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Abstract: Silicon suboxide (SiOx, x ≈ 1) is a substoichiometric silicon oxide with a large refractive
index and optical absorption coefficient that oxidizes to silica (SiO2) by annealing in air at ~1000 ◦C.
We demonstrate that nanostructures with a groove period of 200–330 nm can be formed in air
on a silicon suboxide film with 800 nm, 100 fs, and 10 Hz laser pulses at a fluence an order of
magnitude lower than that needed for glass materials such as fused silica and borosilicate glass.
Experimental results show that high-density electrons can be produced with low-fluence femtosecond
laser pulses, and plasmonic near-fields are subsequently excited to create nanostructures on the
surface because silicon suboxide has a larger optical absorption coefficient than glass. Calculations
using a model target reproduce the observed groove periods well and explain the mechanism of the
nanostructure formation.

Keywords: femtosecond laser; laser ablation; nanostructure formation; surface plasmon polaritons;
near-field; silicon suboxide; glass

1. Introduction

Structures smaller than the wavelength of light can induce optical anisotropy and rotatory and
resonant scattering [1,2]. Recent developments in material nanoprocessing techniques enabled the
regular arrangement of nanostructures on or inside solids to perform many attractive applications such
as optical cloaking [3,4], photon trapping [5,6], and structured light generation [7,8]. Because glass
is transparent in the visible region, chemically stable, and inexpensive, it is a promising material for
use in these applications, and it is popularly used for many kinds of optical elements and optical
integrated devices.

Periodic nanostructures with a sub-µm groove period d can be easily formed inside or on glass
by superimposed multiple shots of tightly focused femtosecond (fs) laser pulses of a few µm in
diameter and at a fluence of a few to 10 J/cm2 by using a high-numerical-aperture (NA) lens such as a
microscope objective [9–11]. Recently, using the birefringence of nanostructures formed in fused silica
with fs pulses, Beresna et al. developed a spatial-distributed wave plate that can convert a Gaussian
beam to structured light such as a radially polarized beam or an optical vortex [12]. This remarkable
optical element is currently commercially available. Since laser nanoprocessing can be rapidly applied
to a large area, it has attracted much interest as an industrial nanofabrication technique [13]. However,
the focal spots of a few µm and a short focusing depth being required for nanostructuring somewhat
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restrict the possible applications. Current limitations include slow processing times and short working
distances between the target and the focusing lens [14].

Silicon suboxide is a substoichiometric silicon oxide that has a larger refractive index and a larger
optical absorption coefficient in the region from ultra-violet (UV) to near-infrared (NIR) than other
glass materials such as fused silica, borosilicate, and soda-lime glass [15–18]. In addition, it can be
easily oxidized to SiO2 by thermal treatment (~1000 ◦C) in air to become transparent in the UV–NIR
region [18]. Thermal treatment in an oxygen-free environment leads to the formation of silicon
nanocrystals [19]. As a result of these properties, this material has attracted attention for applications
such as anti-reflection coating [20], photo luminescence [21], giant Raman scattering [22], and SiO2

precursors for laser processing [23].
In this paper, we describe the successful formation of a nanostructure with a groove period of

d = 200–330 nm in air on a silicon suboxide (SiOx, x ≈ 1) surface irradiated with 800 nm, 100 fs laser
pulses at ~700 mJ/cm2 using a low NA lens. Preliminary results were presented in [24]. The spot
size was 120 µm in diameter and the fluence was an order of magnitude lower than that needed
for structuring glass materials. However, thus far, the fs-laser-induced nanostructuring of silicon
suboxide has not been well understood, and its successful control has not been achieved. In this work,
based on the formation process of a nanostructure observed on silicon suboxide, we discuss its
physical mechanism. The groove period calculated for a model target closely matches the observed
groove period. These results showed that the formation of a thin layer of high-density electrons and
the excitation of surface plasmon polaritons (SPPs) are responsible for the nanostructure formation on
a silicon suboxide induced with intense femtosecond laser pulses.

