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Abstract

Deep inspirations (DIs) and airway smooth muscle fluidization are two widely studied phenomena in asthma research,
particularly for their ability (or inability) to counteract severe airway constriction. For example, DIs have been shown
effectively to reverse airway constriction in normal subjects, but this is impaired in asthmatics. Fluidization is a connected
phenomenon, wherein the ability of airway smooth muscle (ASM, which surrounds and constricts the airways) to exert force
is decreased by applied strain. A maneuver which sufficiently strains the ASM, then, such as a DI, is thought to reduce the
force generating capacity of the muscle via fluidization and hence reverse or prevent airway constriction. Understanding
these two phenomena is considered key to understanding the pathophysiology of asthma and airway hyper-
responsiveness, and while both have been extensively studied, the mechanism by which DIs fail in asthmatics remains
elusive. Here we show for the first time the synergistic interaction between DIs and fluidization which allows the
combination to provide near complete reversal of airway closure where neither is effective alone. This relies not just on the
traditional model of airway bistability between open and closed states, but also the critical addition of previously-unknown
oscillatory and chaotic dynamics. It also allows us to explore the types of subtle change which can cause this interaction to
fail, and thus could provide the missing link to explain DI failure in asthmatics.
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Introduction

Deep inspirations (DIs) and airway smooth muscle fluidization

are two phenomena which have the potential to counteract severe

airway constriction. This is of particular interest as this mediating

effect is often found in normal subjects, but impaired in asthmatics

(i.e. [1,2]). Thus understanding their impairment may be central to

understanding the pathophysiology of asthma. We consider the

interactions between DIs and fluidization, and show that synergies

between the two can be critical for effective reversal of severe

airway constriction. As such, failure of this interaction may explain

the impairment of DI effectiveness in asthmatics. Moreover, our

method of analysis lends itself naturally to exploring other modes

of failure, such as a reduction in parenchymal tethering

effectiveness.

The effect of DIs has been the subject of extensive research,

with many studies drawing a distinction between asthmatic and

normal subjects on the basis of their response to DI. For example it

has been shown that DIs are protective against bronchoconstric-

tion in normals, whereas they fail to limit bronchoconstriction in

asthmatics. Normal subjects who are prevented from taking DIs

develop a bronchoconstrictive response similar to that seen in

asthmatics [3–5] and DIs fail to limit bronchoconstriction in

asthmatics, where they are effective in normals [6,7]. A distinction

is drawn between a bronchoprotective effect, wherein DIs are

taken prior to constriction (and limit subsequent constriction), and

bronchodilation, where DIs are taken during constriction (and

dilate constricted airways). In addition to the failure of

bronchoprotection, asthmatics also display limited bronchodilation

due to DI as compared to normals [1,2].

Fluidization is the response of biological tissues in response to

oscillatory or transient strain, typically characterized by a

reduction in stiffness, exerted force, and an increase in

hysteresivity (i.e. [8,9]), and as such has been suggested as a

potentially powerful mechanism for countering bronchoconstric-

tion. In this work we will consider fluidization of ASM in response

to the transient strain of a deep inspiration, which renders the

muscle less able to generate constricting force. As such, fluidization

in response to a DI is one potential route to bronchodilation, and

interactions between the two are a potentially crucial area for

understanding the effectiveness (or failure) of the combination in

counteracting airway constriction.

We explore the interactions between DIs and fluidization by

considering a minimal new mathematical model of a single airway,

based on a combination of canonical models in the field. The

constituent parts are the Lambert model [10] for the passive

stiffness of the airway wall itself; the Lai-Fook model [11],

describing the so-called tethering forces external to the airway wall

from the lung parenchyma; the Laplace law, describing changes in

the constricting pressure as the airway narrows; and a ring of

activated airway smooth muscle surrounding and constricting the

airway. These models are well-established and many studies exist

combining some elements, for example Macklem’s combination of

the Laplace law and linear parenchyma [12], Affonce & Lutchen’s

study combining airway wall mechanics with linear parenchyma
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[13], a series of papers considering the combination of the

Lambert model and airflow [14–16] and the mechanics study of

Moreno et al. [17]. Similar ideas have also been incorporated into

experimental control [18,19]. Bistability also appears in the

terminal airway model of Anafi and Wilson [20], and in the

extension to an airway tree by Venegas et al. [21], though it is

important to note that it is driven by flow, which does not appear

in this model. (See ‘Discussion’ for more on this point.)

