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Survival-related indicators ALOX12B e

and SPRR1A are associated with DNA damage
repair and tumor microenvironment status

in HPV 16-negative head and neck squamous
cell carcinoma patients

Jing Li'?, Ling-Long Tang'? and Jun Ma'?"

Abstract

Objectives: To investigate prognostic-related gene signature based on DNA damage repair and tumor microenviron-
ment statue in human papillomavirus 16 negative (HPV16-) head and neck squamous cell carcinoma (HNSCC).

Methods: For the RNA-sequence matrix in HPV16- HNSCC in the Cancer Genome Atlas (TCGA) cohort, the DNA
damage response (DDR) and tumor microenvironment (TM) status of each patient sample was estimated by using
the ssGSEA algorithm. Through bioinformatics analysis in DDR_high/TM_high (n =311) and DDR_high/TM_low

(n =53) groups, a survival-related gene signature was selected in the TCGA cohort. Two independent external valida-
tion cohorts (GSE65858 (n =210) and GSE41613 (n =97)) with HPV16- HNSCC patients validated the gene signature.
Correlations among the clinical-related hub differentially expressed genes (DEGs) and infiltrated immunocytes were
explored with the TIMER2.0 server. Drug screening based on hub DEGs was performed using the CellMiner and
GSCALite databases. The loss-of-function studies were used to evaluate the effect of screened survival-related gene
on the motility of HPV- HNSCC cells in vitro.

Results: A high DDR level (P =0.025) and low TM score (P =0.012) were independent risk factors for HPV16- HNSCC.
Downregulated expression of ALOX12B or SPRRTA was associated with poor survival rate and advanced cancer stages.
The pathway enrichment analysis showed the DDR_high/TM_low samples were enriched in glycosphingolipid biosyn-
thesis-lacto and neolacto series, glutathione metabolism, platinum drug resistance, and ferroptosis pathways, while the
DDR_high/TM_low samples were enriched in Th17 cell differentiation, Neutrophil extracellular trap formation, PD — L1
expression and PD — 1 checkpoint pathway in cancer. Notably, the expression of ALOX12B and SPRR1A were negatively
correlated with cancer-associated fibroblasts (CAFs) infiltration and CAFs downstream effectors. Sensitivity to specific
chemotherapy regimens can be derived from gene expressions. In addition, ALOX12B and SPRR1A expression was asso-
ciated with the mRNA expression of insulin like growth factor 1 receptor (IGF1R), AKT serine/threonine kinase 1 (AKT1),
mammalian target of rapamycin (MTOR), and eukaryotic translation initiation factor 4E binding protein 1 (EIF4EBP1) in
HPV negative HNSCC. Down-regulation of ALOX12B promoted HPV- HNSCC cells migration and invasion in vitro.
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Conclusions: ALOX12B and SPRR1A served as a gene signature for overall survival in HPV16- HNSCC patients, and
correlated with the amount of infiltrated CAFs. The specific drug pattern was determined by the gene signature.

Keywords: Cancer-associated fibroblasts, DNA damage response, Human papilloma virus 16-negative, Head and

neck squamous cell carcinoma, Tumor microenvironment

Introduction

Head and neck squamous cell carcinoma (HNSCC)
are heterogeneous epithelial tumor that arise from the
oropharynx, oral cavity, lip, larynx, nasopharynx, and
hypopharynx. The 5-year overall survival rate for patients
with HNSCC is approximately 50% [1]. The main causa-
tive risk factors include excessive tobacco usage, heavy
alcohol usage, and human papillomavirus 16 (HPV16)
infection [2]. HPV16 infection-related E6/E7 is gener-
ally considered the oncogenic protein associated with
HNSCC [3]. HPV-negative (HPV-) HNSCC patients are
characterized by distinct molecular landscapes, worse
overall survival outcomes and a poor response rate to
induction chemotherapy when compared with HPV-
positive (HPV+) HNSCC patients [4-6]. Hence, there
is an urgent need to investigate the molecular spectra of
HPV16 negative (HPV16-) HNSCC and identify survival-
related biomarkers.

