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Abstract

Male genitalia show considerable morphological variation among animals with internal fertili-

zation and exhibit a high level of evolvability in lizards. Studies have suggested that sexual

selection may be driving hemipenial evolution against natural selection and pleiotropy.

Given the direct interaction of male and female genitals, coevolution of the aforementioned

is posited by several hypotheses of genital evolution. However, there are only a few studies

on female genitalia morphology, resulting in a lack of coevolution description and under-

standing. Studies of allometric patterns have filled some gaps by answering questions about

male genital evolution and could prove a powerful tool in clarifying coevolution between

male and female genitals. Here, we studied the genital morphology of Tropidurus torquatus.

This Tropidurus lizard species is an emerging Neotropical lizard model organism notable for

having enlarged hemipenial lobes in contrast with other tropidurid species. In this study, we

analyzed hemipenial development in early and late stages, describing both morphological

variation and ontogenetic allometric pattern. We used quantitative traits to describe male

and female genital morphology, examining their static allometric patterns and correspon-

dence. Our study provides a quantitative discussion on the evolution of lizard genitals, sug-

gesting that sexual selection plays an important role in genital evolution in Tropidurus

lizards.

Introduction

Snake and lizard species (Squamata) possess a pair of intromittent male reproductive organs,

called hemipenes. These organs are known to show considerable variation in shape, dimen-

sions, ornamentation, and are often more divergent than non-genital traits [1–4]. It is com-

mon that closely related species tend to differ in hemipenial morphology, leading to the use of
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hemipenis as a key taxonomic and phylogenetic character [5–8]. In addition, the size of hemi-

penial traits has a higher evolutionary rate than other morphological traits [9,10]. Few studies

investigating the ontogenetic development of hemipenial morphology exist, the majority of

which focus on the first stages of development [11–13]. Therefore, little is known about how

hemipenis morphological complexity and ornamentation are driven by developmental pro-

cesses [11].

Several studies have suggested that sexual selection may be the main driver of hemipenial

evolution. However, a recent study suggested that hemipenial morphological variation could

be the result of pleiotropy and sexual selection acting simultaneously as antagonistic forces, in

which the former would constrain evolutionary speed, while the latter would accelerate evolu-

tionary rates [3,14–16]. Studies of allometric patterns, both static and ontogenetic, that have

been extensively used to describe morphological variation in genitalia across species of insects

and arthropods are still incipient for vertebrates, especially for squamates [17]. The allometric

pattern is the description of the proportional size of a particular structure in relation to body

size, calculated across multiple individuals in a population [18]. If the allometric pattern is

measured across the developmental trajectory, it is called ontogenetic allometry [19]. Positive

allometry has often been associated with traits under sexual selection. However, most of these

conclusions were drawn exclusively from species with unusually expressed traits [17–21]. Nev-

ertheless, Bonduriansky [22] showed that positive allometry in specific traits is not always a

predictor of sexual selection. Eberhard [18,23] described the allometric patterns for male geni-

talia across several species with internal fertilization. He showed that the vast majority of the

analyzed species have negative allometric slopes in their genitalia. Based on these results, he

formulated the “one-size-fits-all” hypothesis, that is interpreted as evidence of stabilizing sex-

ual selection, keeping male genital size constant in a way to match the average female genital

size in the population [17,18,23].

The direct interaction between male and female genitals in animals with internal fertiliza-

tion implies that their morphology would be coevolving, either by females selecting males as

better stimulators or by an arms race between the sexes over the control of insemination and

fertilization [24]. However, there is a lack of information about female genitalia morphology

and consequently the role that coevolution plays in genital evolution [25]. Female Squamata

genitalia is an internal organ which is soft and therefore challenging to study [24,26]. Few stud-

ies are available, however the majority of them focus on qualitative description of morphologi-

cal variation, while relatively few compare morphologies between the sexes [24].