Such models are often combined and in the process solved

iteratively (i.e. [21,22]), for example first calculating airway radius

as a function of transmural pressure using the Lambert model,

followed by the calculation of transmural pressure as a function of

radius due to the combination of the Laplace law and Lai-Fook

parenchymal tethering model. Instead of this two-step approach,

we opt to describe the combination of the models as an iterated

map, removing the intermediate step of calculating the transmural

pressure and instead taking an initial airway radius as input and

providing a new, updated radius as output. Thus the airway map,

formulated fully in ‘Methods’, may be understood in the following

basic form

rnz1~W(rn; f ,Ptp) ð1Þ

where r is the airway radius, and W maps one value of r to another;

the subscripts denote the iteration of the map. The map depends

parametrically on the airway smooth muscle force f and tethering

coefficient (or transpulmonary pressure) Ptp; the former describes

the force attempting to constrict the airway, and the latter is the

coefficient of the restoring, tethering forces attempting to hold it

open. (We adopt the term ‘tethering coefficient’ to describe

generically the pressure-dependent coefficient of the increase in

tethering force due to airway constriction. Please see ‘Methods’

and Eq. 4 for a more detailed discussion of this coefficient.)

One essential idea in the study of airway dynamics is the

concept of hysteresis and a bistability between open and closed

states, which has been previously explored by a number of authors

(i.e. [10,13,20,21]). This is a central idea in this field in that it

provides a mechanism which might account for clustered

ventilation defects, wherein some portions of a constricted lung

are severely constricted, while other regions are normally- or even

hyper-ventilated. The airway map exhibits not only the previously

studied bistability but also oscillatory dynamics, and in some

regimes undergoes a period-doubling cascade leading to chaos

[23]. While chaotic behavior has been found in particle mixing in

the lung (i.e. [24]) and a coupled tree of airways [21,25] where the

dynamics are driven by flow, we show here for the first time that it

also occurs in a minimal model of an individual airway in isolation,

without flow. Moreover, these map dynamics are central to the

synergistic interactions between DIs and fluidization which make

the combination so potent.

Results

With the airway model formulated as an iterated map

describing airway radius, we have the tools necessary to study its

behavior as important parameters are varied; in this case we are

principally interested in the strength of ASM constriction, as

controlled by the parameter f , and the strength of parenchymal

tethering, as controlled by the parameter Ptp (see ‘Methods’). We

begin by holding the tethering coefficient (Ptp) fixed and varying

the applied ASM force (f ). Initially, for Ptp=Ptp0~0:5, we find the

typical well-known bistability and hysteresis loop (Fig. 1, a),

allowing for both closed and open states to coexist for some range

of f (i.e. [13], here for f =f0 ranging from approximately 0.1 to

0.7). Beginning at zero force, the airway is open, and stays open

with force increasing up to approximately f =f0&0:7 where a

sharp transition to closure occurs. Retracing from the closed state

by decreasing applied force results in the closed state persisting all

the way back to f =f0&0:1. In this range the open and closed states

both exist. However, upon increasing the tethering strength to

Ptp=Ptp0~0:75, we find not only this bistability, but also an

oscillatory regime beginning around f =f0~0:6 leading into a

period-doubling cascade to chaos [23] (Fig. 1, b). A zoom to show

detail of this route to chaos is given in panel d. The variations

observed in the oscillatory and chaotic regime are also significant,

ranging from an entirely open airway to one quite severely

constricted.

One way to attempt to address the origin of these behaviors is to

look at the balance of the static loads between 1) the airway wall

itself and 2) the combination of the ASM force and parenchymal

tethering. These static load curves are given in Fig. 1, panel c, for

each of the two cases above, specifically at f =f0~0:675 where the

behavior is either bistable or chaotic (depending on the choice of

Ptp). The solid black curve gives the Lambert airway wall model

[10], and the dashed curves the ASM/parenchyma static load

(blue for the bistable case, red in the chaotic case). In principle,

from this analysis, one might expect each situation to have three

solutions, one at each point of intersection near zero transmural

pressure, and another at the intersection representing closure near

zero radius and large negative transmural pressure (not shown).

However, this is not the case and demonstrates the need to

consider the problem as a map, as otherwise the stability is ignored

and important dynamics can be overlooked. In fact in the case of

the blue curve there are two stable and one unstable equilibria, as

shown in panel a, and for the red curve there are no stable

equilibria at all (panels b and d).

