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Abstract
Background: Patients with chronic kidney disease (CKD) 
have an increased risk of osteoporotic fractures, which is due 
not only to low bone volume and mass but also poor micro-
architecture and tissue quality. The pharmacological and 
nonpharmacological interventions detailed, herein, are po-
tential approaches to improve bone health in CKD patients. 
Various medications build up bone mass but also affect bone 
tissue quality. Antiresorptive therapies strikingly reduce 
bone turnover; however, they can impair bone mineraliza-
tion and negatively affect the ability to repair bone micro-
damage and cause an increase in bone brittleness. On the 
other hand, some osteoporosis therapies may cause a redis-
tribution of bone structure that may improve bone strength 
without noticeable effect on BMD. This may explain why 
some drugs can affect fracture risk disproportionately to 
changes in BMD. Summary: An accurate detection of the un-
derlying bone abnormalities in CKD patients, including bone 
quantity and quality abnormalities, helps in institution of ap-

propriate management strategies. Here in this part II, we are 
focusing on advancements in bone therapeutics that are an-
ticipated to improve bone health and decrease mortality in 
CKD patients. Key Messages: Therapeutic interventions to 
improve bone health can potentially advance life span. Em-
phasis should be given to the impact of various therapeutic 
interventions on bone quality. © 2021 The Author(s)

Published by S. Karger AG, Basel

Introduction

There is an increased risk of fracture in the patients 
with chronic kidney disease (CKD) [1]. Studies have 
demonstrated an increased risk of hip fracture over the 
past decades despite an intensive focus on treatments for 
renal osteodystrophy (ROD) [2, 3]. The bone quantity, 
quality, and remodeling abnormalities are important fac-
tors that determine the treatment method. Treatments 
only focused on the abnormal bone quantity of CKD are 
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thus not likely to be efficacious in preventing fractures 
due to many other risk factors that affect bone quality and 
remodeling [4]. There are different nonpharmacological 
and pharmacological means to improve bone quantity, 
quality, and function, which lead to better outcomes with 
a reasonable approach. Therefore, there is a lot to learn 
about the pathogenesis and treatment of bone disease in 
CKD patients.

Nonpharmacological Approach

Bone quality in CKD patients is affected not only by 
vitamin D deficiency and hyperparathyroidism but also 
by comorbidities, such as myopathy, neuropathy, and 
malnutrition along with inactivity. All these play a role in 
bone loss, muscle weakness, falls, and fracture. Nonphar-
macological approaches, such as smoking cessation, re-
ducing alcohol consumption, weight-bearing/resistance 
exercise, and physical therapy can technically improve 
bone quality and muscle power, resulting in reduced falls 
and fragility fractures [5–7].

Smoking negatively affects bone health by inducing 
more bone resorption and mineralization defect [8]. In 
addition, predialysis CKD patients, who are smokers have 
higher phosphate levels independent of FGF23 and renal 
function [9]. Concerning the acute detrimental effects of 
excess alcohol consumption, Asadipooya and Graves re-
ported that excess alcohol consumption caused transient 
osteoporosis. Alcohol can directly affect bone by reduc-
ing osteoblasts and increasing osteoclasts [10]. Moreover, 
it can indirectly cause systemic alterations, including liv-
er damage, pancreatic damage, muscle atrophy, neuropa-
thy, hormonal changes (PTH, sex hormones, and growth 
hormone), oxidative stress, and inflammation.

The progression of CKD is associated with physical de-
terioration, and thus encouraging exercise and rehabilita-
tion is pivotal [11]. However, the optimal level of exercise 
for CKD patients has not been completely determined. The 
key points for CKD patients are the individualization of an 
exercise training program based on baseline functional sta-
tus, consistency of participation, and assessment of pro-
gression [6]. The main concern is cardiovascular status, 
and it is important to consider the American Heart Asso-
ciation recommendations [12]. It is recommended to start 
regular exercise slowly 2–3 times a week, as tolerated, and 
if possible under supervision then increase to 3–5 times a 
week. This includes weight-bearing, muscle reinforce-
ment, and balance enhancement [6]. Exercise in CKD pa-
tients generally improves muscle power, mass, and func-

tion. It substantially reduces systemic inflammation, in ad-
dition to the improvement of nutrition, body mass index, 
and BMD in CKD including dialysis patients [6, 13]. Lean 
body mass positively correlates with total bone mineral 
content and BMD in peritoneal dialysis patients [14]. 
Grzegorzewska and Młot-Michalska [15] reported that to-
tal body mass correlated better with femoral neck BMD in 
dialysis patients than body mass index. However, Fournie 
et al. [16] revealed that fat mass is negatively correlated 
with bone quality including cortical and trabecular thick-
ness while lean body mass did not correlate with total vol-
umetric BMD, measured by HR-pQCT. Furthermore, ex-
ercise has anabolic effects to prevent muscle wasting [17] 
and moreover can improve bone formation markers in he-
modialysis (HD) patients [18]. Additionally, Marinho et al. 
[19] reported that BMD significantly improved after 24 
weeks of resistance exercise in HD patients.