Tropidurus torquatus is an emerging Neotropical lizard model species which is widely dis-

tributed throughout South America and extremely abundant in open formations, especially in

disturbed environments [27,28]. This species has been extensively studied in terms of ecology,

phylogeny, physiology, and is one of the few South American lizards species to have a complete

staging table of post-ovipositional development [29]. Here we investigate the hemipenial

development and morphology of this organ in T. torquatus, together with an examination of

the ontogenetic and static allometric pattern. We also described the female genital morphology

of this species and analyzed its static allometric pattern. Finally, we compared the allometric

slopes of hemipenial and female genital traits.

Material and methods

Embryo collection and processing

Ten gravid Tropidurus torquatus females were captured using the noose technique in urban

areas of Brasilia (15˚45’46.79”S 47˚52’05.34”W), Federal District, Brazil, during the breeding

season (Oct/2016 –Feb/2017). The specimens were kept in terrariums with medium grain
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vermiculite as a substrate until egg laying. In order to provide stable maintenance and mini-

mize distress, four to five females were placed in 60 X 40 X 50 cm terrariums equipped with

heating plates at 35˚C for thermoregulation. Lizard alimentation consisted of live cockroaches

(Nauphoetacinerea) floured with calcium and vitamin supplements for reptiles, with fresh

water ad libitum. The room was maintained at ambient temperature (~25˚C) with a daylight

cycle of 12h.

Terrariums were inspected daily for the presence of eggs. Once spawning occurred, clutches

were individually kept in 50ml recipients containing 10mg of vermiculite and 20ml of water,

conferring a humidity of 100%. The recipients were placed in an egg incubator with a constant

temperature of 30˚C. Eggs were dissected daily throughout the incubation period in an iso-

tonic saline solution (0.75% NaCl). In total, two to seven embryos were analyzed per stage giv-

ing a final sample of 57 embryos (Please refer to Table A in S1 File for a detailed specimen list).

Immediate embryo euthanasia was performed using 5ml of 2% lidocaine hydrochloride dis-

solved in the saline solution during dissection. On completion of in vivo photographic docu-

mentation, the embryos were cold fixed in Carson fixative solution for 24-48h and stored in

70% ethanol. All captures were licensed by ICMBio/IBAMA under permit n˚ 55406–1. This

study was approved by the University of Brasilia Ethics Committee for Animal Use (UnBDOC

n˚ 166980/2013).

Fifteen embryos were submitted to Scanning Electron Microscopy in order to have a

detailed visualization of the hemipenial morphological changes during embryonic develop-

ment at different embryonic stages. Samples that had been previously cold-fixed in Karnovsky

Fixative for 24 hours were: immersed in a solution of 2% osmium tetroxide, dehydrated in

crescent solutions of acetone, critical-point dried with CO2 in a Balzers CPD030 and coated

with gold in a Leica EM SCD005 Sputter Coater. Samples were analysed using a JEOL

JSM7000F Scanning Electron Microscope.

General developmental modifications of genitalia were described stage-by-stage, based on

the embryonic staging table of Tropidurus torquatus [29] and the vertebrate staging system

[30].

Adult genitalia preparation and description

A description of genital morphology and an intraspecific comparison were made using both

hemipenes from 20 specimens of Tropidurus torquatus, thus totaling 40 hemipenes, together

with the female internal genitalia of 20 females (detailed specimen lists are provided in the

Supplementary Information section, Tables C and D in S1 Table). All of the specimens were

collected in urban areas of Brasilia, Distrito Federal, Brazil (ICMBio/IBAMA under permits n˚

55406–1). The specimens were euthanized by intraperitoneal administration of lidocaine

hydrochloride (1.5ml at 2% concentration) in accordance with the methodology guide of the

University of Brasilia Ethics Committee (CEUA-UnB).