2. Experimental

As a target, we used a silicon suboxide, SiOx (x ≈ 1) film of 1.4 µm thickness deposited on a fused
silica substrate by thermal evaporation (Leybold UNIVEX 350, Cologne, Germany) [18]. Figure 1a
shows the refractive index n and the extinction coefficient κ measured as a function of wavelength
λ = 300–900 nm with a spectroscopic ellipsometer (M-220, JASCO Corporation, Tokyo, Japan). As seen
in Figure 1b, the film is colored yellow because κ is especially large in the UV to blue region.
The nonlinear absorption coefficient β of the film was not measured in this work, though values of
β = 10−7–10−5 cm/W were measured using an 800 nm fs laser, which are much larger than the value
for fused silica [16,17]. In addition, because the refractive index of silicon suboxide was measured as
n = 1.8–2.4 in the UV–NIR region, which is much larger than that of glass such as fused silica as shown
in Figure 1a, β of the film applied in this work should also be larger. In a previous report, a silicon
suboxide film 700 nm thick was confirmed to be able to oxidize to SiO2 by annealing in air at ~1000 ◦C
for 48 h, resulting in an increase of the transmittance in the UV–NIR region [18].
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Figure 1. (a) Refractive index n (black solid line) and extinction coefficient κ (blue dashed line) of the
silicon suboxide film measured as a function of the wavelength λ. (b) Photograph of the film on a fused
silica substrate 25 mm in diameter.
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Figure 2a shows a schematic diagram of the optical configuration used in the ablation experiment.
We used 800 nm and 100 fs laser pulses delivered from a Ti:sapphire laser system at a repetition
rate of 10 Hz. The incident laser pulses were controlled with a mechanical shutter to be either a
superimposed number of pulses of N = 250–1000 or a single shot N = 1. The pulse energy was
controlled with a pair of a half-wave plate and a polarizer to set the laser fluence to F = 625–750 mJ/cm2.
To measure the energy shot by shot, we acquired the energy of the pulse reflected at a glass surface
with a photodiode. The linearly polarized fs laser pulses were focused in air at normal incidence on
the silicon suboxide films with a lens with a 250 mm focal length. To monitor the surface irradiated by
the pulses, the microscopic image of the target surface was observed with a charge-coupled device
(CCD) camera with a He–Ne laser beam used for illumination. For measuring the intensity profile
of the focal spot, we tilted the target to observe the fs pulse reflected at the surface with the camera.
The result is shown in Figure 2b. The intensity distribution of the focal spot fitted the lowest-order
Gaussian profile well. The focal spot size was 120 µm in diameter at 1/e2 of the maximum intensity.
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Figure 2. (a) Schematic diagram of the optical configuration for the ablation experiment. MS, mechanical
shutter; HWP, half-wave plate; P, polarizer; GP, glass plate; PD, photodetector; L, lens. (b) Intensity
profile of the focal spot of a fs pulse. The red and blue curves represent the horizontal and vertical profiles,
respectively, with a Gaussian profile shown in gray for comparison. The inset shows a CCD image of
the focal spot.

The surface morphology of the target was observed with an optical microscope (VH-Z500R,
Keyence, Osaka, Japan) and a scanning electron microscope (SEM, JSM-6510, JEOL, Tokyo, Japan).
A 10 nm thick platinum layer was applied homogeneously onto the irradiated surface with an ion
sputter coater to improve the conductivity of the surface, thus improving the clarity of the SEM image.
To evaluate the spatial periodicity of the surface structure, a two-dimensional Fourier transform
(using the image processing software, SPIP, Image Metrology, Lyngby, Denmark) was performed
on the SEM image in a 5 × 5 µm2 region to acquire the spatial frequency distribution along the
polarization direction.

