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Survival‑related indicators ALOX12B 
and SPRR1A are associated with DNA damage 
repair and tumor microenvironment status 
in HPV 16‑negative head and neck squamous 
cell carcinoma patients
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Abstract 

Objectives:  To investigate prognostic-related gene signature based on DNA damage repair and tumor microenviron‑
ment statue in human papillomavirus 16 negative (HPV16-) head and neck squamous cell carcinoma (HNSCC).

Methods:  For the RNA-sequence matrix in HPV16- HNSCC in the Cancer Genome Atlas (TCGA) cohort, the DNA 
damage response (DDR) and tumor microenvironment (TM) status of each patient sample was estimated by using 
the ssGSEA algorithm. Through bioinformatics analysis in DDR_high/TM_high (n = 311) and DDR_high/TM_low 
(n = 53) groups, a survival-related gene signature was selected in the TCGA cohort. Two independent external valida‑
tion cohorts (GSE65858 (n = 210) and GSE41613 (n = 97)) with HPV16- HNSCC patients validated the gene signature. 
Correlations among the clinical-related hub differentially expressed genes (DEGs) and infiltrated immunocytes were 
explored with the TIMER2.0 server. Drug screening based on hub DEGs was performed using the CellMiner and 
GSCALite databases. The loss-of-function studies were used to evaluate the effect of screened survival-related gene 
on the motility of HPV- HNSCC cells in vitro.

Results:  A high DDR level (P = 0.025) and low TM score (P = 0.012) were independent risk factors for HPV16- HNSCC. 
Downregulated expression of ALOX12B or SPRR1A was associated with poor survival rate and advanced cancer stages. 
The pathway enrichment analysis showed the DDR_high/TM_low samples were enriched in glycosphingolipid biosyn‑
thesis-lacto and neolacto series, glutathione metabolism, platinum drug resistance, and ferroptosis pathways, while the 
DDR_high/TM_low samples were enriched in Th17 cell differentiation, Neutrophil extracellular trap formation, PD − L1 
expression and PD − 1 checkpoint pathway in cancer. Notably, the expression of ALOX12B and SPRR1A were negatively 
correlated with cancer-associated fibroblasts (CAFs) infiltration and CAFs downstream effectors. Sensitivity to specific 
chemotherapy regimens can be derived from gene expressions. In addition, ALOX12B and SPRR1A expression was asso‑
ciated with the mRNA expression of insulin like growth factor 1 receptor (IGF1R), AKT serine/threonine kinase 1 (AKT1), 
mammalian target of rapamycin (MTOR), and eukaryotic translation initiation factor 4E binding protein 1 (EIF4EBP1) in 
HPV negative HNSCC. Down-regulation of ALOX12B promoted HPV- HNSCC cells migration and invasion in vitro.
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Introduction
Head and neck squamous cell carcinoma (HNSCC) 
are heterogeneous epithelial tumor that arise from the 
oropharynx, oral cavity, lip, larynx, nasopharynx, and 
hypopharynx. The 5-year overall survival rate for patients 
with HNSCC is approximately 50% [1]. The main causa-
tive risk factors include excessive tobacco usage, heavy 
alcohol usage, and human papillomavirus 16 (HPV16) 
infection [2]. HPV16 infection-related E6/E7 is gener-
ally considered the oncogenic protein associated with 
HNSCC [3]. HPV-negative (HPV-) HNSCC patients are 
characterized by distinct molecular landscapes, worse 
overall survival outcomes and a poor response rate to 
induction chemotherapy when compared with HPV-
positive (HPV+) HNSCC patients [4–6]. Hence, there 
is an urgent need to investigate the molecular spectra of 
HPV16 negative (HPV16-) HNSCC and identify survival-
related biomarkers.

Tumor cells respond to endogenous or exogenous DNA 
damage through the DNA damage response (DDR) path-
ways. Homologous recombination repair (HRR), nonho-
mologous end joining (NHEJ), mismatch repair (MMR), 
nucleotide excision repair (NER), and base excision 
repair (BER) are key pathways participating in the DNA 
damage response (DDR) [7]. A previous study developed 
a homologous recombination deficiency (HRD) score at 
transcriptome level to predict the prognosis of HNSCC 
patients, and the HRD score was not an independent 
indicator for prognosis in univariate survival analysis [8]. 
However, another study has shown that HNSCC patients 
exhibited double-strand breaks repair (DBR)- and MMR- 
related genes upregulated as compared with healthy sub-
jects, and patients with low expression of NER-related 
genes showed prolonged progression-free survival under 
concurrent chemoradiotherapy treatment [9]. Abnormal 
DDR status is also an important biological factor leading 
to radiotherapy resistance [10]. Meanwhile, DDR status 
could affect expressions of Immune checkpoint protein, 
interferon receptors, and neoantigens, and thereby affect 
therapeutic effect of immunotherapy [11, 12]. Therefore, 
DDR level represents the tumorigenesis and development 
process, as well as reflecting the efficacy of anti-tumor 
therapy to a certain extent. Considering the higher DNA 
repair gene/protein expression levels in HPV+ HNSCC 
tissue samples than those in HPV- HNSCC samples [13], 
the prognostic value and therapeutic efficacy value of 

DDR levels in HPV16- HNSCC patients need to be fur-
ther clarified. In addition to the DDR level reflecting the 
malignant evolution of tumor cells, the tumor microenvi-
ronment (TM) around tumor cells also affects or reflects 
the malignant behavior of tumor cells. The TM comprises 
a network of interactions among blood vessels, immune 
cells, fibroblasts, adipocyte, endothelial cells, tumor 
cells, and the surrounding extracellular components [14]. 
According to previous studies, TM is crucial for modu-
lating tumor progress and evaluating anti-tumor treat-
ment responses [15, 16]. The immune profiles of HPV+ 
HNSCC is distinct from that in HPV- HNSCC [17, 18]. 
Interesting, HPV+ patients exhibited enhanced immune 
cell infiltration compared with HPV- patients [18], which 
suggests that in the study of analysing the prognostic and 
efficacy prediction value of tumor microenvironment for 
HNSCC patients, the HPV infection status of the patients 
also needs to be considered.

Recently, DNA-targeted therapy combined with radio-
therapy, chemotherapy or immunotherapy has shown 
synergistic anti-tumor effects [19–22]. An earlier study 
identified prognostic related immune genes based on dif-
ferences in immune status between tumor tissue and nor-
mal tissue in HNSCC patients, which could help develop 
therapeutic regimens toward specific targets [23]. How-
ever, the DDR status differed between tumors and adja-
cent normal tissue, and immune status (eg, PD-L1 
expression) in tumor tissue varies among patients. In the 
present study, we used the TCGA and GEO databases 
to explore and verify prognostic-related genes reflecting 
both the DDR and the TM status as well as exploring the 
drug sensitivity pattern in HPV16- HNSCC patients.