Exercise, in general, modifies calcium homeostasis 
and calcium-related hormones, such as PTH, vitamin D 
metabolites, and calcitonin. It decreases ionized calcium 
and increases PTH and vitamin D metabolite levels. The 
change in PTH, which is determined by type, duration, 
and intensity of exercise, can potentially have bone ana-
bolic effects [20]. It increases bone turnover and metabo-
lism by affecting growth factor signals and endocrine reg-
ulators of bone [21]. Furthermore, aerobic exercise dur-
ing HD causes peripheral vasodilation and thus 
hypothetically improves solute removal during dialysis. 
However, the effects of exercise on dialysis adequacy 
(Kt/V) are controversial [22, 23]. Orcy et al. [24] reported 
that exercise improved phosphate removal without af-
fecting urea, creatinine, and potassium clearance.

Exercise is a downregulator of sclerostin, which inhib-
its bone formation. Sclerostin levels predicted bone loss 
in dialysis patients [25] and correlated inversely with 
physical activity in CKD stage 3 and 4 patients [26]. Nev-
ertheless, exercise in CKD rats is accompanied by a re-
duction of serum sclerostin and improvement of bone 
microarchitecture [27]. However, the sclerostin levels did 
not significantly change after exercise in CKD stage 3–5 
patients including those on dialysis [18, 26].

High-calorie diet in CKD patients, despite causing 
weight gain, is associated with less urea generation. In ad-
dition, weight loss and malnutrition correlated with wors-
ened outcomes in CKD patients [28]. However, high-fat 
diets can reduce calcium absorption and consequently el-
evate 1,25(OH)2D, PTH, and phosphate absorption in 
CKD patients [28] and experimental animals [29]. An en-
ergy-dense diet rich in phosphate can induce a positive 
phosphate balance and consequently increases FGF23 and 
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Table 1. Treatment modalities of mineral bone disorders in CKD patients

Treatment modalities Role in bone metabolism

Nonpharmacological

Smoking cessation Smoking induces bone resorption and mineralization defect
Smoking increases phosphorus levels in predialysis CKD patients

Limiting alcohol Reduces osteoblast and increases osteoclast
Systemic alterations

Exercise as tolerated Anabolic effects: prevents muscle wasting, improves BMI and BMD
Reduces inflammation
Improves Ca and PO4 homeostasis
Experimentally improves bone microarchitecture in CKD rats
Downregulates sclerostin production

Diet (micronutrients, vitamins, antioxidants, plant-based food, fibers, 
polyunsaturated fatty acids, and Mediterranean)

Pro-inflammatory diet (high-calorie nutrients) is associated with lower BMD and 
higher fracture risk
Plant sources of proteins can help bone collagen without inducing acid load
Low-protein diet with ketoanalogues may help CKD parameters

Pharmacological

Phosphate-lowering therapies (calcium carbonate, calcium acetate, 
sevelamer, lanthanum, tenapanor)

First line in CKD patients
Improve SHPT and BMD in CKD patients
Calcium containing binders may induce LTBD more than sevelamer and 
lanthanum
Lanthanum improves bone turnover, bone volume, mineralization of periosteal 
surface and endocortical surface in dialysis patients

Vitamin D and VDRA (calcitriol, paricalcitol, doxercalciferol, 
alfacalcidol)

First-line therapy in CKD with SHPT and vitamin D deficiency
Higher risk of hypercalcemia and hyperphosphatemia with VDRAs than  
vitamin D
Maintaining vitamin D at a balanced level, even combination of vitamin D and 
VDRA is helpful for SHPT and bone markers
VDRAs may induce LTBD

Calcimimetics (cinacalcet and etelcalcetide) Control SHPT and fracture risk
Decrease high BTMs toward normal
Etelcalcetide might be more effective in reducing the bone turnover in patients 
with severe SHPT
Might have PTH independent anabolic bone effects

Antiresorptive therapies

BPs Mainly studied in osteoporotic early CKD patients without evidence of LTBD
Longer half-life in advanced stages of CKD and may induce LTBD
Decrease bone loss with less impact on bone quality

Denosumab Not renally excreted and so does not accumulate in CDK patients
Safely improves BMD and reduces fractures in postmenopausal women with 
CKD stage 1–4
Increases BMD and decreases iPTH in dialysis patients with iPTH >1,000 pg/mL
Reduces bone turnover more than BPs
Might cause profound hypocalcemia especially in advanced CKD