While these examples demonstrate the existence of rich

dynamics, the dependence upon tethering coefficient Ptp calls

for a two-parameter bifurcation study to understand the influence

of both the constricting and restoring forces. Varying both f and

Ptp now simultaneously, we can no longer plot the value of each

point obtained from the map but instead classify the results into

categories as follows: one stable fixed point, airway open; one fixed

point, airway closed; bistability; oscillations, period 2; oscillations,

period 4; oscillations, period 8; chaos. Each of these cases occur in

one or more regions of the (f ,Ptp)-plane. By analysing the map we

can find the boundaries between each of these regions, given in

Fig. 2 (a). Color coding corresponding to the categories above is

given in the figure legend.

We can clearly see that for values of Ptp=Ptp0 less than

approximately 0.58, the traditional view exists: a single, open,

fixed point for small values of f , followed by a region of bistability,

and finally for sufficiently large f only a single closed state (as in

Fig. 1 (a)). Right of this line, however, the new behavior emerges.

Initially period-two oscillations emerge, then progressing through

a period-doubling cascade to chaos. At the end of chaos, the closed

state again prevails; (we have colored this grey, rather than black,

to reflect that while empirically only the closed state exists,

formally there are three fixed points here, each sufficiently small as

to be considered closed states.) While the existence of this route to

chaos in this model is new and interesting in its own right, most

importantly it explains the synergistic interaction between DIs and

fluidization which result in effective bronchodilation.

Consider the path in parameter space marked out by the points

A, B, C and D (Fig. 2, (b)), and suppose that we begin with a

population of severely constricted airways at A – only the single

closed state exists here. This point we think of as analogous to a

severely constricted lung. The path of a DI combined with

Reversing Airway Closure
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fluidization, then, might be approximated as A-B-C-D, with an

increase in Ptp as the DI is drawn (to B), a decrease in ASM force

due to fluidization induced by the DI strain (to C), and a decrease

again in pressure as the breath is exhaled (to D). As D is in the

bistable region, in principle here our population may now be

entirely closed, entirely open, or anywhere in between. What is

important is the dependence of this closed fraction on the path taken.

The pseudo-dynamics of a population of airways along this path

(see ‘Methods’) are computed and given in Fig. 2 (c), showing the

initially closed population beginning to open as the maneuver

progresses. Initially a small number of closed airways jump into the

open state upon moving into the bistable region, with a gradual

increase as the path moves through the period-doubling cascade

and into chaos. As the path moves back out of chaos (toward C)

and traverses the cascade in reverse, the rate of opening increases

dramatically, as can be seen from the red closed fraction line, and

continues as the breath is exhaled (to D). At the end of the

maneuver, more than 90% of the airways have been reopened.

The combination of a DI and fluidization together is thus highly

effective at reversing airway closure.

Contrast this with the direct path A–D, with the same reduction

in force but without the DI itself; this is equivalent to fluidization

alone. The pseudo-dynamics of this path are given in Fig. 2 (d).

Here some small fraction of points do move into the open state

along the path, but without the progression through the period-

doubling cascade and the band of chaos, more than 95% of the

airways remain in the closed state. Thus despite beginning and

ending at the same points, one can have either a near-complete

reopening from closure, or near-complete failure.

Figure 1. Bistability to chaos. One-dimensional bifurcation diagrams for the airway map with ASM force varied and Ptp fixed, and static load
curves. Top left panel: the traditional view of bistability and hysteresis found when Ptp=Ptp0~0:5. Beginning at zero force, the airway is open with
increasing force up to approximately f =f0&0:7 where a sharp transition to closure occurs. Retracing from the closed state by decreasing applied
force results in the closed state persisting all the way back to f =f0&0:1. In this range the open and closed states both exist. Top right: period-
doubling route to chaos found when Ptp=Ptp0~0:75. Bottom left: static load curves and Lambert airway wall model. The solid black curve gives the
Lambert airway wall mode [10] for an order 5 airway. The dashed lines give the static load determined by Eq. 3 for each of the cases in the upper
panels – the blue curve corresponds to the simple bistability of the Ptp=Ptp0~0:5 case in the top left, while the red curve represents the case with the
oscillations and chaos of the Ptp=Ptp0~0:75 case in the top right (see text). Bottom right: detailed view of top right panel.
doi:10.1371/journal.pone.0048552.g001