Materials and methods
Patient cohort and data source
The RNA sequencing data (fragments per kilobase per 
million (FPKM) and read counts) for HNSCC were 
downloaded from the Cancer Genome Atlas (TCGA) 
database (https://​portal.​gdc.​cancer.​gov). Patient clini-
cal data were obtained from the Broad Genome Data 
Analysis Centers Firehose server (https://​gdac.​broad​
insti​tute.​org). Related survival data were downloaded 
from the UCSC Xena browser (https://​xenab​rowser.​net). 
Based on the HPV status recorded in the Firehose server 
and available survival data in the Xena browser, 433 
HPV16- HNSCC patients were included in the TCGA 

Conclusions:  ALOX12B and SPRR1A served as a gene signature for overall survival in HPV16- HNSCC patients, and 
correlated with the amount of infiltrated CAFs. The specific drug pattern was determined by the gene signature.
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discovery cohort. The validation cohort included 210 
HPV16- patients in the Gene Expression Omnibus (GEO, 
https://​www.​ncbi.​nlm.​nih.​gov/​geo) database (GSE65858 
data set) and 97 HPV- patients in the GSE41613 data set. 
The data in this study were all obtained from open avail-
able databases, and data download process comply with 
the data use certification agreement of TCGA, Firehose, 
UCSC Xena and GEO databases. The requirements for 
institutional review board approval and informed con-
sent were waived.

Collection of DDR‑related gene sets and cluster TCGA 
samples at the DNA damage repair level
Five DDR-associated gene sets were collected from 
online Molecular Signatures Database (MSigDB) (https://​
gsea-​msigdb.​org). There were 55 genes in the HRR 
gene set (hsa03440, R-HSA-5693579), 13 in the NHEJ 
gene set (hsa03450), 23 in the MMR gene set (R-HSA-
5358508, hsa03430), 111 in the NER gene set (hsa03420, 
R-HSA-5696398), and 98 in the BER gene set (hsa03410, 
R-HSA-73884). The single-sample Gene Set Enrichment 
Analysis (ssGSEA) algorithm (R package “GSVA”) was 
used to obtain a score for the DDR level in each HPV16- 
tumor sample (FPKM) of the TCGA discovery cohort. 
The whole cohort was then clustered into DDR_high and 
DDR_low groups via the “sparcl” package in R [24, 25]. 
In univariate survival analysis, the log-rank test was used 
to compare the difference in overall survival rate between 
the above two groups.

Tumor microenvironment status identification in the TCGA 
cohort
In the TCGA discovery cohort, the ESTIMATE algorithm 
(R package “ESTIMATE”) was used to calculate scores 
for immune and stromal cell infiltration in the transcrip-
tome profiles (FPKM) [26]. The maximally selected rank 
statistics method (“maxstat” package in R) was applied 
to classify the cohort into tumor microenvironment high 
(TM_high) and tumor microenvironment low (TM_low) 
groups [27]. Among the two groups, the TM_high group 
contains more immune and stromal cell infiltration 
than that of the TM_low group. The prognostic value of 
the TM classification method was calculated using the 
Kaplan-Meier curve and log-rank tests. Combining DDR 
and TM status in TCGA discovery cohort can obtain four 
subgroups, namely, The DDR_high/TM_low, DDR_high/
TM_high, DDR_low/TM_high, and DDR_low/TM_low 
groups. The DDR_high/TM_high and DDR_high/TM_
low groups were extracted and integrated into the TCGA 
final discovery cohort. A multivariate survival analysis 
was conducted to evaluate the influence of the group-
ing factor on the overall survival rate for patients in the 
TCGA final discovery cohort.

Somatic alteration analysis of the DDR_high/TM_high 
and DDR_high/TM_low groups
Gene mutation data were obtained from the TCGA 
database (https://​portal.​gdc.​cancer.​gov). The “maftool” 
package in R was applied to visualize the top 20 mutant 
genes in DDR_high/TM_low and DDR_high/TM_high 
groups, respectively [28]. A forest plot showed the 
mutant genes that significantly differed between the 
above two groups (P < 0.05).

Extracted DDR‑ and TM‑related hub genes and enrichment 
analysis of the hub genes in the TCGA final discovery 
cohort
For the TCGA final discovery cohort, the raw data (read 
counts) for tumor samples were standardized using the 
cpm function and genes with high expression remained 
(mean read counts per million was larger than one). Dif-
ferentially expressed genes (DEGs) with FDR < 0.05 and 
log |fold change| > 0.5 between DDR_high/TM_high 
and DDR_high/TM_low groups were calculated with 
the “limma” package in R. A weighted gene co-expres-
sion network analysis (WGCNA) algorithm (“WGCNA” 
package in R) was used to select the DEGs modules cor-
related with the DDR_high/TM_high and DDR_high/
TM_low groups [29]. In the WGCNA analyzing pro-
cess, DEGs with variance > 50% among samples were 
selected. Using pearson’s correlation coefficient, paired 
genes were used to build a co-expression network. The 
co-expression network was transformed into an adja-
cency matrix by selecting the soft threshold (R2 > 0.8). 
Then, a topology overlap matrix (TOM) was estab-
lished using the tomsimilarity function to calculate the 
degree of association of genes in the adjacency matrix. 
The distance matrix 1-TOM was used to construct a 
hierarchical cluster tree and identify the various mod-
ules via dynamic tree cut. Then, modules with optimal 
eigenvalue similarity values were extracted for further 
analysis. Finally, a plot was constructed to show the cor-
relation between the extracted modules and the sub-
groups. Eigenvalue gene modules that were significantly 
correlated with subgrouping (P < 0.05) were extracted 
for further analysis. Hub genes were obtained by apply-
ing a protein–protein interaction (PPI) analysis to the 
eigenvalue gene modules (STRING (http://​string-​db.​
org)). For the nodule degree rank, the top 50 or 100 
genes were defined as hub genes. Enrichment analysis of 
the hub genes in each eigenvalue gene module was per-
formed with the “clusterProfiler” package in R [30], and 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways analysis in the “clusterProfiler” package is 
based on KEGG website (https://​www.​kegg.​jp/) [31–33]. 
P < 0.05 was considered statistically significant.

https://www.ncbi.nlm.nih.gov/geo
https://gsea-msigdb.org
https://gsea-msigdb.org
https://portal.gdc.cancer.gov
http://string-db.org
http://string-db.org
https://www.kegg.jp/
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Prognostic‑related hub gene identification and validation
A univariate survival analysis (P < 0.2) was conducted to 
select the significant hub genes related to overall survival 
rate of patients in the TCGA final discovery cohort. Inde-
pendent prognostic-related hub genes were identified 
by multivariate survival analysis. A correlation analysis 
between the prognostic-related hub genes and the clini-
cal traits was performed. The prognostic-related hub 
genes were validated in the GSE65858 and GSE41613 
data sets.