Gonadal hormones and SERM (sex hormones, raloxifene, and 
bazedoxifene)

Raloxifene increases BMD and improves bone quality in postmenopausal women 
with CKD
Bazedoxifene improves renal function, BMD, and phosphate excretion in 
postmenopausal women
Bazedoxifene reduces BTMs and fractures in postmenopausal women with CKD
Similar vertebral fractures risk reduction compared to BPs
Transdermal HRT in premenopausal dialysis women improves lumbar spine 
BMD

Calcitonin Combined with vitamin D, increases BMD
Calcitonin prevents the bone loss after kidney transplant
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PTH and decreases calcitriol levels [28]. Diet that includes 
certain micronutrients, vitamins, antioxidants, plant-
based food, fibers, polyunsaturated fatty acids, and Medi-
terranean diet is associated with better bone health and 
less osteoarthritis [30]. They even can lower the risk of 
CKD and delay CKD progression [31]. This can impact 
bone health through improvement of calcium, phosphate, 
and PTH regulation. Contrarily, high-calorie nutrients in-
cluding trans fat, saturated fat, and cholesterol can lead to 
chronic inflammation. This can potentially worsen the 
bone health [30]. The effects of high-protein diet with 
high endogenous acid production and chronic metabolic 
acidosis on BMD and fracture are controversial [32, 33]. 
Plant rather than animal sources of proteins can help bone 
collagen without inducing more acid load. However, a 
meta-analysis did not show a benefit of soy protein versus 
animal protein on BMD, BTMs, and fracture [34]. Never-
theless, most studies were observational studies or inter-
ventional trials with a small number of enrollees, and 
hence further studies warranted to clarify the exact effects 
of diet on bone health. Ascorbic acid supplements tran-
siently increased serum calcium level, without significant-
ly affecting serum phosphate and PTH levels. Its use in 
CKD patients is not supported [35].

In a recent meta-analysis, low-protein diet supple-
mented with keto-analogs seemed to help kidney function 
and CKD-MBD parameters [36]. Furthermore, keto-ana-
log supplementation in CKD patients is associated with 
improvement of bone metabolism and insulin sensitivity 
[37]. This might be similar to the effects of low-protein 
and vegetarian diet in CKD patients [38]. The pharmaco-
logical and nonpharmacological bone quality interven-
tions in CKD patients are summarized in Table 1.

Pharmacological Approach

Hormonal and biomarker changes are the main targets 
of pharmacological approaches in CKD-MBD patients. 
In addition, we must consider the state of bone turnover, 
bone density, potential of mineralization defect, microar-
chitecture changes, and other indicators of bone quality 
changes, together with the responsible mechanisms to be 
able to institute the right therapeutic approach. Herein, 
we are trying to focus on the impact of various therapeu-
tic interventions on bone quality in CKD patients. The 
mechanisms of action of bone pharmacotherapeutics are 
illustrated in Figure 1.

Treatment modalities Role in bone metabolism

Strontium Low doses can stimulate bone formation, but high doses may cause 
mineralization defect/osteomalacia in CKD patients

Anabolic therapies

Teriparatide and abaloparatide Improve bone formation in patients with LTBD
Improve or maintain lumbar spine BMD
Reduce the fracture rate in postmenopausal women with osteoporosis and mild 
to moderate CKD

Romosozumab Not studied in CKD patients, and there is a concern of increased extraskeletal 
calcification
Alendronate might have a protective impact in reducing romosozumab CV 
events

New therapies

Cathepsin K antagonists Provide potential role as antiresorptive therapy in metabolic bone disorders
Was not approved by FDA, due to a concern of increased risk of cerebrovascular 
events

Anti-FGF23 antibodies Approved by the FDA for treatment of X-linked hypophosphatemia
May lead to hyperphosphatemia in early CKD patients
Not enough evidence to use in advanced CKD patients

CKD, chronic kidney disease; LTBD, low turnover bone disease; VDRA, vitamin D receptor activator; P, phosphate; FGF23, fibroblast growth factor 23; 
VDRA, vitamin D receptor activator; BPs, bisphosphonates; SERMs, selective esterogen receptor modulators; BMI, body mass index.

Table 1 (continued)
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Calcium Supplements
The use of calcium supplements was advocated be-

cause of their possible benefits to bone health. In a dou-
ble-blinded, placebo-controlled trial, increased habitual 
calcium intake lowered markers of bone turnover [39]. In 

a meta-analysis of randomized clinical trials (RCTs), the 
use of supplements that included calcium, vitamin D, or 
both compared with placebo was not associated with a 
low risk of fractures among older patients [40].