3. Results and Discussion

The nanostructures formed on various kinds of materials irradiated with fs laser pulses at a fluence
F lower than the single-shot ablation threshold F1 [25]. To compare the F1 of the silicon suboxide
film to those of the glass materials [26,27], we measured F1 from the optical microscope images of the
single-shot ablation traces. Figure 3a shows an example of an optical microscope image of the film
surface irradiated with a single fs pulse at F = 1200 mJ/cm2. The light gray area in the center of the image
is the ablated trace. Then, while varying F, we measured the area S of the corresponding ablation traces.
Figure 3b shows S plotted as a function of F. By extrapolating the fitting line (solid line in Figure 3b),
the single-shot ablation threshold of the silicon suboxide was estimated to be F1 = 1060 (±10) mJ/cm2,
which is much smaller than F1 = 2 J/cm2 for fused silica [26], F1 = 4.1 J/cm2 for borosilicate glass [27],
and F1 = 3.4 J/cm2 for soda-lime-silicate glass [27]. The results showed that the small F1 for silicon
suboxide could be attributed to the large optical absorption coefficient [15].



Nanomaterials 2020, 10, 1495 4 of 10
Nanomaterials 2020, 10, x FOR PEER REVIEW 4 of 10 

 

 

Figure 3. (a) Optical microscope image of the silicon suboxide film irradiated with a single fs pulse at 

F = 1200 mJ/cm2, and (b) single-shot fs laser ablated area S plotted as a function of the laser fluence F. 

Figure 4 shows an SEM image and the spatial frequency spectrum of the silicon suboxide film 

irradiated at F = 675 mJ/cm2 for N = 250, 500, and 1000 pulses. For N ≤ 200, no ablation trace was 

observed. Increasing N to 250, ablation traces were observed on the surface at several places in the 

focal spot. As shown in Figure 4a, dot-like nanostructures formed over the whole area of the traces, 

while line-like nanostructures expanding perpendicular to the polarization direction were generated 

at the center of the traces. With a further increase of N to 500 and 1000, as seen in Figure 4b,c, the area 

over which the dot-like nanostructures formed extended more widely than that for the line-like 

nanostructures. In the spatial-frequency spectrum, therefore, the spectral peak indicating the periodic 

structures in the ablation trace could not be identified. 

 

Figure 4. SEM image (top) and Fourier spectrum (bottom) of the silicon suboxide films irradiated with 

(a) N = 250, (b) N = 500, and (c) N = 1000 fs laser pulses at F = 675 mJ/cm2. E denotes the direction of 

the polarization. 

An increase in F was expected to increase the density of the free electrons produced in the surface 

layer to a level sufficient to change the surface morphology. To confirm this, we irradiated the film 

surfaces with fs pulses at F = 700 mJ/cm2. The results are shown in Figure 5. At N = 250 (Figure 5a), 

the line-like nanostructures clearly formed with a period of ~160 nm in a larger area than those 

generated at F = 675 mJ/cm2. Increasing N to 500 (Figure 5b), the area over which both the dot-like 

and line-like nanostructures formed widened from the center of the focal spot to the edge. At N = 

1000, as shown in Figure 5c, the spectral peak of the ablation trace appeared faintly at d ≈ 220 nm, 

corresponding to the peak at 4.5 μm−1. 

1000 1050 1100 1150 1200 1250 1300
0.0

0.5

1.0

1.5

2.0

A
B

L
A

T
E

D
 A

R
E

A
, 
S

 (
×

1
0

-3
 m

m
2
)

FLUENCE, F (mJ/cm2)

20μm

(a)
(b)

D
E

N
S

IT
Y

 (
ar

b
.u

n
it

s)

0 2 4 6 8 10

SPATIAL FREQUENCY (μm-1)

1μmE

0 2 4 6 8 10

SPATIAL FREQUENCY (μm-1)

0 2 4 6 8 10

SPATIAL FREQUENCY (μm-1)

(a) (b) (c)

Figure 3. (a) Optical microscope image of the silicon suboxide film irradiated with a single fs pulse at
F = 1200 mJ/cm2, and (b) single-shot fs laser ablated area S plotted as a function of the laser fluence F.