Therapeutic response prediction
Immunophenoscores (IPS) were calculated according to 
the four major immunogenicity categories, namely, effec-
tor cells, immunosuppressive cells, MHC molecules, and 
immunomodulators [34]. The Cancer Immunome Atlas 
(TCIA; https://​tcia.​at/​home) webtool provided four 
indexes for each TCGA patient: 1, The IPS index, and a 
high IPS value showed increased immunogenicity; 2, The 
IPS-PD1/PD-L1/PD-L2 blocker index, and a high value 
means more sensitivity to PD1/PD-L1/PD-L2 antibod-
ies; 3, The IPS-CTLA4 blocker index, and a high value 
means more sensitivity to CTLA4 antibodies; 4, The IPS-
PD1/PD-L1/PD-L2 + CTLA4 blocker index, and a high 
value means more sensitivity to PD1/PD-L1/PD-L2 and 
CTLA4 antibodies. According to the expression of hub 
genes, samples were divided into hub gene high- and low- 
group by the maximally selected rank statistics method. 
IPS and derived indexes were downloaded, and the dif-
ferences in those indexes between high- and low- groups 
were analysed. Except for surgery and radiotherapy, other 
important treatment options for HNSCC patients are 
chemotherapy and small-molecule targeted drugs. At the 
same time, we are gradually increasing our understand-
ing of the rationality of concurrent chemotherapy and 
immunotherapy. The CellMiner (https://​disco​ver.​nci.​nih.​
gov/​cellm​iner) and GSCALite (http://​bioin​fo.​life.​hust.​
edu.​cn/​web/​GSCAL​ite/) databases can provide correla-
tions between specific genes and drug sensitivity in the 
NCI-60 cell line set and in the CTRP or GDSC databases, 
respectively. Accordingly, we analysed the associations 
between the hub genes and the drug response in the 
CellMiner, CTRP, and GDSC databases.

Correlations among prognostic‑related hub genes, 
immune infiltration levels, and downstream immune cell 
effectors
The online webserver TIMER2.0 database (http://​timer.​
comp-​genom​ics.​org) is a comprehensive resource pro-
viding gene-associated immune infiltration data across 
32 cancer types. TIMER2.0 database can provide mul-
tiple algorithms such as xCell, CIBERSORT, EPIC, 

MCP-counter and TIMER algorithms. The relationships 
between prognostic-related hub genes and infiltrated 
immune cells were explored. A Spearman’s rank analy-
sis was performed to analyse the correlations between 
the hub genes and the downstream immune cell effec-
tors. The associate between the mRNA expression of the 
identified hub genes and the mRNA expression of insulin 
like growth factor 1 receptor (IGF1R), AKT serine/threo-
nine kinase 1 (AKT1), mammalian target of rapamycin 
(MTOR), and eukaryotic translation initiation factor 4E 
binding protein 1 (EIF4EBP1) for HPV- HNSCC were 
also explored in TIMER2.0 database.

Cell culture and transfection of RNA oligonucleotides
HPV- HNSCC cell lines (HN6, CAL27) were cultured 
in DMEM with 5% FBS (Gibco, USA) and maintained 
in a humidified 5% CO2 environment at 37 °C. Total 
RNA was extracted using RNAiso Plus (Takara 9109, 
Japan). Quantitative Real-time PCR (qRT-PCR) was 
performed with ABI Real-Time PCR System (ABI 7500, 
Thermofisher CA). Glyceraldehyde 3-phosphate dehy-
drogenase (GAPDH) was used to normalize the mRNA 
expression of test gene, and the ∆∆ Ct method was con-
ducted to calculate the relative expression levels of test 
gene. Test gene primers used in qRT-PCR were listed as 
follows: ALOX12B, forward, 5′-TCT​CAC​TGA​CCA​TTG​
TGG​GGA-3′; ALOX12B, reverse, 5′-TTG​TGC​AGG​CGG​
ATG​ATG​ATG-3′. The small interfering RNA (siRNA) was 
chemically synthesized by Geneseed (Guangzhou, China). 
HPV- HNSCC cell lines was transfected with siRNA using 
lipofectamine™ 2000 (Invitrogen, USA). The siRNA-medi-
ated knockdown of ALOX12B was achieved by targeting 
the sequence 5′-CGC​TAT​GCG​GAG​TTC​TAC​A-3′.

Cell proliferation, invasion assays and metastasis assays
The CCK8 assays (YEASEN, Shanghai) was used to 
assess cell proliferation. HN6 cells were seed into 96-well 
plates with 1 × 103/well and Cell Counting Kit-8 solu-
tion (YEASEN, Shanghai) was added to each well. Subse-
quently, the cells counting was performed daily for 4 days. 
The matrigel-coated transwell assay and transwell migra-
tion assay were used to test invasion and migration abil-
ity, respectively. In the matrigel-coated transwell assay, 
HN6 cells (1 × 105/well) were seed into 6-well transwell 
plates (COSTAR, USA) that precoated Matrigel solution 
(BD Biosciences, USA), and the 6-well plates was incu-
bated in a humidified incubator with 5% CO2 at 37 °C for 
24 h. In the transwell migration assay, HN6 cells (1 × 105/
well) were seed into 6-well transwell plates (COSTAR, 
USA), and tested after 24 h. The migrated or invaded cells 
were fixed and stained with crystal violet and counted 
using ImageJ software.

https://tcia.at/home
https://discover.nci.nih.gov/cellminer
https://discover.nci.nih.gov/cellminer
http://bioinfo.life.hust.edu.cn/web/GSCALite/
http://bioinfo.life.hust.edu.cn/web/GSCALite/
http://timer.comp-genomics.org
http://timer.comp-genomics.org
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Statistical analysis
All data were processed in R v. 3.6.1 (http://​www.R-​proje​
ct.​org) and GraphPad Prism 8 software (GraphPad Soft-
ware, Inc., USA). P < 0.05 was considered statistically 
significant in both the multivariate survival analysis and 
correlation analysis.

Results
DDR‑related patients clustering in the TCGA discovery 
cohort
A total of 433 HPV16- HNSCC patients were included 
in the TCGA discovery cohort (Table S1). Based on the 
DDR-related gene sets (Table S2), the ssGSEA method 
categorized patients into the DDR_high group (Cluster 
1; 364 patients) and the DDR_low group (Cluster 2; 69 
patients) (Fig. 1A). The log-rank test showed a difference 
in survival between the two groups (P = 0.025) (Fig. 1B).