Fig. 1. Mechanisms of action of bone pharmacotherapeutics: vita-
min D stimulates the release of 23 FGF23 and sclerostin from os-
teocytes. Sclerostin has an inhibitory effect on Wnt signaling and 
OPG production from osteoblasts. Romosozumab blocks scleros-
tin. DKK1 is another inhibitor of the Wnt pathway. OPG is a decoy 
receptor that binds RANK-L and prevents stimulation of OCLs. 
FGF23 inhibits phosphate reabsorption in the kidneys, decreases 
activation of vitamin D and PTH release. Calcimimetics and VDRA 
inhibit the production of PTH. P has a stimulatory effect on PTH, 
FGF23 as well as sclerostin release and an inhibitory effect on acti-
vation of vitamin D. Denosumab binds RANK-L and consequently 
inhibits osteoclastic differentiation. BPs inhibit the maturation of 
osteoclast precursors and bone resorption. SERMs act on osteo-
blasts and stimulate the production of OPG and consequently in-

hibit osteoclast function. Teriparatide and abaloparatide have ana-
bolic effects on bone and stimulate both osteoblastic activity and 
bone turnover. Arrow with plus sign denotes stimulatory effect; red 
dotted line indicates inhibitory effect; arrow without plus sign de-
notes expression or release of a substance. MSCs; RANK-L receptor 
(RANK); 1,25 di-hydroxy vitamin D3 (1,25 [OH]2 D3); HSCs; 
FPPS; and PTHRP. P, phosphate; FGF23, fibroblast growth factor 
23; OPG, osteoprotegerin; DKK1, dikkopf-related protein 1; 
RANK-L, receptor activator of nuclear factor kappa B ligand; OCL, 
osteoclasts; PTH, parathyroid hormone; VDRA, vitamin D recep-
tor activator; BPs, bisphosphonates; SERMs, selective esterogen re-
ceptor modulators; MSCs, mesenchymal stem cells; HSCs, hema-
topoietic stem cells; FPPS, farnesyl pyrophosphate synthase; 
PTHRP, parathyroid hormone-related protein analog.
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There was a misconception that CKD patients are nec-
essarily calcium deficient but there is a strong evidence 
that they are in a positive calcium balance, especially those 
on high-calcium diet [41] or calcium supplements [42]. 
Moreover, positive calcium balance can lead to extraskel-
etal deposition of calcium in the myocardium, small, and 
large arteries leading to increased cardiovascular risk [43]. 
Possibility of positive calcium balance and increased ex-
traskeletal calcification should be taken in consideration 
while prescribing calcium supplements to CKD patients.

Phosphate Binders
Hyperphosphatemia participates in the development 

of bone fragility directly by suppressing 1-alpha-hydrox-
ylase activity and indirectly by increasing PTH, FGF23, 
and sclerostin levels [44]. There is a positive correlation 
between serum phosphorus levels and fracture risk in 
healthy subjects [45] and CKD patients [44, 45]. Of note, 
posttransplant hypophosphatemia has also been shown 
to predispose to osteoporosis by impairing osteoblasto-
genesis and inducing osteoblast apoptosis [46].

The KDIGO guideline recommends lowering serum 
phosphorus levels toward the normal range in CKD pa-
tients by dietary phosphate restriction and using phos-
phate-lowering therapies. Treatment of hyperphosphate-
mia inhibits the oversecretion of PTH and the develop-
ment of high turnover bone disease (HTBD). There are 
different forms of phosphate-lowering therapies, includ-
ing calcium-containing (calcium carbonate and calcium 
acetate) and noncalcium-containing binders (sevelamer, 
lanthanum, ferric citrate, and sucroferric oxyhydroxide). 
More recently, tenapanor (inhibitor of intestinal sodium/
hydrogen exchanger 3, which blocks paracellular trans-
port of phosphate from the intestinal lumen) has been 
approved for the treatment of hyperphosphatemia in 
CKD patients [44].

Phosphate binders have been shown to have variable 
effects on BMD in moderate CKD patients. Calcium-con-
taining phosphate binders have been shown to decrease 
[47] or increase BMD [48]. However, Block et al. [48] re-
ported that phosphate binders when evaluated together 
(calcium acetate, lanthanum carbonate, and sevelamer 
carbonate) improved annual lumbar spine BMD mea-
sured by QCT. It is unclear if these changes in BMD trans-
late to improvement in bone quality and fracture risk.