Figure 4 shows an SEM image and the spatial frequency spectrum of the silicon suboxide film
irradiated at F = 675 mJ/cm2 for N = 250, 500, and 1000 pulses. For N ≤ 200, no ablation trace
was observed. Increasing N to 250, ablation traces were observed on the surface at several places
in the focal spot. As shown in Figure 4a, dot-like nanostructures formed over the whole area of
the traces, while line-like nanostructures expanding perpendicular to the polarization direction were
generated at the center of the traces. With a further increase of N to 500 and 1000, as seen in Figure 4b,c,
the area over which the dot-like nanostructures formed extended more widely than that for the line-like
nanostructures. In the spatial-frequency spectrum, therefore, the spectral peak indicating the periodic
structures in the ablation trace could not be identified.
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Figure 4. SEM image (top) and Fourier spectrum (bottom) of the silicon suboxide films irradiated with
(a) N = 250, (b) N = 500, and (c) N = 1000 fs laser pulses at F = 675 mJ/cm2. E denotes the direction of
the polarization.

An increase in F was expected to increase the density of the free electrons produced in the surface
layer to a level sufficient to change the surface morphology. To confirm this, we irradiated the film
surfaces with fs pulses at F = 700 mJ/cm2. The results are shown in Figure 5. At N = 250 (Figure 5a),
the line-like nanostructures clearly formed with a period of ~160 nm in a larger area than those generated
at F = 675 mJ/cm2. Increasing N to 500 (Figure 5b), the area over which both the dot-like and line-like
nanostructures formed widened from the center of the focal spot to the edge. At N = 1000, as shown in
Figure 5c, the spectral peak of the ablation trace appeared faintly at d ≈ 220 nm, corresponding to the
peak at 4.5 µm−1.
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Figure 5. SEM image (top) and Fourier spectrum (bottom) of the silicon suboxide films irradiated with
(a) N = 250, (b) N = 500, and (c) N = 1000 fs laser pulses at F = 700 mJ/cm2. E denotes the direction of
the polarization.

We increased F to 750 mJ/cm2, and observed the surface morphology of the films irradiated with
the fs pulses. The results are shown in Figure 6. At N = 250 (Figure 6a), the line-like nanostructures
clearly formed with a spectral peak at d = 210–320 nm, where d is defined as the full width at a
half maximum of the spectrum with the background signal subtracted (dashed line in Figure 6).
With increasing N, the line-like nanostructures were formed with d = 230–290 nm at N = 500 (Figure 6b)
and d = 200–330 nm at N = 1000 (Figure 6c), where the other spectral peaks at the respective harmonic
frequencies were virtual. In this experiment, we could not clearly observe any change in the spectral
peak position for increasing N. At N = 1000, the nanostructures homogeneously formed in an area of
~20 µm in diameter in the center of the focal spot, which is an order of magnitude larger than that on
glass irradiated with tightly focused fs pulses. These results showed that fs laser pulses are strongly
absorbed in a silicon suboxide surface to produce high-density electrons in the vicinity of the surface,
leading to nanoablation with intense near-fields of SPPs.
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Figure 6. SEM image (upper) and Fourier spectrum (lower) of the silicon suboxide films irradiated
with (a) N = 250, (b) N = 500, and (c) N = 1000 fs laser pulses at F = 750 mJ/cm2. E denotes the direction
of the polarization. The period d is estimated from the half maximum of the spectrum (orange-hatched
area in the spectrum).
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Based on the experimental results and the calculation using a model target, we discussed
the excitation of SPPs in the silicon suboxide surface with the fs pulses and the subsequent
nanostructure formation. The reflectivity of 1.4% at the interface between SiOx and substrate was
calculated at normal incidence. Assuming the constructive interference between the incident and
reflected pulses [28], the fluence at the surface could be enhanced by a factor of 1.25, leading to a decrease
in the effective F1 from 1060 to 850 mJ/cm2. The experimental results for F = 675–750 mJ/cm2, as shown
in Figures 4–6, clearly showed that these fluences are lower than the single-shot ablation threshold
and higher than the multiple-shot ablation threshold for the pulses with N ≥ 250. Assuming that the
superimposed multiple fs laser pulses at a fluence lower than the single-shot ablation threshold induce
surface modifications within a thin surface layer [29–31], subsequent fs pulses could induce a high
density of electrons suitable to excite SPPs in this layer [32,33]. As shown in a previous report on
pump-probe reflectivity measurements, an intense fs laser pulse can produce electrons with a high
density of ~1022 cm−3 in fused silica [34]. Assuming the production of the high-density electrons in the
silicon suboxide, the permittivity of the silicon suboxide can be described using a Drude model [35,36]:

εa = εsiox −ω
2
p/

(
ω2 + iω/τ

)
, (1)

where εsiox = 3.24 is the permittivity of the silicon suboxide at λ = 800 nm measured with the
ellipsometer, and the second term represents the modulation by free-carrier response at the electron
density Ne produced in the silicon suboxide surface. Here, ω = 2πc/λ is the laser frequency in vacuum,
c is the light speed in vacuum, τ is the Drude damping time, and ωp = (e2Ne/(ε0m*m))/2 is the plasma
frequency with the permittivity of vacuum ε0, the electron charge e and mass m, and the optical
effective mass of an electron m*. We ignored other effects modulating the permittivity such as band
and state filling [37,38] and band gap renormalization [39–41] because they are very small.

The calculation method to determine the plasmon wavelength λspp in the surface layer irradiated
with the fs pulse is almost the same as that used in previous studies [32,33]. Briefly, λspp = 2π/Re[kspp]
was calculated using the following relation between light and SPPs:

kspp = k0

√
εa εb

εa + εb
, (2)

where k0 = 2π/λ is the laser wavenumber in vacuum. Assuming that the SPPs are excited at the
interface between the silicon suboxide and the surface layer with high-density electrons produced
with the fs laser pulse, as shown in the inset of Figure 7, we set εb = εsiox. For the excitation of SPPs,
that is, for evanescent waves to exist in the vicinity of the surface, the relation Re[εa] < 0 should
be satisfied [42]. The excitation of the SPPs is the origin of the periodicity of the fs laser-induced
nanostructure formation, and periodic nanoablation is induced by a fine spatial distribution of
electromagnetic energy in the surface layer [32,33,43–51]. To form the stationary energy distribution,
the following two processes were proposed: the interference between the incident laser beam and the
SPPs [43–45], and the counter-propagating SPP interference, i.e., the generation of a standing wave
mode of SPPs [32,33,46–51]. The groove periods of the aforementioned types of interference are λSPP

and λSPP/2, respectively. Assuming that either these types of interference occur simultaneously or the
latter occurs dominantly, the period could become λSPP/2.

Figure 7 shows the calculated groove period D plotted as a function of Ne. We reported the
damping time and optical effective mass of an electron to be τ = 0.1–2 fs [52,53] and m* = 1, respectively.
Here, we show two results at τ = 0.5 fs (thick red curve) and τ = 1 fs (thin blue curve) for m* = 1.
Excitation of SPPs is allowed in the region Re[εa] < 0, as shown by the solid curves in Figure 7. For both
values of τ, when the high-density electrons are excited in the surface layer and metalize the surface
with the fs pulse, the calculated period is D = 180–430 nm. At τ < 0.5 fs, D was calculated to approach
~200 nm. If the SPPs are resonantly excited, where εa + εb becomes zero [42,50], D could be 267 nm for
τ = 1 fs at Ne = 1.0 × 1022 cm−3. Here, Ne for these values of D is much larger than the critical plasma
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density of 1.7 × 1021 cm−3. Ne can reach a higher value than this critical density because the electrons
are generated in the solid surface [34,54]. These calculated results are in good agreement with the
observed period d. The results showed that plasmonic near-fields generated in the silicon suboxide
surface induce nanoablation to form a periodic nanostructure.Nanomaterials 2020, 10, x FOR PEER REVIEW 7 of 10 
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4. Conclusions