For the male specimens that did not everted hemipenes during the fixative procedure, we

followed the Pesantes method [31]. A small incision was made at the base of the tail. Both

hemipenes were removed, immersed in 1.5% potassium hydroxide solution for up to three

minutes and manually everted using forceps. After eversion, the hemipenes were washed in a

70% ethanol solution to dilute any remaining potassium hydroxide. Finally, red petroleum

jelly was injected to facilitate ornamentation visualization and a knot was made at the hemipe-

nial base using surgical thread.

Female internal genitalia were obtained by dissection under stereomicroscope of previously

formaldehyde-fixed female specimens deposited in the LACV Scientific Collection. The cloaca

was accessed by exposing the urogenital/digestive tract with a ventral incision in the
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abdominal region. Once exposed, the cloaca was extracted by dissection of the surrounding

external face of the cloacal lips. Finally, the cloaca was transferred to a Petri dish and dissected

along the coronal section plan to exhibit the ventral and dorsal internal faces.

Hemipenial descriptions were made using Klever & Bohme [32] and Dowling & Savage [2]

terminology, with female cloacal terminology in accordance with Sánchez-Martinez et al. [33].

The specimens and corresponding genitals used in this study were deposited in the Labora-

tory of Comparative Vertebrate Anatomy Scientific Collection, Department of Physiological

Sciences, Institute of Biological Sciences, University of Brasilia (LACV/ CFS/IB/UnB). Please

refer to the Supplementary Material for a complete list of the specimens analyzed.

Morphological measurements and statistical analysis

Hemipenes of embryos (n = 19) and adults (n = 40), and internal female genitalia (n = 20)

were photographed under a Nikon SZM460 stereomicroscope coupled with a Cannon Power

Shot digital camera. Morphometric measurements were recorded for the following traits:

hemipenial truncus length (TCL), hemipenial truncus width (TW), hemipenial lobe length

(LL) and hemipenial total length (TTL). The following traits were measured for female cloaca:

proctodeal-urodeal region length (FPUR), urodeal corn length (FUC), and female cloacal total

length (FIGL). All of the measurements were taken using the ImageJ software. Measurements

of the snout-vent length (SVL) were also taken using a caliper rule as a proxy for body size for

embryo and adult specimens (raw data are provided in the Supplementary Information sec-

tion, Tables B, C and D in S1 Table).

Asymmetry between left and right hemipenial traits was tested for adult male hemipenes

using Paired t-tests. Ontogenetic and static allometry was also described for embryonic and

adult hemipenes, in addition to the aforementioned cloacal traits. The allometric coefficient

(b) was estimated as the slope of a linear regression of trait values against SVL [18]. Each trait

was analyzed to determine whether the allometric coefficient was significantly different from

the isometry (b = 1) using the slope test function on Smatr R software package [34,35]. Coeffi-

cient values higher than one indicate positive allometry, while a value lower than one indicates

negative allometry.

Finally, we tested the morphological correspondence of genitalia among sexes using

ANCOVA tests for differences between male-female linear regressions. Differences in allome-

tric coefficients (slope) and male-female body size (intercept) were investigated for each male-

female trait: TCL vs. FPUR, LL vs. FUC, and TTL vs. FIGL. All analysis and graphics were per-

formed using the R software [34,35].

Results

Early development of cloaca and genital primordium

Initial development of the genital-cloacal morphology occurs relatively quickly in the early

post ovipositional stages. External genitalia development begins two days postoviposition

(DPO), at the ovipositional stage (Stage 28). At this stage, presence of a genital swelling at the

ventral-proximal portion of the hind limb buds is distinguishable(Fig 1A and Fig 2A and 2B).