Raggi et al. [47] reported that calcium-containing phos-
phate binders in HD patients led to a decrease in thoracic 
vertebral trabecular and cortical bone attenuation mea-
sured by CT. This was associated with lower bone turnover 
compared to sevelamer in this study. The data about cor-

relations between calcium-based phosphate binders and 
low turnover bone disease (LTBD) are inconsistent [49–
51]. Barreto et al. [50] and Ferreira et al. [51] found no dif-
ference in bone turnover or other bone histopathologic pa-
rameters using calcium containing phosphate binders 
compared to sevelamer in dialysis patients. However, Fer-
reira et al. [51] observed no differences in mineralization, 
but increase in bone formation besides improvement of 
trabecular architecture in sevelamer treated patients.

We have previously reported that lanthanum leads to 
higher bone turnover and volume in HD patients in com-
parison to calcium-containing phosphate binders [49]. 
This can be related to an improvement [52, 53] or preven-
tion [54] of LTBD in HD patients. Zhang et al. [55] re-
ported that in diabetic dialysis patients with LTBD, lan-
thanum improved BMD accompanied by an increase in 
BTMs and iPTH compared to calcium carbonate. Lantha-
num increases mineralization of periosteal surface and 
endocortical surface [53]. Furthermore, the BMD im-
provement could be due to accumulation of lanthanum 
in bone [52], although other studies reported this deposi-
tion is negligible [49, 56]. The long-term effects of lantha-
num on fracture risk in CKD patients are unclear.

Vitamin D and Vitamin D Receptor Activators
Vitamin D attracted considerable attention because of 

its roles in calcium homeostasis, bone and muscle metabo-
lism, inflammation, and PTH [57]. CKD patients have 
higher prevalence of vitamin D deficiency, which is not 
only associated with SHPT and HTBD but also correlates 
with low BMD, muscle weakness, and increased risk of falls 
and fracture [58]. Vitamin D deficiency in CKD patients 
reduces bone formation, increases subperiosteal resorp-
tion, and leads to bone demineralization and bone loss 
[59]. Vitamin D supplementation is a first-line therapy in 
CKD patients with low vitamin D levels and SHPT. It has 
a little effect on PTH and BTMs and is associated with low-
er risk of hypercalcemia and hyperphosphatemia than vi-
tamin D receptor activators (VDRAs) [58]. In addition, ac-
tivation of vitamin D seemed to continue even in dialysis 
patients, as supplementation with native vitamin D in HD 
patients increased 1,25(OH)2D levels [60]. This could be 
due to extrarenal activity of 1-alpha-hydroxylase [58]. Of 
note, observational studies are the main source of the jus-
tification of vitamin D supplementation in CKD patients 
and the optimal level besides its effect on bone density, ar-
chitecture, quality, and fracture needs more studies. Re-
markably, African Americans with CKD had lower 25(OH)
D and higher PTH levels [61], but higher BMD [62] and 
lower fracture rate compared to Whites [63].
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VDRAs (calcitriol, alfacalcidol, paricalcitol, and dox-
ercalciferol) can effectively reduce PTH and improve 
bone histomorphometry in CKD stage 3–5 patients [64]. 
Six-month use of paricalcitol increased lumbar spine 
BMD, decreased bone remodeling, and mineral loss along 
with reducing PTH in kidney transplant recipients with 
SHPT [65]. Their effects on PTH reduction was less com-
pared to cinacalcet and they may lead to hypercalcemia, 
hyperphosphatemia, elevation of FGF23 [64], and in-
crease in sclerostin level [66]. In addition, VDRA can in-
duce LTBD [64]. In a small 12-month placebo-controlled 
RCT, calcitriol changed the spectrum of the bone disease 
from HTBD to LTBD in CKD patients prior to dialysis 
[67]. Furthermore, there is a potential risk of coronary 
calcification with VDRA use [68].

Generally, vitamin D should be kept at well-balanced 
levels to maintain the structural integrity of bone, espe-
cially in CKD patients [58]. Vondracek and Hoody rec-
ommended maintaining 25-OH vitamin D levels between 
30 and 50 ng/mL, with native vitamin D and/or VDRA in 
advanced CKD patients. They highlighted the need for 
RCTs evaluating the safety and efficacy of combination 
therapy [69].

Calcimimetics (Cinacalcet, Evocalcet, and Etelcalcetide)
Calcimimetics reduce PTH synthesis and secretion by 

enhancing the sensitivity of calcium-sensing receptors in 
parathyroid glands leading to reduction of high PTH-in-
duced outflow of calcium and phosphate from bone [70]. 
Cinacalcet has favorable effects on HTBD in dialysis pa-
tients. It reduced PTH, BTMs, and improved histological 
parameters of bone turnover [71]. The effect of cinacalcet 
on fracture is uncertain, but it decreases the need for 
parathyroidectomy [72]. Moreover, it has a better PTH 
reduction efficacy than vitamin D and VDRAs in CKD or 
HD patients with SHPT [73, 74].