TM‑ and DDR‑ status classification in the TCGA discovery 
cohort
In the TCGA discovery cohort, we divided patients into 
two cluster through ESTIMATE scoring and the maxi-
mally selected rank statistics method. The cut-off value 
for the maximally selected rank statistics algorithm 
was − 951.85 (Fig.  2A). A univariate survival analysis 
showed a significant difference in survival between TM_
high (n = 380) and TM_low (n = 53) groups (P = 0.012; 
Fig.  2B). After integrating the DDR-related clustering, 
there were 53, 311, 69, and 0 patients in the DDR_high/
TM_low, DDR_high/TM_high, DDR_low/TM_high and 
DDR_low/TM_low groups, respectively. We performed a 
survival log-rank test among DDR_high/TM_low, DDR_
high/TM_high, and DDR_low/TM_high groups and 
found that the DDR_low/TM_high group showed the 
best overall survival rate (P = 0.0072; Fig. 2C). We com-
pared the survival rates of the DDR_high/TM_high and 
DDR_high/TM_low groups and observed that the for-
mer exhibited higher survival than the latter (P = 0.032; 
Fig. 2D). Then, we integrated the data for the DDR_high/
TM_low (n = 53) and DDR_high/TM_high (n = 311) 
groups to create the TCGA final discovery cohort 
(n = 364).

The clinical characteristics of the DDR_high/TM_low 
and DDR_high/TM_high groups were shown in Table 
S3. The multivariate survival analysis disclosed that the 
DDR_high/TM_low status was a risk factor for overall 

survival (OS) in HPV16- HNSCC (Table 1). As shown in 
Table S3, N stage, T stage, TNM stage, alcohol history, 
smoking history, lymphovascular invasion status, margin 
status, perineural invasion status, pathological nodal ext-
racapsular spread status, anatomic neoplasm subdivision, 
neoadjuvant treatment, radiation therapy, additional 
pharmaceutical therapy, and additional radiation therapy 
were all balanced between the DDR_high/TM_low and 
DDR_high/TM_high groups. However, two groups dif-
fered in terms of sex and age.

Somatic mutant gene distinction between DDR_high/
TM_low and DDR_high/TM_high groups in the TCGA final 
discovery cohort
We analysed the top 20 genes with the highest mutation 
frequency in the TCGA final discovery cohort. In the 
DDR_high/TM_low group, they were TP53, TTN, NSD1, 
CDKN2A, and PKHD1L1 (Fig.  3A). In the DDR_high/
TM_high group, they were TP53, TTN, FAT1, CSMD3, 
and MUC16 (Fig.  3B). NSD1, CSMD2, ERBB4, ITGA4, 
CUL3, and TP53 showed relatively a higher mutation 
rate in the DDR_high/TM_low group, whereas CASP8 
showed a relatively higher mutation frequency in the 
DDR_high/TM_high group (Fig. 3C).

TM‑ and DDR‑ related hub DEGs identification 
and functional enrichment analysis in the TCGA final 
discovery cohort
We obtained 2140 DEGs in the TCGA final discovery 
cohort. Of these, 1589 were downregulated and 551 
were upregulated in the DDR_high/TM_low group, 
when compared with the DDR_high/TM_high group. 
The heatmap shows clustering of the top 50 upregu-
lated and top 50 downregulated genes in the DDR_high/
TM_low group (Fig.  4A). During the WGCNA calcula-
tion, the corresponding soft threshold was three and 
R2 > 0.8 (Fig.  4B). Modules with eigenvalue similarity 
> 0.75 were merged for further analysis (Fig.  4C). Then, 
the WGCNA algorithm identified seven DEGs modules 
designated blue, green, red, pink, black, brown, and gray 
(Fig. 4D). For the PPI analysis, we calculated gene nodes 
in the black, brown, blue, green, and red gene modules, 
respectively. After ranking the connecting node numbers 
between genes in each module, we screened out the top 
50 hub genes in the black and brown modules (Fig. 4E, F). 
Similarly, we screened out the top 100 hub genes in the 
blue, green, and red modules, respectively (Fig. S1).

Fig. 1  Patient sample stratification based on DNA damage response (DDR) level in human papillomavirus 16 negative (HPV16-) head and neck 
squamous cell carcinoma (HNSCC) TCGA discovery cohort (n = 433). A ssGSEA matrix plot of two subtypes identified in HPV16- HNSCC TCGA 
discovery cohort according to five DDR-associated genesets. B Kaplan-Meier (K-M) plot of overall survival probability for patients in the above two 
subtypes. One patient belonging to DDR_high subtype lacked survival data as shown in risk table

(See figure on next page.)

http://www.r-project.org
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Fig. 1  (See legend on previous page.)
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For the black gene module, the top 50 hub genes were 
enriched in ten biological process (BP) items, ten molecular 
function (MF) items, ten cellular component (CC) items, 
and one KEGG pathway (Fig. 5A, B). For the brown mod-
ule, the top 50 hub genes were enriched in ten biological 
process (BP) items, ten molecular function (MF) items, 
one cellular component (CC) item, and 24 KEGG path-
ways (Fig. 5C, D). In the BP analysis of the black module, 
the hub genes were enriched in keratinocyte differentiation, 
epidermal cell differentiation, and keratinization. In the BP 
analysis of the brown module, the hub genes were enriched 
in xenobiotic stimulus, glutathione metabolic process, and 
cellular detoxification. The involved KEGG pathways in the 
black module were glycosphingolipid biosynthesis-lacto 
and neolacto series. The KEGG pathways involved in the 
brown module were metabolism of glutathione metabo-
lism, drug metabolism−cytochrome P450, platinum drug 
resistance, and ferroptosis. For the blue gene module, the 
top 100 hub genes were enriched in several KEGG pathway 
(Fig. 6A), such as, Natural killer cell mediated cytotoxicity, 
Th17 cell differentiation, Neutrophil extracellular trap for-
mation, PD − L1 expression and PD − 1 checkpoint path-
way in cancer, and Leukocyte trans-endothelial migration 
pathways. For the green module, the top 100 hub genes 
were enriched in 30 KEGG pathways (Fig.  6B), such as, 
PI3K − Akt signaling pathway, Focal adhesion, MAPK sign-
aling pathway, and TGF − beta signaling pathways. For the 
green module, the top 100 hub genes were enriched in 31 
KEGG pathways (Fig. 6C), such as, Herpes simplex virus 1 
infection, Epstein−Barr virus infection, Human papilloma-
virus infection, and Viral carcinogenesis pathways.

Prognostic value of the hub genes in the TCGA final 
discovery and GEO validation data sets
Among the 100 hub genes in the black and brown mod-
ules, 28 genes were correlated with OS in HPV16- 
HNSCC (Table  2). The multivariate survival analysis 
identified ALOX12B and SPRR1A as protective survival-
related genes (Table  3). Geographical validations were 
performed on the GSE65858 and GSE41613 data sets. 
Multivariate survival analysis revealed that SPRR1A 
was significantly correlated with better OS in both GEO 
cohorts, whereas ALOX12B was an independent predic-
tor of survival in patients at GSE65858 data set.

Correlation analysis demonstrated that ALOX12B was 
upregulated in N0–1 stage as compared with N2–3 stage 
in the TCGA final discovery cohort (P = 0.028). Elevated 
ALOX12B expression was also observed in the earlier 
cancer stage in the GSE65858 and GSE41613 data sets 
(P = 0.024 and P = 0.028, respectively). SPRR1A down-
regulation was correlated with advanced N stage and can-
cer stage in the TCGA final discovery cohort (P = 0.0016) 
and GSE41613 (P = 0.038), respectively (Fig. 7).