Tumor cells respond to endogenous or exogenous DNA
damage through the DNA damage response (DDR) path-
ways. Homologous recombination repair (HRR), nonho-
mologous end joining (NHEJ), mismatch repair (MMR),
nucleotide excision repair (NER), and base excision
repair (BER) are key pathways participating in the DNA
damage response (DDR) [7]. A previous study developed
a homologous recombination deficiency (HRD) score at
transcriptome level to predict the prognosis of HNSCC
patients, and the HRD score was not an independent
indicator for prognosis in univariate survival analysis [8].
However, another study has shown that HNSCC patients
exhibited double-strand breaks repair (DBR)- and MMR-
related genes upregulated as compared with healthy sub-
jects, and patients with low expression of NER-related
genes showed prolonged progression-free survival under
concurrent chemoradiotherapy treatment [9]. Abnormal
DDR status is also an important biological factor leading
to radiotherapy resistance [10]. Meanwhile, DDR status
could affect expressions of Immune checkpoint protein,
interferon receptors, and neoantigens, and thereby affect
therapeutic effect of immunotherapy [11, 12]. Therefore,
DDR level represents the tumorigenesis and development
process, as well as reflecting the efficacy of anti-tumor
therapy to a certain extent. Considering the higher DNA
repair gene/protein expression levels in HPV+ HNSCC
tissue samples than those in HPV- HNSCC samples [13],
the prognostic value and therapeutic efficacy value of

DDR levels in HPV16- HNSCC patients need to be fur-
ther clarified. In addition to the DDR level reflecting the
malignant evolution of tumor cells, the tumor microenvi-
ronment (TM) around tumor cells also affects or reflects
the malignant behavior of tumor cells. The TM comprises
a network of interactions among blood vessels, immune
cells, fibroblasts, adipocyte, endothelial cells, tumor
cells, and the surrounding extracellular components [14].
According to previous studies, TM is crucial for modu-
lating tumor progress and evaluating anti-tumor treat-
ment responses [15, 16]. The immune profiles of HPV+
HNSCC is distinct from that in HPV- HNSCC [17, 18].
Interesting, HPV+ patients exhibited enhanced immune
cell infiltration compared with HPV- patients [18], which
suggests that in the study of analysing the prognostic and
efficacy prediction value of tumor microenvironment for
HNSCC patients, the HPV infection status of the patients
also needs to be considered.

Recently, DNA-targeted therapy combined with radio-
therapy, chemotherapy or immunotherapy has shown
synergistic anti-tumor effects [19-22]. An earlier study
identified prognostic related immune genes based on dif-
ferences in immune status between tumor tissue and nor-
mal tissue in HNSCC patients, which could help develop
therapeutic regimens toward specific targets [23]. How-
ever, the DDR status differed between tumors and adja-
cent normal tissue, and immune status (eg, PD-L1
expression) in tumor tissue varies among patients. In the
present study, we used the TCGA and GEO databases
to explore and verify prognostic-related genes reflecting
both the DDR and the TM status as well as exploring the
drug sensitivity pattern in HPV16- HNSCC patients.

Materials and methods

Patient cohort and data source

The RNA sequencing data (fragments per kilobase per
million (FPKM) and read counts) for HNSCC were
downloaded from the Cancer Genome Atlas (TCGA)
database (https://portal.gdc.cancer.gov). Patient clini-
cal data were obtained from the Broad Genome Data
Analysis Centers Firehose server (https://gdac.broad
institute.org). Related survival data were downloaded
from the UCSC Xena browser (https://xenabrowser.net).
Based on the HPV status recorded in the Firehose server
and available survival data in the Xena browser, 433
HPV16- HNSCC patients were included in the TCGA
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discovery cohort. The validation cohort included 210
HPV16- patients in the Gene Expression Omnibus (GEO,
https://www.ncbi.nlm.nih.gov/geo) database (GSE65858
data set) and 97 HPV- patients in the GSE41613 data set.
The data in this study were all obtained from open avail-
able databases, and data download process comply with
the data use certification agreement of TCGA, Firehose,
UCSC Xena and GEO databases. The requirements for
institutional review board approval and informed con-
sent were waived.