Two pairs of bulbs located ventromedially in the cloacal region arise from the genital swelling

at the 6 DPO (Fig 2C). From stages 31 to 32 (8–11 and 11–14 DPO, respectively), remarkable

modifications occur in the genital-cloacal morphology. At 9 DPO, a condensation of cells

forms an epidermal depression along the region that further will develop into the cloacal open-

ing (Fig 2D). By 10 DPO, the posterior bulbs develop into distinct genital primordia, whereas

anterior bulbs further develop into the anterior cloacal lip, by 11 to 13 DPO, being totally

fused by 14 DPO (Fig 2E and 2F).
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Late development of hemipenes

Late development of the hemipenial morphology is mainly characterized by increased length

of the hemipenial truncus and lobes together with further emergence of ornamentation and

apical disc in the latter stages. By stage 35, the apical region of genital primordia shows a lat-

erally expanded aspect in male genitalia which further develops into two lobes. From this stage

it is possible to distinguish between male and female embryos by the presence of this distal

expansion (Fig 1D).

Apical expansion of the hemipenial truncus protrudes laterally by stage 36 giving origin to

the hemipenial lobes, which undergo a rapid increase in length until stage 37 (Fig 2G and 2H).

Fig 1. Genital development of Tropidurus torquatus. A, stage 29; B, stage 33; C, stage 34; D; stage 35; E, early stage

38; F, late stage 38; G, early stage 39; H, late stage 39; I, stage 40; J, late stage 37; K, stage 39; L, stage 40. Legends: acl,

anterior cloacal lip; ad, apical disc; gp, genital primordia; gs, genital swelling; hcl, hemiclitoris; hl, hind limb; lp, lobe

primordia; pcl, posterior cloacal lip; ss, spermatic sulcus. Scale bar: 0.5mm.

https://doi.org/10.1371/journal.pone.0219053.g001
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The “Y–shaped” hemipenes in stage 37 show a well-marked spermatic sulcus at the hemipenial

truncus which is less marked along the lobes (Fig 2H). At stage 38, lobe length exceeds truncus

length and the spermatic sulcus are now well developed along the lobes (Fig 2I). In the apical

region, each lobe showed a marked constriction, that will give way to the apical disc margins

in the following stage. The spermatic sulcus is fully formed along the lobes at stage 39, ending

on the formed apical disc (Fig 1G and 1H and Fig 2J and 2K). At the end of stage 40, a great

number of pits give rise to the primordium or ornamentation surrounding the lobes (Fig 2J).

Fig 2. Hemipenial development of Tropidurus torquatus under SEM analysis. A, stage 28; B, stage 29; C; stage 30; D,

early stage 31; E, late stage 31; F, late stage 32; G, stage 36; H, stage 37; I, stage 38; J, stage 40; K, stage 41; L, stage 42.

Legends: ab, anterior bud; acl, anterior cloacal lip; ad, apical disc; adc, apical disc constriction; adp, apical disc

primordia; aer, apical epidermal ridge; tr, hemipenial truncus; cop, cloacal opening primordia; cp, calyces primordia;

gp, genital primordia; gs, genital swelling; lb, hind limb bud.; pb, posterior bud; pcl, posterior cloacal lip; pl,

primordium of lobes; ss, spermatic sulcus; ssb, spermatic sulcus borders; ssc, spermatic sulcus constriction. Scale bar:

A-F, 100μm; G-L, 200μm.

https://doi.org/10.1371/journal.pone.0219053.g002
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By the end of stage 41, the hemipenes start the inversion process to the inner side of the cloaca

(Fig 1I and Fig 2L).

In females, modifications in the hemiclitoris are restricted to little increase in size during

embryonic development from stage 35 to stage 41, whereby complete genital inversion occurs

(Fig 1J and 1L).