Etelcalcetide is the first FDA approved injectable calci-
mimetic. Etelcalcetide was superior to placebo and even 
other calcimimetics (cinacalcet and evocalcet) in the re-
duction of PTH in CKD patients with SHPT [74], with 
more pronounced reductions in serum FGF23 and BTMs 
than placebo [75] and cinacalcet [76]. Moreover, its effect 
was sustained with no new safety concerns after its use for 
1 year [77]. It may improve adherence to therapy with pro-
gressively declining PTH, phosphorus, and alkaline phos-
phatase over 1-year of treatment [78]. Etelcalcitide effec-
tively lowered serum FGF23 and BTM levels in a post hoc 
analysis of a Japanese multicenter study in HD patients 
with SHPT [79]. To date, there is no clinical data regard-
ing the impact of etelcalcetide on bone histopathology. 

However, it is experimentally demonstrated that etelcal-
cetide enhanced osteoblast activity through a non-PTH-
dependent pathway [80], besides reducing bone turnover, 
mineralization defect, and marrow fibrosis with favorable 
effects on bone structure and strength [81]. It is debatable 
if calcimimetics exert direct effects on bone. This might 
open new clinical perspectives to study the impact of var-
ious forms of calcimimetics on bone in CKD patients.

Antiresorptive Therapies
Bisphosphonates
Bisphosphonates (BPs) accumulate in the active bone 

remodeling sites, usually during enhanced bone turnover, 
increase osteoclast apoptosis, and thus suppress bone re-
sorption. They are mainly used in osteoporosis manage-
ment in nonadvanced CKD patients without evidence of 
LTBD. Since BPs are cleared by the kidney, they accumu-
late in CKD patients and can induce LTBD. Furthermore, 
several studies reported that some BPs, particularly zole-
dronic acid, have deleterious effects on kidney function. 
They can induce collapsing focal segmental glomerulo-
sclerosis and/or tubular toxicity [82]. This may be revers-
ible upon discontinuation of medication or switching to 
other antiresorptives, such as denosumab [83]. Moreover, 
they also increase sclerostin production that might de-
crease bone formation through inhibition of the Wnt sig-
naling pathway [84]. However, they increase serum PTH 
level in postmenopausal HD patients [82]. Alarkawi et al. 
[85] in a large recent retrospective study reported that BPs 
decreased fracture risk and may have a survival benefit in 
advanced CKD patients with prior history of fractures.

In kidney transplant recipients, BPs increased lumbar 
spine and femoral neck BMD [86], but their outcomes on 
fracture reduction were heterogenous [86, 87]. In a pooled 
analysis of 9 trials, risedronate improved BMD, except at 
the femoral neck in patients with severe CKD. In addition, 
it reduced vertebral fractures in CKD patients [88]. To the 
contrary, in a meta-analysis BPs did not lower the fracture 
rate among kidney transplant recipients and stage 3 or 4 
CKD patients [87]. In 4 Japanese placebo-controlled 
RCTs, risedronate had improved BMD, especially at the 
lumbar spine, and suppressed BTMs with similar degree 
of changes in patients with different stages of CKD [89]. 
Preclinical studies showed that BPs improved bone mass, 
mineralization, cortical mechanical properties, and bone 
strength [82]. Toussaint et al. [90] reported that alendro-
nate increased lumbar spine BMD, but not femoral neck 
BMD, and reduced fracture risk, but not significantly, in 
women with stage 3–4 CKD. Ward et al. [91] reported BPs 
improved trabecular bone structure and bone stiffness in 
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postmenopausal osteoporotic women up to 16 years. 
However, data regarding the impact of BP on bone qual-
ity in CKD patients are lacking. Nevertheless, the concern 
pertaining to development of adynamic bone disease and 
BPs efficacy and safety in advanced CKD patients remains 
challenging. KDIGO guideline recommends BP usage in 
CKD stage 3–5 with biochemical abnormality and low 
BMD and/or low trauma fracture with consideration of 
CKD progression, reversibility of biochemical abnormali-
ties, and bone biopsy if needed [92].

