxia-dependent limitations of radio-
therapy necessitate consideration of the spatial distribution
of hypoxia within a tumor in order to estimate cancer
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Figure 7: Plots showing the variance comparison between two
different types of radial approaches (considering eight sample cases)
to investigate the decreased accuracy of radial sampling.

cell survival fraction due to irradiation. Hence, we use the
hypoxia distributions, discussed in the previous sections,
and apply the modified LQ model to calculate the survival
fraction for a single radiation dose of D (Gy).

To study the effects of oxygenation status on tumor cell
survival fraction, we considered six different cases of oxygen
sensitivity profiles (listed in Section 2). Figure 8 shows the
model-derived oxygen distribution as histograms of width
5 mm Hg (Figure 8(a)), oxygen modification factor (OMF)
as a function of the oxygen concentration (Figure 8(b)),
and the survival fraction for various oxygenation profiles
(Figure 8(c)). The results indicate that the oxygen concentra-
tion significantly affects OMF (Figure 8(b)); this is due to the
fact that OMF increases very quickly (within 0–10 mm Hg)
to its normalized value with increasing pO2 concentration.
Hence, considering the sensitivity of the heterogeneous
distribution of oxygen at each grid point, a much higher
dosage is required to get the same survival fraction of cells
compared to the other four cases (Figure 8(c)). This level
of dosage is even higher than the case of a fully hypoxic
tumor. However, this may be due to the assumption that the
fully hypoxic tumor has a uniform oxygen distribution of
5 mm Hg (moderate hypoxia), while for the heterogeneous
case most, of the cells have an oxygen concentration less
than 5 mm Hg. Furthermore, this is clear from Figure 8(c)
where the dosage level curve for heterogeneous distribution
is almost coincident with the curve for complete anoxia
(but lying slightly below). The reason for these similar
results is due to the high sensitivity of severe hypoxic cells
(cells with less than 5 mm Hg) with respect to radiation
response, which is theoretically quantified using the OMF
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Figure 8: (a) Simulated oxygen distribution as histograms of width 5 mm Hg (for a representative case), (b) oxygen modification factor
(OMR) as a function of the oxygen concentration, and (c) survival fraction for different cases of oxygen profiles considering the oxygen
distribution of a representative case.

curve (Figure 8(b)). This OMF curve increases to its peak
value with a relatively small increase in oxygen concentration
(0–10 mm Hg), and hence cells with severe hypoxia give
rise to similar survival effects as that of anoxic cells. The
above results indicate the importance of the effects of
oxygenation status in estimating the radiation response
of tumor cells. Moreover, the accuracy of this estimation
is closely dependent on detailed quantification of oxygen
distribution inside the tumor rather than a classification into
hypoxic or nonhypoxic compartments.

4. Conclusions

Tumor hypoxia is a common feature of advanced solid tu-
mors wherein the metabolic demand for oxygen exceeds
its supply or availability [1, 34]. Hypoxia occurs as a
result of a stressful and abnormal vascular architecture in
tumors, which itself arises mainly as a result of unregulated
angiogenesis and thus contributes to the deficiency in oxygen
delivery as well as to elevated interstitial fluid pressure

[10, 34]. The lack of oxygenation of tumor cells can also
be further exacerbated by the increase in diffusion distance
and/or intervascular distance. Hence, a thorough knowledge
and understanding of this complex microenvironment is
a vital step in studying, estimating, and treating tumor
hypoxia. There are several experimental methods, which can
be used to describe the dynamics of these tumor vascular
networks [19, 35]. Theoretical attempts have also been made
to estimate tumor hypoxia by simulating a coarse-grain
model for the tumor microenvironment [16].

The oxygenation status of a heterogeneous tumor is often
quantified using polarographic electrode measurements or
through nitroimidazole binding and biopsies. These invasive
techniques often have varying accuracy due to the restricted
sampling space as well as limited accessibility. In this paper,
we present an alternative theoretical approach that might
allow us to explore the spectrum of hypoxic distributions
that could possibly be associated with a particular vascu-
lar configuration. Herein, we have used two-dimensional
images of eight tumor cross-sections with perfused tumor
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vasculature as a computational domain on which a system
of partial differential equations describing the distribution
of hypoxia has been solved. As discussed in the previous
sections, the resulting hypoxic area has then been quantified
by two different approaches. To validate the findings from
our mathematical model, these hypoxic estimates have been
compared against the hypoxic proportions determined from
the original images showing the hypoxic area according to
pimonidazole binding.

In most tumors, the hypoxia that occurs is of mixed type
[34] and since we are only considering the perfused vascular
network as our source of oxygen supply, it may account for
chronic as well as acute hypoxia at that specific point in
time. However, the spatial distribution of perfused blood
vessels may be unattainable through noninvasive techniques,
whereas maps of the entire vascular network may, in the
future, become available through modern high-resolution
imaging techniques such as angiograms. In this event,
the model can be used to generate hypothetical hypoxic
conditions, by considering either the entire vascular network
or by developing criteria for choosing the perfused vascular
vessels from this complete network, which may constitute
future work.

In conclusion, we have presented a simple diffusion mo-
del, which can satisfactorily estimate the oxygenation maps
of a heterogeneous tumor with a given vascular network. We
have shown that an estimate can be made of average tumor
hypoxia that appears to be less sensitive to the characteristics
of the vascular network as compared to the variations in O2

consumption. Thus, this approach can be used to quantify
average tumor hypoxia knowing only the distribution of
tumor vessels. Using this model, we have found that the
polarographic electrode measurements accurately quantify
the oxygenation status of the tumor microenvironment.
Our studies show that five to six uniformly distributed
equidistant measurement tracks with 20–30 measurements
per track give the optimum balance between accuracy
and invasiveness. The radiation response under various
oxygenation conditions has also been analyzed using a simple
model for the radiation effect and we have found that
consideration of the heterogeneous distribution of oxygen
plays an important role in the accurate prescription of
radiation dosage. This type of theoretical study may be
used to provide an alternative method of estimating hypoxia
distribution in solid tumors, which may possibly help in
the design of optimal, patient-specific, and accurate invasive
estimation methods.
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