Adult genital morphology

Tropidurus torquatus adult males show deeply bilobed hemipenes, with lobe length measuring

little more than truncus length (t = 3.797; p = 0.001) (Fig 3C; Table 1). The “Y-shaped” sper-

matic sulcus arises proximally, forking at the level of lobe bifurcation and ending distally at the

apical disc. The hemipenial truncus is nude and slightly thicker than the hemipenial base. Both

sulcate and asulcate faces of the truncus are nude, although marked laterally by the presence of

a flounce that enlarges at the base of the lobes and is continuous with lobe ornamentation. The

lobes are fully ornamented with calyces with the exception of the sulcate region. These calyces

are deeply pronounced on the asulcate surface, decrease in size distally and are greatly reduced

near the apical region (Fig 3A and 3B). The SEM analysis shows the presence of a great num-

ber of reduced papilla surrounding the margins of the calyces, distributed along the whole

lobe. Additionally, characterization of the spermatic sulcus under SEM analysis shows it is

continuous with the apical disc and the presence of a great number of parallel clefts that

Fig 3. Male and female genital morphology of Tropidurus torquatus. Measurements are indicated for the hemipenial truncus,

hemipenial lobes, female proctodeal-urodeal cloacal region (FPUR), and female urodeal corns (FUC). Right hemipenis in (A) ventral and

(B) dorsal view, and female internal genitalia (C). Figure legends: ad, apical disc; gp, genital papilla; int, intestine; lo, left oviduct; os, oviduct

sphincter; ro, right oviduct; uc, urodeal corn; uro, urodeal region; pro, proctodeal region; ss, spermatic sulcus. Scale bar: 1mm.

https://doi.org/10.1371/journal.pone.0219053.g003
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surround the apical disc (Fig 4). Finally, no statistical significance between right and left hemi-

penial traits was observed (Fig 3D–3G; Table 1).

Female internal genital morphology is also marked by its “Y” shape. The cloacal lumen

shows a folded mucosa, with the proximal region, proctodeal-urodeal (FPUR) measuring 4.85

±1.03mm.The distal region, the urodeal corns (FUC), showed a length of 5.23±0.89mm, giving

a total length (FIGL) of 10.08±1.72mm. The urodeal corns are deeply bilobed, comprising

approximately the same length as the proctodeal-urodeal region (t = 1.244; p = 0.2213).

Ontogenetic and static allometry: Male-female genital correspondence

For embryos, the allometric slope for truncus length was not significantly different from 1.0,

indicating isometry, but slopes for lobe and total length were significantly greater than 1.0,

thus suggesting positive allometry during ontogenetic development of these traits (Table 2; Fig

5A). For adults, allometric slopes for truncus length and total length were not significantly dif-

ferent from 1.0, tending, rather to a negative allometry for the total length. On the other hand,

the slope for lobe length was significantly greater than 1.0, thus indicating positive allometry

for this trait (Table 2; Fig 5B). All of the analyzed female genital traits showed negative allome-

try, with slopes significantly lower than 1.0.

Male and female allometric patterns showed significantly different intercept values for all of

the analyzed traits (Table 3). On the other hand, the slopes of the genital traits did not signifi-

cantly differ (Table 3), although the hemipenial lobe length slopes were greater than the uro-

deal corn length slopes (Table 2).

Discussion

Male genitalia displays considerable morphological variation among animals with internal fer-

tilization and exhibit high levels of evolvability in lizards [9]. In the last decades, biologists all

over the world have been interested in explaining the developmental, genetic and evolutionary

processes behind morphological diversity [36]. Although extremely diverse, the squamate

clade is underrepresented with regards to ontogenetic studies, especially for soft tissue organs,

such as hemipenes. Most of the hemipenial studies have focused on morphological and genetic

processes exclusively during early developmental stages [13,37]. In this work, we investigate

the genital morphology of the male Amazon lava lizard—Tropidurus torquatus—following a

morphological and developmental approach, representing the first refined investigation for a

tropidurid lizard. We have quantitatively described the morphology of male and female genita-

lia and demonstrated the correspondence between them. Finally, we showed that static and

ontogenetic allometry along hemipenial traits in this species are the result of a rapid hemipe-

nial growth during the late embryonic stages.

Table 1. A comparison of right and left hemipenial trait values of Tropidurus torquatus.