Drug sensitivity analysis based on prognostic gene 
expression levels
Increased IPS and IPS-CTLA4 blocker indexes 
were observed in the groups with high expression of 
ALOX12B (P = 0.0018, P = 0.018) or SPRR1A (P = 0.0014, 
P = 0.063) (Fig.  8A–H). The IPS-PD1/PD-L1/PD-L2 
blocker and IPS-PD1/PD-L1/PD-L2 + CTLA4 blocker 
indices did not markedly differ between the two groups. 
Subsequently, we explored anti-tumor drug sensitivity 
based on hub genes. Poor survival patients with down-
regulated SPRR1A and ALOX12B were sensitive to cis-
platin, rapamycin, Idelalisib, everolimus (Fig.  8I), and 
were resistant to lapatinib, and afatinib, fluorouracil, 
and PHA-793887(Fig. S2, Fig. S3). We also observed that 
CSTA downregulation was an indicative of docetaxel 
resistance (Fig. S2, Fig. S3).

Correlation between survival‑related hub DEGs 
and immune/stromal cell infiltration determined 
in TIMER2.0
In the HPV- HNSCC TCGA database (TIMER2.0 online 
database), the xCell, EPIC, MCP-counter, and TIDE algo-
rithms showed that downregulation of both hub genes 
(ALOX12B and SPRR1A) were correlated with increased 
cancer-associated fibroblasts (CAFs) (Table  4). The 
downstream effector of CAFs contained FAP, IGF1/2, 
PDGFs, IL6, TGFβ, LIF, NT5E, ADORA2B, CCL2/5, 
CXCL12, and CXCR4 [35, 36]. Table 5 shows that nearly 
all the foregoing effectors were negatively associated with 
the expression of ALOX12B and SPRR1A. After adjusting 
tumor purity, the expression of ALOX12B was negatively 
associated with IGFR1, AKT1, MTOR, and EIF4EBP1, 
and the same correlation could also be observed in 
SPRR1A (Fig. 9).

(See figure on next page.)
Fig. 2  The Kaplan–Meier (K-M) overall survival (OS) curve of patients in the TCGA final discovery cohort (n = 364). A Two clusters were obtained 
from TCGA discovery cohort (n = 433) by dichotomizing tumor microenvironment (TM) score (“ESTIMATE” package in R). B K-M plot of OS 
probability in high- and low- TM score group. C K-M plot of OS probability in DDR_high/TM_low, DDR_high/TM_high, and DDR_low/TM_high 
groups. D K-M plot of OS probability for patients in the TCGA final discovery cohort including only DDR_high/TM_high and DDR_high/TM_low 
groups. One patient in the TCGA final discovery cohort lacked survival data as mentioned in Fig. 1
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Fig. 2  (See legend on previous page.)
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ALOX12B suppressed invasion and migration of HPV‑ 
HNSCC cell
The mRNA expression of ALOX12B was tested in two 
HPV- HNSCC cell lines, and the basal expression level 
of ALOX12B was high in HN6 cell line (Fig. 10A). There-
fore, we knock down ALOX12B in HN6 cell line by 
siRNA, and the expression of ALOX12B was found to be 
suppressed using qRT-PCR (P < 0.05) (Fig. 10B). Knock-
down of ALOX12B promoted HN6 cell proliferation in 
the CCK8 cell viability assay (P < 0.05) (Fig. 10C). Besides, 
transwell assays demonstrated that the knockdown of 
ALOX12B increased the migratory (P  < 0.01) and inva-
sive (P < 0.05) ability of HN6 cell (Fig. 10D-E).

Discussion
Based on the transcriptional expression profiles of 
HPV16-HNSCC patients, we found that high DNA dam-
age levels or low tumor microenvironment scores were 
associated with poor prognosis in HPV16- HNSCC 
patients. In addition, there were significant differences 
in the enriched core signaling pathways between the 
DDR_high/TM_high group and the DDR_high/TM_low 
group, and the DDR_high/TM_high group was enriched 
in immune cell development, polarization and activity-
related signaling pathway, while the DDR_high/TM_low 
group was enriched in glutathione metabolism, drug 
metabolizing enzymes, platinum resistance, and fer-
roptosis. In multivariate survival analysis, we identified 
ALOX12B and SPRR1A as two protective survival-related 
genes in HPV16- HNSCC and found that the expression 
of the above two genes were negatively correlated with 
CAFs infiltration. We also showed the mRNA expres-
sion of ALOX12B and SPRR1A was negatively correlated 
with the mRNA expression of IGF1R, AKT1, MTOR, and 
EIF4EBP1 in HPV- HNSCC. In addition, downregulation 
the expression of ALOX12B promoted the invasion and 
migration ability of HPV- HNSCC cell.

WGCNA clusters genes with highly similar biological 
functions into a single module [37]. In the DDR_high/
TM_low group, the positively correlated black and 
brown modules were enriched in several pathways. In the 
black module, the glycosphingolipid biosynthesis-lacto 
and neolacto series pathway was upregulated. A recent 
study revealed that an increased neolacto-series gly-
cosphingolipid on the membrane of tumor cells hinders 
the interaction between HLA-I and CD8+ T cells, and 
then impedes CD8 + T cell activation [38]. In the brown 
module, glutathione metabolism and drug metabolism-
cytochrome P450 pathways were enriched. Previously 
studies reported that cancer stem cells can scavenge 
intracellular reactive oxygen species (ROS) through glu-
tathione or resistant to treatment through abnormal 
drug metabolizing enzyme pathways [39–41]. We also 
noticed the cancer stem cell gene signature SOX2 and 
EPCAM was clustered in the brown module, moreover, 
cancer stem cell has been reported exhibiting resistance 
to immunotherapy [42–44]. Besides, ferroptosis pathway 
that enriched in brown module was disturbed during epi-
thelial-to-mesenchymal transition (EMT) process [45]. In 
the DDR_high/TM_high group, the positively correlated 
blue module was enriched the neutrophil extracellular 
traps (NETs) pathway and PD − L1 expression and PD − 1 
checkpoint pathway in cancer. We note that a study has 
shown that the barrier formed by NETs impedes the cell-
to-cell contact between tumor cells and CD8+ T cells, 
and then hinders the antitumor activity of cytotoxic T 
cells, and simultaneously targeting PD-1 and NETs can 
increase tumor regression in  vivo [46]. The mutation 
of a single gene can reflect the immune status to a cer-
tain degree. An example is the MUC16 mutation status 
for gastric cancer [47]. Our somatic mutation analysis 
showed an increased NSD1 mutation frequency in the 
DDR_high/TM_low group and a high CASP8 mutation 
rate in the DDR_high/TM_high group. The results were 
consistent with previous reports that NSD1 mutation is 
an intrinsic feature of cold immune phenotype, and the 
frequency of CASP8 mutation is increased in HNSCC 
with hot immune phenotype [48, 49].