We found that clear periodic nanostructures can be formed on a silicon suboxide film with
superimposed fs laser pulses at low fluence. The experimental and calculated results obtained showed
that the low-fluence fs pulses are absorbed near the surface due to the large absorption coefficient of
the film, forming a thin layer having high-density electrons and leading to nanoablation by plasmonic
near-fields. The interfering fs pulses can form grooves with a period of λ/(2sinθ), where θ is the incident
angle of the laser pulse [55]. By using a high-NA optical configuration, the period can reach λ/2.
For nanostructuring in this present work, the period λSPP/2 was much smaller than λ/2, as denoted
in Equation (2). As silicon suboxide can easily be transformed into transparent glass, the proposed
technique should provide a useful approach for rapidly and homogeneously fabricating nanostructures
on glass.

Author Contributions: Conceptualization, G.M. and J.I.; methodology, G.M. and J.I.; software, G.M.;
validation, G.M.; formal analysis, G.M.; investigation, G.M.; resources, G.M., L.J.R., and J.I.; data curation,
T.T. and I.T.; writing—original draft preparation, T.T.; writing—review and editing, G.M. and J.I.; visualization,
T.T. and G.M.; supervision, G.M. and J.I.; project administration, G.M. and J.I.; funding acquisition, G.M. and J.I.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was partially supported by the Grant-in-Aid for Scientific Research (B) (18H01894) and the
Joint Usage/Research Program on Zero-Emission Energy Research, Institute of Advanced Energy, Kyoto University
(ZE30C-02, 2018) and (ZE31C-01, 2019).

Acknowledgments: The authors would like to thank Y. Oki for performing the preliminary experiment and
K. Sugioka and A. Narazaki for their advice on the physical process of femtosecond laser processing of glass.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design of
the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision
to publish the results.

References

1. Yariv, A.; Yeh, P. Optical Waves in Crystals: Propagation and Control of Laser Radiation; Wiley: New York, NY,
USA, 2003; pp. 69–154.

2. Bohren, C.F.; Huffman, D.R. Absorption and Scattering of Light by Small Particles; Wiley-VCH Verlag: Weinheim,
Germany, 1998; pp. 82–129.



Nanomaterials 2020, 10, 1495 8 of 10

3. Cai, W.; Chettiar, U.K.; Kildishev, A.V.; Shalaev, V.M. Optical cloaking with metamaterials. Nat. Photo. 2007,
1, 224–227. [CrossRef]

4. Valentine, J.; Li, J.; Zentgraf, T.; Bartal, G.; Zhang, X. An optical cloak made of dielectrics. Nat. Mat. 2009, 8,
568–571. [CrossRef] [PubMed]

5. Yablonovitch, E. Photonic band-gap structures. J. Opt. Soc. Am. B 1993, 10, 283–295. [CrossRef]
6. Noda, S.; Chutinan, A.; Imada, M. Trapping and emission of photons by a single defect in a photonic bandgap

structure. Nature 2000, 407, 608–610. [CrossRef] [PubMed]
7. Yu, N.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.-P.; Capasso, F.; Gaburro, Z. Light Propagation with

Phase Discontinuities: Generalized Laws of Reflection and Refraction. Science 2011, 334, 333–337. [CrossRef]
8. Yu, N.; Capasso, F. Flat optics with designer metasurfaces. Nat Mater. 2014, 13, 139–150. [CrossRef]
9. Shimotsuma, Y.; Kazansky, P.G.; Qiu, J.; Hirao, K. Self-Organized Nanogratings in Glass Irradiated by

Ultrashort Light Pulses. Phys. Rev. Lett. 2003, 91, 247405. [CrossRef]
10. Bhardwaj, V.R.; Simova, E.; Rajeev, P.P.; Hnatovsky, C.; Taylor, R.S.; Rayner, D.M.; Corkum, P.B. Optically