Trait Right HP Left HP t P
TCL 6.04 ± 0.86 5.89 ± 0.71 0.5434 0.591

TW 2.59 ± 0.41 2.36 ± 0.36 1.7297 0.094

LL 7.90 ± 1.76 8.10 ± 1.44 -0.35245 0.727

TTL 13.94 ± 2.32 13.99 ± 1.85 -0.065255 0.948

Mean and Standard Deviation of: truncus length (TCL); truncus width (TW); lobe length (LL), and total length (TTL) in right and left hemipenes. Asymmetry results (t)
and significance (P).

https://doi.org/10.1371/journal.pone.0219053.t001
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Among tropidurid lizards, morphological investigations of hemipenes are limited to its use

in phylogenetic analysis [38,39]. Moreover, Tropidurus genus hemipenial morphology descrip-

tions are scarce [40]. Even in phylogenetic analyses, hemipenial characteristics have been

underestimated. Frost et al., [38,39] listed the general morphology of the genus Tropidurus
with a combination of three characters: elongated hemipenial lobes, without apical disc and

Fig 4. Adult hemipenis of Tropidurus torquatus under SEM analysis. (A) calyces, (B) apical disc and (C) reduced

papilla. Figure legends: ad, apical disc; cl, calyces; rp, reduced papilla; ss, spermatic sulcus. Scale bar: 100μm.

https://doi.org/10.1371/journal.pone.0219053.g004

Table 2. Summary of the statistics for ordinary least square (OLS) regression of traits vs. body size (SVL).

Embryo hemipenes (n = 19) b r2 P
Truncus length 0.514 0.232 0.7643

Lobe length 1.469 0.587 <0.001

Total length 1.093 0.605 0.0359

Adult male hemipenes (n = 20) b r2 P
Truncus length 0.645 0.162 0.035

Lobe length 1.164 0.415 0.002

Total length 0.841 0.442 0.195

Female cloaca (n = 20) b r2 P
Proctodeal-urodeal length 0.535 0.047 <0.001

Urodeal corn length 0.165 0.007 0.008

Total length 0.335 0.031 0.007

Allometric coefficient (b), coefficients of determination (r2) and significance deviation from a slope of one (P).

https://doi.org/10.1371/journal.pone.0219053.t002
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with calyces starting at the level of the lobes. Our data are in accordance with this description

with regards to lobes and ornamentation. However, we note that T. torquatus (and some other

species not formally included in this work, i.e. T. oreadicus and T. hispidus) have a distinct disc

on the apical region of each lobe (Fig 4B). A possible explanation for these dissonant results

could arise from the difficult reversibility of the apical region during hemipenial preparation

of fixed specimens.

Development

Recent work has demonstrated that hind limb and hemipenial buds share the same morphoge-

netic basis [41]. This recent finding has mitigated questions regarding the degree of pleiotropy

in early developmental stages driving evolutionary modifications relating to hind limbs and

hemipenes in lizards [3,15]. The development of the hemipenial buds and cloacal lips in Tropi-
durus torquatus is congruent with other Squamate species, showing an association between

these structures in early developmental stages [13,29,37]. Similar to other recently investigated

species, Anolis carolinensis and Python regius, our SEM analysis shows a close association

between hind limb buds and genital swelling (Fig 2A–2F) [13,37].

The independent primordia for genital and anterior cloacal lip buds, first reported in the

general embryonic staging table of Tropidurus torquatus [29], is now confirmed (Figs 1A–2C

and Fig 2A–2E). Our results show that the genital swelling gives rise to genital and anterior

cloacal buds, which follow independent developmental trajectories. Moreover, the develop-

ment of genital primordia posteriorly to the anterior external cloacal buds occurs as in the

other investigated squamates [13,37]. However, we did not exclude the possibility that the

anterior cloacal buds may participate in genital bud formation in other squamate lineages due

to the particular aspects of genetic regulation of hemipenial-cloacal development [13,41], and

especially the possibility of migration of the genital bud in early embryogenesis [12]. Further

developmental studies for underrepresented squamate lineages may clarify the degree of struc-

tural association during the development of the genital primordia and external cloacal

structures.