Reversing Airway Closure
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Of course, a DI alone without fluidization is equivalent to the

path A-B-A. Independent of any opening which occurs along this

path, upon return to point A all airways must be in the closed state

– this is the only fixed point there, and so the closed fraction must

be 1. Thus the airway map demonstrates the much greater power

of a DI and fluidization together, as compared to either alone. It is

worth noting that the precise location of point B in the chaotic

band is not critical; the general requirements for reopening are

that the path traverses the oscillatory or chaotic bands, and that

the terminal point be in the bistable region. The specific path

given here is in this sense generic.

If the effectiveness of a DI is dependent upon synergies with

fluidization, then what can this tell us about the possible

mechanisms for DI failure in asthmatics? While the map does

not in itself suggest a specific distinction between normals and

asthmatics, it does raise the prospect that the difference may be

quite subtle. Consider, for example, the hypothesis that pare-

nychmal tethering is less effective in asthmatics, relative to

normals. One manifestation of this hypothesis could be that the

nonlinear coefficient of tethering (see Eq. (4), ‘Methods’) is

reduced. As an illustration, we reduce this coefficient from its

standard value (1.5, as in [11]) to 0.5 and recompute both the

bifurcation sets and DI pseudo-dynamics resulting from this

modified model, with the results given in Fig. 3. Now this path

begins and ends in the region with only the closed state available;

thus the end result of the DI maneuver must be that all airways are

closed. It is also instructive to observe that even in the portion of

the path which traverses the bistable region, more than 85% of the

airways remain closed. Thus the decreased tethering force has

eliminated the reversal of airway closure from a DI, and limited

even the transient effects. While this arbitrary modification is not

directly indicative of the difference between normals and

asthmatics, it is an illustration both of the type of subtle

phenomena which may account for the difference, and the power

of this type of analysis to shed light on the many proposed

hypotheses – particularly in light of recent controversy surround-

ing the role of DIs and fluidization in limiting airway constriction

in intact airways; see ‘Discussion’.

Discussion

Looking at the problem of airway constriction as an iterated

map is a new way of analyzing airway behavior. It has yielded

critical insight into the relationship between DIs and ASM

fluidization, which helps to explain the importance of synergy

between the two in reversing airway closure. In addition, it is a

powerful new tool for the study of the myriad hypothesized

differences between asthmatic and normal subjects. We have

illustrated, with a simple example of reduced parenchymal

tethering nonlinearity, the possibility of a relatively subtle change

significantly altering the DI and fluidization dynamics (such that

reversal of several airway constriction no longer results from the

Figure 2. 2D bifurcation sets and pseudo-dynamics. Top left: 2D bifurcation set for the airway map, color-coded by behavior. Yellow: one fixed
point, airway open; red: bistability; black: one fixed point, airway closed; blue: oscillations, with darker shades for longer period oscillations; green:
chaos; grey: three fixed points, all near closure. Top right: detail showing the path of DI pseudo-dynamics. Bottom left: Pseudo-dynamics for full DI
path (A-B-C-D). Left axis, black dots: airway radii for 1000 samples, each dot corresponding to an airway at each path position. Right axis, red line:
fraction of closed airways in the sample. Throughout the maneuver airways gradually open, with a near-complete opening of closed airways at the
conclusion. Bottom right: Pseudo-dynamics for direct force reduction without DI (A–D). Along this path, without the DI, near-total closure persists.
doi:10.1371/journal.pone.0048552.g002

Reversing Airway Closure
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DI-fluidization synergy). While it is merely an example, rather

than a concrete hypothesis, it does demonstrate the ability of the

airway map to quickly and easily test the effect of many such

theories.

We have also shown that airway states, including both the

previously-known (open, closed, and bistable) and the new states

(oscillatory and chaotic), can be found in a model which does not

include a force-length relationship, ASM dynamics, or ventilation.

The static bistability in a single airway is in keeping with the

findings of Affonce and Lutchen [13], who demonstrated the

potential of the bistability to contribute to airway hyper-reactivity.