Denosumab
Denosumab is a monoclonal antibody to receptor acti-

vator of nuclear factor κB ligand (RANKL). It is a potent 
antiresorptive medication, cleared by the reticuloendo-
thelial system, and does not accumulate in the setting of 
kidney dysfunction. It should be avoided in patient with 
CKD and LTBD [93]. Denosumab increases BMD in CKD 
patients who had received kidney transplantation [94]. 
Furthermore, it increases BMD and reduces risk of frac-
ture in women with mild to moderate renal failure (CKD 
stage 2–3). Long-term treatment with denosumab in pa-
tients with mild to moderate renal insufficiency did not 
affect the kidney function and were not associated with 
higher adverse events, including hypocalcemia, during 7- 
or 10-year treatment [95]. Moreover, in dialysis patients 
with iPTH >1,000 pg/mL, treatment with denosumab for 
6 months increased both femoral neck and lumbar spine 
BMDs and significantly decreased iPTH, alkaline phos-
phatase, calcium-phosphorus product, and bone pain 
[96]. Kunizawa et al. [97] reported that denosumab was 
almost equally effective in increasing lumbar spine and 
femoral neck BMD in both ESRD and CKD patients prior 
to dialysis. However, the risk of hypocalcemia in CKD pa-
tients was higher in advanced stages [93, 95], but it was 
mitigated by its transient and nonserious side effects. To 
date, there are no studies that have investigated the impact 
of denosumab on bone morphology in CKD patients. De-
nosumab in postmenopausal women maintained trabecu-
lar and cortical microarchitecture, mineralization, and 
moreover reduced cortical porosity. Bone histomorphom-
etry showed reduction of bone resorption and decrease in 
static and dynamic bone formation indices. The reduction 
in bone turnover was greater than BPs [98].

Gonadal Hormones and Selective Estrogen Receptor 
Modulator
It is evident that CKD patients have a higher rate of frac-

ture and gonadal dysfunction, but there is no consistent 
correlation between gonadal dysfunction and ROD. In ad-

dition, the impact of selective estrogen receptor modulator 
(SERM) on bone health in CKD patients is not very-well 
studied. SERM increased BMD and improved bone health 
in postmenopausal women with CKD [99]. Interestingly, 
in a recent prospective study, bazedoxifene improved renal 
function, and phosphate excretion in postmenopausal os-
teoporotic women without severe renal insufficiency [100]. 
Moreover, it reduced BTMs, and decreased the fracture 
rate [99, 101]. Of note, SERMs and BPs had the same ver-
tebral fracture reduction benefit; however, the beneficial 
effects of SERMs on BMD and hip fracture were less than 
BPs [101]. Moreover, transdermal hormone replacement 
therapy in premenopausal dialysis women has improved 
lumbar spine BMD over a period of 12 months. On the 
other hand, testosterone had relatively improved sexual 
function, without significant beneficial effects on BMD 
over a short period (6 months) in men on dialysis [99].

Calcitonin and Strontium
Calcitonin increases renal calcium reabsorption and 

decreases renal phosphorus reabsorption, which leads to 
reduction of PTH levels and osteoclastic activity. Calcito-
nin in rats with moderate CKD reduced osteomalacia 
[102]. It prevents osteoclast maturation but promotes os-
teoblast differentiation. It can prevent bone loss in dialy-
sis patients [103]. In HD patients, the effect of combina-
tion of intranasal calcitonin and 1-alpha-(OH)-D3 on in-
creasing BMD and reducing bone resorption marker 
(serum hydroxyproline) was better than each one alone 
[104]. Calcitonin prevented bone loss, especially at the 
lumbar spine, in kidney transplant recipient [105], but 
had no significant effect on reducing fracture risk [105]. 
In addition, the beneficial effects of calcitonin on the skel-
eton gradually disappears because of antibody formation 
and receptor downregulation [102]. Moreover, the long-
term use of calcitonin may increase the risk of cancers 
[106]. Clinicians must take into the account the little ben-
efits on bone health and the safety profile before prescrib-
ing calcitonin. The role of strontium seems to be complex 
and dose dependent, as low doses of strontium stimulate 
bone formation, but high doses may cause mineralization 
defect/osteomalacia in CKD patients [107].

Bone Builders/Anabolics
Teriparatide and Abaloparatide
Currently, LTBD is the most common ROD pattern in 

dialysis patients [108]. Teriparatide can potentially have 
beneficial effects in CKD patients with LTBD. Teripara-
tide improved lumbar spine BMD, but its impact on fem-
oral neck BMD was inconsistent in both HD and earlier 
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stages of CKD patients [87, 109, 110]. Teriparatide im-
proved bone formation, confirmed by bone biopsy, in an 
HD patient with LTBD [111]. Daily teriparatide injections 
are usually well tolerated [112]. However, there is a pos-
sible risk of hypotension with weekly injection (higher 
dose at a time) due to the vasodilatory effect of PTH [109, 
110]. Interestingly, 3 times a week (20 μg) [113] and week-
ly (56.5-μg) [109, 110] teriparatide injections in dialysis, 
patients showed almost similar benefits. It also improved 
BTMs and would improve compliance and the safety pro-
file [109, 110]. Because teriparatide use was associated 
with dose-dependent increased risk of osteosarcoma in 
rats, but in humans less than the background incidence 
rate, its use in humans is usually limited to 18–24 months.