Detailed information about late hemipenial development is even scarcer. Our SEM analysis

reveals that all ornamental structures found in adult morphology begin their development

during embryonic development, especially the primordia of the calyx and the apical disc struc-

tures (Fig 2J–2L). As such, post-embryonic development of hemipenes in Tropidurus torquatus
may be restricted to its growth and remodeling of ornamental structures raised in late embry-

onic stages. A similar situation occurs in the gymnophthalmid lizard Calyptommatus

Fig 5. Regressions of log-transformed traits vs. log-transformed body size (SVL) for genital traits of Tropidurus torquatus. A-C: regression for

hemipenial traits of embryos (A), hemipenial traits of adults (B), and female internal genitalia (C). D-F: comparison of male-female trait regressions for

hemipenial truncus vs female proctodeal-urodeal region (D), hemipenial lobes vs. female urodeal corns (E), and hemipenial total length vs. female internal

genitalia total length (F). Figure legends: FIGL, female internal genitalia total length; FUC, female urodeal corns; FPUR, female proctodeal-urodeal cloacal

region; HL, hemipenial lobes; HPL, hemipenes total length; HT, hemipenial truncus.

https://doi.org/10.1371/journal.pone.0219053.g005

Table 3. ANCOVA results for difference in genitalia between sexes. F-statistics, and P-values for each trait

analyzed.

Trait Slope Intercept

F P F P
Hemipenial truncus vs. female proctodeal-urodeal region 0.029 0.866 18.272 <0.001

Hemipenial lobes vs. female urodeal corns 3.278 0.079 23.970 <0.001

Hemipenial length vs. female internal genitalia length 1.148 0.291 38.231 <0.001

https://doi.org/10.1371/journal.pone.0219053.t003
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sinebrachiatus, in which hemipenes show ornamental structures in late developmental stages,

recognized even under stereoscopic analysis [42]. Once ornamental structures have been rec-

ognized as crucial for differentiation between cryptic species with hemipenial variation

[5,6,43], late embryological studies may explain this variation and should be considered in

studies of hemipenial evolution driven by processes such as natural and sexual selection

[15,44].

Is the allometric pattern of hemipenial lobes in Tropidurus lizards driven

by male-female genital correspondence?

The size and shape of hemipenial lobes may itself be a source of general variation affecting gen-

ital morphology among Squamates [1,4,5,45]. The enlarged lobe condition is commonly found

in different squamate groups [3]. Moreover, among tropidurid lizards, hemipenial lobes are

short in all Stenocercus and long in all Tropidurus and other related genera [38,39].

This work presents the first study of ontogenetic hemipenial allometry among squamates

and constitutes the second of static allometry in hemipenial traits. The static allometric pattern

of anole lizards, a subspecies of Anolis graham, was recently published [14]. Similar to A. gra-
hami, Tropidurus torquatus shows an isometric pattern for hemipenial total length, with a ten-

dency towards negative allometry, and negative allometry for truncus length (Table 2).

However, for T. torquatus, the allometric pattern for the hemipenial lobes is positive and is

driven by ontogenetic allometry, whereby the lobes undergo rapid growth in late embryonic

stages (Table 2).

Considering that allometric results of genital traits are a predictor of sexual selection

[10,23,36,46,47], the allometric pattern found among Tropidurus hemipenial lobes could be

explained by directional selection over this trait, caused as an action of two non-exclusive

mechanisms: female cryptic choice and genital coevolution, as following discussed.

The direct interaction of genitalia during copula is directly related to reproductive success,

especially when this process is led by female choice [24]. The general “female cryptic choice”

hypothesis predicts that male genitalia has a stimulatory function and females choose to copu-

late with males whose hemipenial morphology better fulfils that stimulating function [47].