SPRR1A and ALOX12B downregulation was observed 
in HPV16- HNSCC patients at advanced cancer stage. 
SPRR1A expression was positively associated with 
favorable survival and lower lymph node metasta-
sis in HNSCC patients [50]. ALOXE3 as a paralog of 
ALOX12B, inhibits glioblastoma tumor migration [51]. 
Our results revealed that ALOX12B is an independ-
ent protective prognostic indicator in HPV16- HNSCC 
patients. However, another study revealed that ALOX12B 
mediates cervical cancer cell proliferation and migration 

Table 1  Multivariate survival analysis in the TCGA final discovery 
cohort

HR Hazard ratio, CI Confidence interval, DDR-high High DNA repair level at 
transcriptome level, TM-high/−low Tumor microenvironment score -high/−low 
at transcriptome level, respectively. ** p value< 0.01

Overall survival HR (95%CI) P value

T stage T4 vs. T1–3 0.76 (0.55–1.06) 0.105

N stage N2–3 vs. N0–1 1.73 (1.22–2.44) 0.002**

Age >  60 vs. < = 60 1.39 (1.00–1.95) 0.056

Sex Male vs. Female 0.75 (0.53–1.05) 0.097

Grade category G3 vs. G1–2 0.94 (0.66–1.35) 0.746

Subgroups DDR-high/TM-low vs. 
DDR-high/TM-high

1.78 (1.15–2.75) 0.009**
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Fig. 3  Somatic mutant genes in DDR_high/TM_low and DDR_high/TM_high groups of the TCGA final discovery cohort. A Mutant genes (top 20) 
in DDR_high/TM_low group. B Mutant genes (top 20) in DDR_high/TM_high group. C Differential mutant genes between DDR_high/TM_low and 
DDR_high/TM_high groups
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via the PI3K-ERK1 pathway [52]. We also noticed that 
both hub genes (SPRR1A and ALOX12B) participate 
in epidermal cell differentiation and the skin barrier. 
ALOX12B participates in constructing the mature cor-
neocyte lipid envelope [53]. SPRR1A is a structural com-
ponent of the epidermis [54]. Mutation of ALOX12B 
and/or SPRR1A may result in skin barrier-related dis-
eases, such as psoriasis and autosomal-recessive exfo-
liative ichthyosis [55]. ZNF750 and GLIS1 that regulating 
ALOX12B and SPRR1A expression belong to Zinc-finger 
proteins (ZNFs) [55]. ZNF750 is recognized as a tumor 
suppressor gene in HNSCC, and ALOX12B downregu-
lation may indirectly reflect a loss of ZNFs expression in 
advanced HNSCC [56, 57]. A single-cell transcriptomic 
research including HPV16- HNSCC samples assessed the 
gene signatures of epithelial differentiation. SPRR1A and 
ZNF750 were listed in the top 50 genes of epithelial dif-
ferentiation characteristic genes [58]. A low epithelial dif-
ferentiation score was negatively correlated with a high 
partial epithelial-to-mesenchymal transition (p-EMT) 
score in the mesenchymal and basal subtype. The pro-
portion of mesenchymal and basal subtypes increased 
with the elevating of p-EMT score. Patients classified as 
mesenchymal and basal subtypes showed poor survival 
in the whole TCGA cohort. Hence, a low epithelial score 
could serve as a surrogate for worse survival in HPV16- 
HNSCC patients.

The xCell and MCP-counter algorithms used the gene 
marker-based method while EPIC was based on the 
deconvolution approach [59]. All four algorithms showed 
that the down-regulation of ALOX12B and SPRR1A 
genes was correlated with increased CAFs infiltration in 
HPV16- HNSCC. A study demonstrated SPRR1A down-
regulation in MCF-10A breast cancer cells when cocul-
ture with CAFs [60]. CAFs promote tumor progression 
via promoting EMT and metabolic reprogramming [61]. 
These vicious behaviors are achieved via the expression 
of specific membrane proteins and paracrine cytokines 
or chemokines, such as FAP, IL6, TGFβ, LIF, NT5E, 
ADORA2B, CCL2/5, CXCL12, CXCR4, IL7, IGF1/2 
[35, 36]. Our research indicated that the ALOX12B and 
SPRR1A expression levels were nearly always negatively 
correlated with the above effectors. Thus, both genes 
potentially reflect infiltrated CAFs quantity and qual-
ity. However, another study identified ALOX12B as an 
immunosuppressive factor based on a cytolytic activity 

analysis [49]. Therefore, the integrated roles of ALOX12B 
in the tumor microenvironment (CD8+ T cell, CAFs, 
regulatory T cells, myeloid-derived suppressor cells and 
so on) merit further investigation.

A docetaxel plus cisplatin and fluorouracil (TPF) 
chemotherapy regimen is recommended as the induc-
tion therapy for patients with stage III-IV in head and 
neck cancer [62]. In the present study, we observed that 
the downregulation of SPRR1A was associated with high 
sensitivity of cisplatin, and upregulation of ALOX12B 
and CSTA was associated with high sensitivity of fluoro-
uracil, and docetaxel, respectively. LUX-Head & Neck 1 
trial showed the efficacy of afatinib as a second-line treat-
ment for recurrence or metastatic (RM) HNSCC patients 
[63]. We found that SPRR1A and CSTA expression 
were correlated with afatinib sensitivity. A phase II trial 
reported the efficiency of lapatinib and capecitabine ther-
apy against RM HNSCC [64], and our results showed an 
association between SPRR1A and CSTA expression with 
lapatinib response. We also found that high ALOX12B 
expression was sensitive to CTLA4 inhibitors by calcu-
lating IPS-CTLA4 blocker scores. Notably, our research 
showed the expression of ALOX12B was negatively cor-
related with CAFs infiltration, and decreased ALOX12B 
expression indicated a better response to rapamycin or 
everolimus (drug target for mTOR). We try to explain 
the result in this way: The proliferation and develop-
ment of CAFs are regulated by PI3K/AKT/mTOR sign-
aling pathway, and CAFs might promote tumor progress 
via IGF1R/AKT1/mTOR pathway in tumor microenvi-
ronment [65, 66]. Moreover, for patients with head and 
neck squamous cell carcinoma, the level of phosphoryl-
ated mTOR in the junction zone between tumor and 
normal tissue or in tumor area was higher than that in 
the normal mucosal tissue, and the level of phosphoryl-
ated mTOR in the junction zone was higher than that 
in tumor area [67]. Meanwhile, upregulated mTOR 
expression predicted poor overall survival in HPV16- 
HNSCC patients [68]. The combination of everolimus 
plus docetaxel represented greater tumor regression 
than the use of docetaxel alone in a nude mouse xeno-
graft model [69]. Therefore, poor prognosis patients 
with low ALOX12B expression had high infiltration 
of CAFs surrounding tumor cells, and rapamycin or 
everolimus may provide survival benefits by inhibiting 
mTOR signaling.