The Anafi and Wilson model [20] also exhibits a well-known

bistability, which has in common some elements with the model

presented here, but also key differences. It remains possible that

the Anafi-Wilson terminal airway model would exhibit a similar

bistability to that shown here, based on the elastic mechanics alone

in the absence of flow; however this has not been shown and

remains the subject of speculation. Similarly their terminal airway

model was extended by Venegas et al. [21] into a symmetrically

branching airway tree. This extended model was shown to exhibit

chaotic switching driven by parallel flow and the interacting

structure of multiple airways. Here we have shown for the first

time that such chaotic behavior can occur in a minimal single

airway model, even in the absence of ventilation, and moreover

that these chaotic and oscillatory dynamics yield a potential

explanation of synergy between deep inspirations and fluidization.

The findings here should also be considered in light of recent

controversy surrounding the role of DIs and fluidization in

bronchodilation, due to discrepancy between tissue strip and

excised airway studies [4,26–28]. We have shown here that

synergy between fluidization (or, in fact, a reduction in ASM force

by any cause) and DI in airway reopening. However, the idea that

fluidization may not bear primary responsibility is certainly worth

considering. The methods of analysis presented here are useful

tools for evaluating other hypothesis as well.

One significant limitation of the airway map model is that no

proper attempt is made to account for the dynamics of ASM itself

– ASM force is modelled in the simplest possible fashion, as a

prescribed, exerted force. As such, ASM fluidization can only be

represented by a simple reduction in exerted force, rather than a

process occurring over time. This is a significant assumption, as

many potentially important phenomena are ascribed to ASM

dynamics (i.e. [29]), and we have previously shown the ability of

ASM dynamics to modulate transitions between open and closed

airway states [22]. While many models of ASM dynamics are

available in the literature (i.e. [30–33]), modifying the model and

analysis presented here to include such effects is as yet an unsolved

problem. This remains an important area for future work.

We have assumed throughout that the force-length relationship

is constant. Though our formulation easily allows for an

approximation to the experimental data (i.e. [34–37]), we have

not done so at this stage for two reasons. The first is that properly

accounting for the force-length relationship requires a full dynamic

model, the difficulties with which are discussed in the preceding

paragraph. Secondly, under a simple, static force-length relation-

ship (i.e. [22]), the critical behaviour is driven by the force exerted

at very short lengths far from the adapted length, which must

typically be extrapolated from the experimental data. In the

absence of a dynamic model and detailed data at the short end of

the force-length curve, the best assumption is a constant

relationship. It is interesting to note that bistable behavior does

occur in this model in the absence of ASM force-length

dependence, much as it has previously been shown that flow

and compensatory pathways are not required [13]. Thus there are

several mooted mechanisms driving bistability, each of which

could plausibly explain observed heterogeneity and patchy

ventilation defects when coupled with a suitable organizing

principle. However, we have shown more than just a new route

to bistability, but also new oscillatory and chaotic dynamics which

were previously unknown and lead to a possible explanation of

synergy between fluidization and deep inspiration.

Methods

The 1D continuous map is constructed by combination of the

Lambert model [10], which relates airway transmural pressure P

and radius r as

r(P)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

i (1{P=P1){n1

q
, Pƒ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
imax{(r2

imax{R2
i )(1{P=P2){n2

q
, Pw0

8><
>: ð2Þ

where the parameters Ri,rimax,P1,P2,n1 and n2 depend upon

airway order [22] and are given explicitly at the end of this section.

Throughout we have used an order 5 airway; results are similar for

Figure 3. Bifurcation set and DI pseudo-dynamics, with modified parenchymal tethering nonlinearity (see text). By reducing the
degree of nonlinear tethering, the DI and ASM fluidization combination fail completely in reversing airway closure. Even transient dilation is limited,
with more than 85% of airways remaining in the closed state throughout.
doi:10.1371/journal.pone.0048552.g003

Reversing Airway Closure
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other small caliber airways. The transmural pressure P is given by

P(r)~Pbase{f
Fa(r)

r
zt(r) ð3Þ

where Pbase is the base transmural pressure, the second term

reflects active muscle force f (along with the force-length

relationship Fa(r)) and the Laplace law 1=r dependence, and the

third term is the parenchymal tethering. Following the Lai-Fook

model [11] we have

t(r)~1:4Ptp

Rref {r

Rref

� �
z1:5

Rref {r

Rref

� �2
 !

ð4Þ

where the reference radius Rref is taken according to Eq. 2 at a

transmural pressure of 10 cmH2O. The leading coefficient of Eq.