Likewise, a growing number of works have discussed genital coevolution under this hypothesis

[24,25,48–51]. Morphological characterization of the vagina-cloacal region of Tropidurus liz-

ards found a large number of epithelial glands surrounding the anterior part of the urodeal

region [33]. So, if female cryptic choice is acting on Tropidurus genital evolution, the long

hemipenial lobes may function as a stimulatory structure of female urodeal glands, constitut-

ing an indicator of good genes [52] or even serving as an efficient conductive system by which

seminal fluid may reach the oviductal opening (Fig 3C).

Genital morphological interaction, be it congruent or antagonistic, is expected to reflect

consequences on genitalia evolution, reproductive success, and speciation [24,51,53]. More-

over, the significance of studies of genital interaction during copula can be recognized from

morphological, physiological, ecological and evolutionary perspectives [24,54]. Using artificial

hemipenial eversion inside female cloaca and micro CT scanning in the garter snake Thamno-
phis radix, Brennan [24] showed that interaction of genitalia could occur even when unex-

pected. In this species, the hemipenial “T” shape turns to a “Y” when inflated inside the female

cloaca, whereby the hemipenial lobes reach the vaginal pouch. As in Tropidurus torquatus (Fig

3), the degree of this morphological interaction may have a significant impact on insemination

success from a stimulatory perspective.

Evidence for different tetrapod groups including lizards [55], demonstrates that the cloacal

urodeal corns region has a phagocytic function with respect to spermatozoa, acting as a
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physiological barrier in sperm selection (for a brief review see Nogueira et al. [55].Therefore, the

occurrence of phagocytic cells specifically on the cloacal urodeal corns further supports the need

for evolutionary strategies that better fit this post-copulatory selective mechanism. This becomes

especially true for species whose female oviductal opening is located distal to the urodeal corns,

which is the case for the Tropidurus species studied (this study, Fig 3C; Sánchez-Martı́nez [33]),

thus representing an additional source of selective pressure for hemipenial evolution [48]. More

comparative cloacal studies are needed to further address this additional hypothesis of genital

coevolution among lizards, as this study stands as the first quantitative evidence.

In reference to the demonstrated correspondence between the male and female genital mor-

phology of Tropidurus lizards (Table 3; Fig 5D–5F), and assuming the possibility of hemipenial

variation led by plasticity and ontogenetic effects [11,56,57], males with large lobes could benefit

in both aspects. Firstly, the major stimulatory capability of the urodeal glands and, secondly by

the amount of secretion produced by these glands which can cause a mechanical and/or bio-

chemical difficulty for semen from future copulations. Evidence of female mate choice and

sperm competition among lizards has been demonstrated in some case studies [10,58–60]. In

the polymorphic phrynosomatid lizard U. stansburiana, it was is demonstrated that genital

morphology is particularly associated with mating strategy, whereby “usurper male morphs”

evolve a wider apical horn in contrast to other morphs [10]. To date, it has been demonstrated

that for T. torquatus, male fitness plays a decisive role in the formation of harems [61]. However,

experiments to better understand female choice and male territorial dominance are still lacking.

Despite the positive allometric pattern found in hemipenial lobes, the hemipenial total

length in Tropidurus torquatus was determined as isometric, tending towards negative allome-

try (Table 2), supporting the “one-size-fits-all” theory [18,22]. This hypothesis predicts that

males would be selected to have genitals that fit the average size of female genitals in the popu-

lation, regardless of body size [18]. Thus, despite a possible directional selection in lobe size,

the overall hemipenial length in T. torquatus could be destabilizing sexual selection, corrobo-

rating the finding in Anolis grahami populations [14]. Moreover, it is plausible that different

factors such as pleiotropy, natural and sexual selection, and male-female genital coevolution

could be antagonistically driving the evolution of particular traits of Tropidurus male genitalia

as argued in recent studies [15,41,48,51,62].
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