(See figure on next page.)
Fig. 4  Identification of DDR- and TM- related hub genes in the TCGA final discovery cohort. A Heatmap of clustered top 100 differentially expressed 
genes (DEGs) between DDR_high/TM_high and DDR_high/TM_low groups. B-D WGCNA algorithm screened out seven eigengenes module 
(blue, green, red, pink, black, brown, and grey) based on DDR and TM status. E-F The top 50 hub genes selected in black and brown modules by 
protein-to-protein network method; respectively
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Fig. 4  (See legend on previous page.)
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Fig. 5  Biological characteristics of hub genes in black and brown modules. A Biological process, molecular function, and cellular component terms 
enriched by hub genes in black module. B KEGG pathway enriched by hub genes in black module. C Biological process, molecular function, and 
cellular component terms enriched by hub genes in brown module. D KEGG pathways enriched by hub genes in brown module
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Fig. 6  KEGG pathways analysis of hub genes in blue, green, and red modules. A KEGG pathways enriched by top 100 hub genes in blue module. B 
KEGG pathways enriched by top 100 hub genes in green module. C KEGG pathways enriched by top 100 hub genes in red module
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Our study has several limitations: 1, The clinical value 
of ALOX12B and SPRR1A was only validated in one 
GEO data set. Considering the different anatomical sites 
in HNSCC have different transcriptome profiles [70], 
TCGA and GSE65858 data set contained mixed HNSCC 
samples, while the GSE41613 data set only included oral 
squamous cell carcinoma samples. Thus, the difference 
in the anatomy of the two external verification data sets 
may be the reason for the different verification results, 
and further prospective research is required to verify the 
prognostic and drug sensitivity value of ALOX12B and 
SPRR1A in HPV16- HNSCC; 2, The specific mechanism 
of the abnormal expression of ALOX12B affecting the 

Table 2  Univariate survival analysis for the prognostic value of 
hub genes in the TCGA final discovery cohort

Gene HR HR.95%Low HR.95%High P value

ALOXE3 0.9723 0.9386 1.0073 0.1195

ANXA9 0.9758 0.9420 1.0107 0.1714

FUT2 0.9803 0.9541 1.0072 0.1492

MUC15 1.0238 0.9913 1.0574 0.1535

ASPG 0.9579 0.9044 1.0146 0.1428

PI3 1.0000 0.9999 1.0000 0.1149

CSTA 0.9997 0.9994 1.0001 0.1825

BNIPL 0.9868 0.9682 1.0057 0.1709

HPSE 0.9639 0.9138 1.0167 0.1768

SPRR1A 0.9999 0.9999 1.0000 0.1046

GCNT3 1.0336 1.0042 1.0638 0.0248

LY6G6C 0.9962 0.9909 1.0016 0.1647

PRSS3 0.9933 0.9834 1.0034 0.1913

ECM1 0.9983 0.9959 1.0007 0.1583

ALOX12B 0.9886 0.9777 0.9996 0.0420

PTGR1 1.0040 1.0002 1.0077 0.0383

TXNRD1 1.0033 0.9994 1.0073 0.0997

NQO1 1.0018 0.9995 1.0042 0.1270

ASNS 1.0169 1.0017 1.0324 0.0294

SLC7A11 1.0092 0.9981 1.0205 0.1047

G6PD 1.0019 0.9995 1.0044 0.1215

ENO2 1.0095 0.9973 1.0219 0.1284

SRXN1 1.0311 0.9864 1.0778 0.1753

GNGT1 1.1803 1.0139 1.3740 0.0325

ADH7 1.0047 1.0009 1.0086 0.0162

CLDN8 1.0242 0.9933 1.0560 0.1260

ODC1 0.9994 0.9985 1.0003 0.1863

CYP2S1 1.0039 0.9993 1.0086 0.0984

Table 3  Multivariate survival analysis for the prognostic value 
of SPRR1A and ALOX12B in the TCGA final discovery cohort and 
GEO validation data sets

HR Hazard ratio, CI Confidence interval, SPRR1A Small Proline Rich Protein 
1A, ALOX12B Arachidonate 12-Lipoxygenase, 12R Type. * p value< 0.05; **p 
value< 0.01; ***p value< 0.001

Dataset Stratification HR (95%CI) P value

SPRR1A expression for the TCGA final discovery cohort
T stage T3–4 vs. T1–2 1.17 (0.82–1.67) 0.380

N stage N2–3 vs. N0–1 1.50 (1.06–2.14) 0.022 *

Age 1.03 (1.01–1.04) < 0.001 ***

Sex Male vs. Female 0.84 (0.59–1.20) 0.344

Grade category G3 vs. G1–2 0.88 (0.61–1.27) 0.486

SPRR1A 0.99 (0.99–1.00) 0.040 *

SPRR1A expression for GSE65858 data set
T stage T3–4 vs. T1–2 1.92 (1.13–3.26) 0.016 *

N stage N2–3 vs. N0–1 2.26 (1.38–3.70) 0.001 **

Age 1.03 (1.01–1.05) 0.005**

Sex Male vs. Female 1.01 (0.55–1.85) 0.972

SPRR1A 0.81 (0.69–0.94) 0.007 **

SPRR1A expression for GSE41613 data set
Cancer stage Stage III-IV vs. Stage I-II 3.33 (1.68–6.62) 0.001 ***

Age 0.99 (0.97–1.02) 0.726

Sex Male vs. Female 1.22 (0.67–2.22) 0.511

SPRR1A 0.88 (0.79–0.98) 0.016 *

ALOX12B expression for the TCGA final discovery cohort
T stage T3–4 vs. T1–2 1.13 (0.79–1.60) 0.506

N stage N2–3 vs. N0–1 1.52 (1.07–2.16) 0.018 *

Age 1.03 (1.01–1.04) < 0.001 ***

Sex Male vs. Female 0.84 (0.59–1.20) 0.335

Grade category G3 vs. G1–2 0.90 (0.63–1.29) 0.561

ALOX12B 0.99 (0.98–0.99) 0.034 *

ALOX12B expression for GSE65858 data set
T stage T3–4 vs. T1–2 1.93 (1.13–3.29) 0.016 *

N stage N2–3 vs. N0–1 2.16 (1.32–3.55) 0.002 **

Age 1.03 (1.01–1.06) 0.002**

Sex Male vs. Female 1.12 (0.62–2.05) 0.707

ALOX12B 0.76 (0.59–0.98) 0.032 *

ALOX12B expression for GSE41613 data set
Cancer stage Stage III-IV vs. Stage I-II 3.52 (1.78–6.96) < 0.001 ***