Produced Arrays of Planar Nanostructures inside Fused Silica. Phys. Rev. Lett. 2006, 96, 057404. [CrossRef]
11. Wagner, R.; Gottmann, J.; Horn, A.; Kreutz, E.W. Subwavelength ripple formation induced by tightly focused

femtosecond laser radiation. Appl. Surf. Sci. 2006, 252, 8576–8579. [CrossRef]
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50. Stankevič, V.; Račiukaitis, G.; Bragheri, F.; Wang, X.; Gamaly, E.G.; Osellame, R.; Juodkazis, S. Laser printed
nano-gratings: Orientation and period peculiarities. Sci. Rep. 2017, 7, 1–8. [CrossRef]

http://dx.doi.org/10.1364/OE.17.015308
http://www.ncbi.nlm.nih.gov/pubmed/19688009
http://dx.doi.org/10.1016/S0169-4332(99)00481-X
http://dx.doi.org/10.1007/s00339-004-2746-3
http://dx.doi.org/10.1038/s41598-018-35604-z
http://dx.doi.org/10.1364/OE.16.016265
http://www.ncbi.nlm.nih.gov/pubmed/18825266
http://dx.doi.org/10.1364/OE.20.014848
http://www.ncbi.nlm.nih.gov/pubmed/22772179
http://dx.doi.org/10.1007/s00339-008-4586-z
http://dx.doi.org/10.1016/0038-1098(76)91233-3
http://dx.doi.org/10.1103/PhysRevLett.55.2074
http://dx.doi.org/10.1103/PhysRev.126.405
http://dx.doi.org/10.1103/PhysRevB.24.1971
http://dx.doi.org/10.1088/0022-3719/17/34/012
http://dx.doi.org/10.1103/PhysRevB.27.1141
http://dx.doi.org/10.1063/1.3261734
http://dx.doi.org/10.1364/OE.19.009035
http://dx.doi.org/10.1063/1.364036
http://dx.doi.org/10.1021/nl0506094
http://dx.doi.org/10.1002/lpor.201200017
http://dx.doi.org/10.1016/j.pquantelec.2014.03.002
http://dx.doi.org/10.1038/srep39989


Nanomaterials 2020, 10, 1495 10 of 10

51. Wang, L.; Chen, Q.-D.; Cao, X.-W.; Buividas, R.; Wang, X.; Juodkazis, S.; Sun, H.-B. Plasmonic nano-printing:
Large-area nanoscale energy deposition for efficient surface texturing. Light Sci. Appl. 2017, 6, e17112.
[CrossRef] [PubMed]

52. Arnold, D.; Cartier, E.; Dimaria, D.J. Acoustic-phonon runaway and impact ionization by hot electrons in
silicon dioxide. Phys. Rev. B 1992, 45, 1477–1480. [CrossRef]

53. Sun, Q.; Jiang, H.; Liu, Y.; Wu, Z.; Yang, H.; Gong, Q. Measurement of the collision time of dense electronic
plasma induced by a femtosecond laser in fused silica. Opt. Lett. 2005, 30, 320. [CrossRef]

54. Shank, C.V.; Yen, R.; Hirlimann, C. Time-resolved reflectivity measurements of femtosecond-optical-pulse-
induced phase transitions in silicon. Phys. Rev. Lett. 1983, 454–457. [CrossRef]

55. Voisiat, B.; Gedvilas, M.; Indrišiunas, S.; Raciukaitis, G. Flexible microstructuring of thin films using
multi-beam interference: Ablation with ultrashort lasers. J. Laser Micro Nanoeng. 2011, 6, 185–190. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/lsa.2017.112
http://www.ncbi.nlm.nih.gov/pubmed/30167223
http://dx.doi.org/10.1103/PhysRevB.45.1477
http://dx.doi.org/10.1364/OL.30.000320
http://dx.doi.org/10.1103/PhysRevLett.50.454
http://dx.doi.org/10.2961/jlmn.2011.03.0002
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Experimental 
	Results and Discussion 
	Conclusions 
	References