4 bears further discussion. We adopt the notation of Lai-Fook [11],

using Ptp and referring to it as the tethering coefficient. In [11] this is

the transpulmonary pressure, by way of its connection with the

parencyhmal shear modulus m, where m~0:7Ptp. In the formu-

lation of Anafi and Wilson [20] the symbol PA is used instead, in

the context of flow-driven behaviour. We adopt the notation of the

former as the most natural for a model in the absence of flow.

Thus by substituting Eq. 4 into 3, and then into 2 we obtain the

composite function r(P(r)) and call this

r2~r(P(r1)) : ~W(r1; f ,Ptp), ð5Þ

and thus the combined model may be thought of as a 1D iterated

map. We include explicitly the parametric dependence on f and

Ptp as these are the bifurcation parameters used here. The full

explicit form in terms of r1 is then given by

r2~W(r1 ; f ,Ptp)~ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

i (1{ Pbase{f
Fa (r1)

r1
z1:4Ptp

Rref {r1
Rref

� �
z1:5

Rref {r1
Rref

� �2
 ! !

=P1){n1

vuut ,

for Pbase{f
Fa (r1)

r1
z1:4Ptp

Rref {r1
Rref

� �
z1:5

Rref {r1
Rref

� �2
 ! !

ƒ0


r2

imax{(r2
imax{R2

i )(1{ Pbase{f
Fa (r1)

r1
z1:4Ptp

Rref {r1
Rref

� �
z1:5

Rref {r1
Rref

� �2
 ! !

=P2){n2

vuut ,

for Pbase{f
Fa (r1)

r1
z1:4Ptp

Rref {r1
Rref

� �
z1:5

Rref {r1
Rref

� �2
 ! !

w0:

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

ð6Þ

Note that continuity of the piecewise function is ensured by the

definition of P2 [10,22]. It is also important to observe that the

smooth muscle force f is treated in the simplest possible way, as a

prescribed, exerted constant force. In fact, this is an entirely static

model and time does not appear at all. While more sophisticated

models of ASM are available (i.e. [30–32]), including such

dynamics significantly complicates the analysis. See ‘Discussion’

for more detail. The baseline transmural pressure Pbase is taken to

be 10 cmH2O throughout. We assume no force-length relation-

ship, that is Fa:Rref . The implications of, and reasons for this

assumption are addressed in ‘Discussion’.

The one-dimensional bifurcation diagrams in Fig. 1 are made

by brute force iteration of the map, starting from 5 evenly spaced

seeds between 0 and 2 mm. If the iterations converge to a fixed

point with a tolerance of 10{5 mm, that point is plotted alone; if

there is no convergence after 2000 iterations, the last 200 points

are all plotted together.

The static load curves of Fig. 1 (c) were created using Eqs. 2, 3

and 4 as follows. The solid curve representing the Lambert airway

wall model comes from Eq. 2 alone. The static load curves are

obtained by substituting Eq. 4 into 3.

The boundaries of the 2D bifurcation sets in Fig. 2 are

computed by the more sophisticated methods used to analyze such

maps. For example, boundaries between one fixed point and

bistability (yellow-red, and red-black) occur where

W(r�; f ,Ptp)~r�, ð7Þ

W’(r�; f ,Ptp)~1, ð8Þ

the prime denotes differentiation with respect to r and r� is the

fixed point [38]. These, and similar equations for the other

boundaries [38,39] must be solved numerically by a technique

known as numerical continuation, which allows solutions to be

followed as parameters change [40]. For purposes of classifying

fixed points in bifurcation sets (i.e. is the fixed point open or

closed?) we use a threshold of 41% of reference radius (0:15 mm

for an order 5 airway with Rref ~0:363 mm).

The pseudo-dynamics in Fig. 2 are computed by sampling 1000

separate and independent airways, each of which begins at point A

and make 10 steps along each segment of the path. At each step,

each airway is perturbed by an additive Gaussian random variable

and then iterated in the map 30 times. This value is then taken to

be the new radius for the airway at that step. The additive random

variables have zero mean and standard deviation 0:06 mm, which

is 16.6% of Rref for an order 5 airway.

The parameter values used throughout are Ri~0:096 mm,

rimax~0:384 mm, P1~0:2768 cmH2O, P2~{33:21 cmH2O,

n1~1, n2~8, Rref ~0:363 mm, f0~15 cmH2O, and

Ptp0~20 cmH2O. These are taken from [22] for an order 5

airway.
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