Age 0.99 (0.97–1.02) 0.895

Sex Male vs. Female 1.20 (0.66–2.20) 0.555

ALOX12B 0.93 (0.83–1.04) 0.209
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Fig. 7  Wilcoxon rank test of prognostic-related hub gene expression between early and advanced TNM stage groups. A-C Correlation between the 
expression of ALOX12B and N stage in the TCGA final discovery cohort and GSE65858 data set, respectively. Association between the expression of 
ALOX12B and TNM stage in GSE41613 data set. D-F Correlation between the expression of SPRR1A and N stage in the TCGA final discovery cohort 
and GSE65858 data set, respectively. Association between the expression of SPRR1A and TNM stage in GSE41613 data set
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Fig. 8  Immunogenicity analysis based on the expression of prognostic-related hub genes. Differences of IPS, IPS-PD1/PD-L1/PD-L2 blocker, 
IPS-CTLA4 blocker, and IPS-PD1/PD-L1/PD-L2 + CTLA4 blocker between the groups with high and low expression of ALOX12B (A-D) and SPRR1A 
(E-H), respectively. I Drug patterns based on ALOX12B and SPRR1A in CellMiner database, and panels were arranged according to correlation 
coefficient
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Table 4  The correlation analysis between the expression of SPRR1A and ALOX12B and the amount of infiltrated cancer associated 
fibroblasts

EPIC, MCP-counter, TIDE, and XCELL are algorithm for calculating the amount of immune cell infiltration in samples, CAF Cancer associated fibroblasts

Gene Immune cell Spearman’s coefficient P value Adjusted p 
value

SPRR1A CAF_EPIC −0.33 1.32E-11 4.50E-10

CAF_MCP-counter −0.37 1.55E-14 1.24E-12

CAF_TIDE −0.37 1.21E-14 1.24E-12

CAF_XCELL −0.26 1.53E-07 1.88E-06

ALOX12B CAF_EPIC −0.20 3.91E-05 0.0005

CAF_MCP-counter −0.25 3.71E-07 9.89E-06

CAF_TIDE −0.27 7.24E-08 2.32E-06

CAF_XCELL − 0.25 6.20E-07 1.42E-05

Table 5  The correlation analysis between the expression of SPRR1A and ALOX12B and the expression of cancer associated fibroblasts 
effector

Down-effector gene Hub gene Spearman’s coefficient P value Adjusted p value

ADORA2B ALOX12B −0.1703 0.0004 0.0013

ADORA2B SPRR1A −0.1822 0.0002 0.0011

CCL2 ALOX12B −0.1225 0.0118 0.0882

CCL2 SPRR1A −0.1893 0.0001 0.0014

CCL5 ALOX12B −0.1719 0.0004 0.0022

CCL5 SPRR1A −0.2548 < 0.001 < 0.001

CXCL12 ALOX12B −0.2081 < 0.001 0.0003

CXCL12 SPRR1A −0.2720 < 0.001 < 0.001

CXCR4 ALOX12B −0.1739 0.0005 0.0024

CXCR4 SPRR1A −0.2515 < 0.001 < 0.001

FAP ALOX12B −0.3224 < 0.001 < 0.001

FAP SPRR1A −0.4550 < 0.001 < 0.001

IGF1 ALOX12B −0.1402 0.0050 0.0331

IGF1 SPRR1A −0.1742 0.0005 0.0037

IGF2 ALOX12B −0.0738 0.1405 0.3779

IGF2 SPRR1A −0.1439 0.0039 0.0315

IL6 ALOX12B −0.1210 0.0129 0.0573

IL6 SPRR1A −0.1861 0.0002 0.0022

LIF ALOX12B −0.2408 < 0.001 < 0.001

LIF SPRR1A −0.2480 < 0.001 < 0.001

NT5E ALOX12B −0.2220 < 0.001 0.0002

NT5E SPRR1A −0.2635 < 0.001 < 0.001

PDGFA ALOX12B −0.3593 < 0.001 < 0.001

PDGFA SPRR1A −0.4350 < 0.001 < 0.001

PDGFB ALOX12B −0.2685 < 0.001 < 0.001

PDGFB SPRR1A −0.3193 < 0.001 < 0.001

PDGFC ALOX12B −0.2454 < 0.001 < 0.001

PDGFC SPRR1A −0.3551 < 0.001 < 0.001

PDGFD ALOX12B −0.1346 0.0070 0.0256

PDGFD SPRR1A −0.2002 0.0001 0.0003

TGFB1 ALOX12B −0.1009 0.0436 0.1246

TGFB1 SPRR1A −0.1852 0.0002 0.0027

TGFB2 ALOX12B −0.2396 < 0.001 < 0.001

TGFB2 SPRR1A −0.3247 < 0.001 < 0.001
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Fig. 9  Association between the mRNA expression of ALOX12B (A-D) or SPRR1A (E-H) and the expression of insulin like growth factor 1 receptor 
(IGF1R), AKT serine/threonine kinase 1 (AKT1), mammalian target of rapamycin (MTOR), and eukaryotic translation initiation factor 4E binding 
protein 1 (EIF4EBP1) in HPV- HNSCC samples at TIMER2.0 online database
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invasion and metastasis of HPV-HNSCC cell needs to 
be revealed by further experiments in vitro and in vivo; 
3, The association between hub genes and drug sensitiv-
ity in CellMiner platform was based on NCI-60 tumor 
cells, while the cell assay lacks HNSCC cells. Besides, a 
zero-inflation data was used to analyse the correlation 
of the expression of SPRR1A and cisplatin sensitivity, 
and the reliability of this association needs to be further 
verified. Thus, the identified drug pattern based on hub 
genes needs to be validated in a patient-derived xenograft 
model.

Conclusion
Our bioinformatics analysis indicated that the intrinsic 
DNA repair level and tumor microenvironment status 
were associated with prognosis in HPV16- HNSCC 
patients. We identified two hub genes ALOX12B and 
SPRR1A, and showed that they can predict the clini-
cal outcomes of HPV16- HNSCC. In addition, the 
two genes may be indicators of the amount of infil-
trated CAFs. Nevertheless, further clinical research 
is required to validate drug sensitivity based on the 
expression of the those genes.

Fig. 10  ALOX12B suppresses the migration and metastasis of HN6 cells in vitro. A Quantification mRNA expression of ALOX12B in HN6 and CAL27 
cell lines by qRT-PCR. B HN6 cells were transfected with siNC and siALOX12B, and the expression of ALOX12B was examined using qRT-PCR. C CCK8 
assay was conducted to assess cell viability in HN6-siNC and HN6-siALOX12B cells. D-E Transwell assays were performed to examine the invasion 
and migration of HN6-siNC and HN6-siALOX12B cells. Column, mean; Error bars, S.D.; *p < 0.05; **p < 0.01; ALOX12B, Arachidonate 12-Lipoxygenase, 
12R Type; qRT-PCR, quantitative real-time polymerase chain reaction
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