Abaloparatide reduced the incidence of fractures with 
an acceptable safety profile in a large phase 3, double-
blinded, placebo-controlled RCT in postmenopausal 
women with osteoporosis [114]. Similar to teriparatide, 
abaloparatide reduced fracture (especially vertebral) rates 
in mild to moderate CKD patients in a post hoc analysis. 
Interestingly, abaloparatide had a better impact on lum-
bar spine and femoral neck BMD in patients with eGFR 
<60 mL/min [115]. In terms of histomorphometry, aba-
loparatide and teriparatide groups had a lower eroded 
surface than placebo but only the abaloparatide group 
reached significance. Cortical porosity was higher in both 
the abaloparatide and the teriparatide groups than in the 
placebo group. In addition, there was less pronounced 
increase in CTX in the abaloparatide group than the 
teriparatide group [116].

Romosozumab
CKD progression leads to higher sclerostin levels, 

which is associated with higher mortality and cardiovas-
cular events [117]. The major source of sclerostin is os-
teocytes but is secreted by the kidney, liver, and vascular 
wall too [84]. Romosozumab is a sclerostin monoclonal 
antibody that increases the bone formation and decreases 
fracture risk. It would be an interesting approach for 
CKD patients with LTBD [118]. Antisclerostin antibody 
in CKD rats improved the trabecular bone volume and 
mineralization, but without significant improvement of 
biomechanical properties [119]. There is a concern about 
increased extraskeletal calcification with its usage, so in 
CKD patients it should be used with caution, as cardio-
vascular calcification is a main contributor to cardiovas-
cular morbidity and mortality in CKD patients [118]. 
Nevertheless, alendronate might have a protective impact 
on reducing the potential romosozumab cardiovascular 
adverse events [84].

New Therapies
Anti-FGF23 Antibodies
In early CKD stages, FGF23 oversecretion is a com-

pensatory mechanism to maintain mineral homeostasis. 
However, FGF23 downregulates vitamin D and is associ-
ated with various adverse events in advanced CKD pa-
tients [120, 121]. Burosumab is a monoclonal antibody 
against FGF23 approved by the FDA for treatment of 
children [122] and adults [123] with X-linked hypophos-
phatemia. It improved fractures and increased BTMs 
compared to placebo [123]. There are potential risks and 
benefits of using anti-FGF23 antibody therapy in CKD 
patients. It may lead to hyperphosphatemia in predialysis 
CKD patients. However, it might pose a lower risk in 
ESRD patients, as different modalities regulate phospho-
rus homeostasis. Further studies are needed before using 
burosumab in CKD patients [120, 121].

Cathepsin K Antagonists
Cathepsin K antagonists were developed to decrease 

bone resorption. In an animal study, cathepsin K in-
hibitor increased cortical BMD and bone strength 
[124]. Several clinical trials have demonstrated that ca-
thepsin K antagonists have a potential role in metabol-
ic bone disorders especially in women with postmeno-
pausal osteoporosis [125, 126]. Odanacatib increased 
BMD and suppressed bone resorption, without affect-
ing bone formation markers, in postmenopausal wom-
en with low BMD. However, these effects were revers-
ible after its discontinuation [127]. These agents were 
never studied in CKD patients and did not reach phase 
IV trials due to a concern of increased cerebrovascular 
events [128].

It is worth mentioning that, despite none of these new 
agents were developed specifically for the CKD popula-
tion, their development highlights an exciting future for 
the improvement of bone quality in CKD patients. They 
culminate a departure from treating ROD as a metabolic 
and hormonal derangement to a cellular and biological 
bone-centric approach focused on bone cell signaling and 
interactions. How these potential therapeutic develop-
ments are going to affect the skeletal and extraskeletal 
manifestations of CKD needs to be investigated.

Conclusion

The bone quality and quantity abnormalities in CKD 
patients are complex. After confirming the diagnosis of 
ROD and determining the fracture risk, patients should 
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be counseled on lifestyle modifications that are beneficial 
to their bone. Ultimately, CKD patients should be man-
aged with strategies not only focusing on bone quantity 
but also bone quality abnormalities. Knowing the patho-
physiology of bone damage in the setting of CKD can help 
in distinguishing patients who might benefit from ana-
bolic versus antiresorptive therapies. The therapeutic de-
velopments directed toward improving bone quality in 
CKD patients are predicted to change nephrology prac-
tice patterns and lead to improved quality of life and de-
creased mortality in our CKD patients.
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