Collection of DDR-related gene sets and cluster TCGA
samples at the DNA damage repair level

Five DDR-associated gene sets were collected from
online Molecular Signatures Database (MSigDB) (https://
gsea-msigdb.org). There were 55 genes in the HRR
gene set (hsa03440, R-HSA-5693579), 13 in the NHE]
gene set (hsa03450), 23 in the MMR gene set (R-HSA-
5358508, hsa03430), 111 in the NER gene set (hsa03420,
R-HSA-5696398), and 98 in the BER gene set (hsa03410,
R-HSA-73884). The single-sample Gene Set Enrichment
Analysis (ssGSEA) algorithm (R package “GSVA”) was
used to obtain a score for the DDR level in each HPV16-
tumor sample (FPKM) of the TCGA discovery cohort.
The whole cohort was then clustered into DDR_high and
DDR_low groups via the “sparcl” package in R [24, 25].
In univariate survival analysis, the log-rank test was used
to compare the difference in overall survival rate between
the above two groups.

Tumor microenvironment status identification in the TCGA

cohort

In the TCGA discovery cohort, the ESTIMATE algorithm
(R package “ESTIMATE”) was used to calculate scores
for immune and stromal cell infiltration in the transcrip-
tome profiles (FPKM) [26]. The maximally selected rank
statistics method (“maxstat” package in R) was applied
to classify the cohort into tumor microenvironment high
(TM_high) and tumor microenvironment low (TM_low)
groups [27]. Among the two groups, the TM_high group
contains more immune and stromal cell infiltration
than that of the TM_low group. The prognostic value of
the TM classification method was calculated using the
Kaplan-Meier curve and log-rank tests. Combining DDR
and TM status in TCGA discovery cohort can obtain four
subgroups, namely, The DDR_high/TM_low, DDR_high/
TM_high, DDR_low/TM_high, and DDR_low/TM_low
groups. The DDR_high/TM_high and DDR_high/TM_
low groups were extracted and integrated into the TCGA
final discovery cohort. A multivariate survival analysis
was conducted to evaluate the influence of the group-
ing factor on the overall survival rate for patients in the
TCGA final discovery cohort.

Page 3 of 23

Somatic alteration analysis of the DDR_high/TM_high

and DDR_high/TM_low groups

Gene mutation data were obtained from the TCGA
database (https://portal.gdc.cancer.gov). The “maftool”
package in R was applied to visualize the top 20 mutant
genes in DDR_high/TM_low and DDR_high/TM_high
groups, respectively [28]. A forest plot showed the
mutant genes that significantly differed between the
above two groups (P <0.05).

Extracted DDR- and TM-related hub genes and enrichment
analysis of the hub genes in the TCGA final discovery
cohort

For the TCGA final discovery cohort, the raw data (read
counts) for tumor samples were standardized using the
cpm function and genes with high expression remained
(mean read counts per million was larger than one). Dif-
ferentially expressed genes (DEGs) with FDR<0.05 and
log |fold change|>0.5 between DDR_high/TM_high
and DDR_high/TM_low groups were calculated with
the “limma” package in R. A weighted gene co-expres-
sion network analysis (WGCNA) algorithm (“WGCNA”
package in R) was used to select the DEGs modules cor-
related with the DDR_high/TM high and DDR_high/
TM_low groups [29]. In the WGCNA analyzing pro-
cess, DEGs with variance >50% among samples were
selected. Using pearson’s correlation coefficient, paired
genes were used to build a co-expression network. The
co-expression network was transformed into an adja-
cency matrix by selecting the soft threshold (R?>0.8).
Then, a topology overlap matrix (TOM) was estab-
lished using the tomsimilarity function to calculate the
degree of association of genes in the adjacency matrix.
The distance matrix 1-TOM was used to construct a
hierarchical cluster tree and identify the various mod-
ules via dynamic tree cut. Then, modules with optimal
eigenvalue similarity values were extracted for further
analysis. Finally, a plot was constructed to show the cor-
relation between the extracted modules and the sub-
groups. Eigenvalue gene modules that were significantly
correlated with subgrouping (P<0.05) were extracted
for further analysis. Hub genes were obtained by apply-
ing a protein—protein interaction (PPI) analysis to the
eigenvalue gene modules (STRING (http://string-db.
org)). For the nodule degree rank, the top 50 or 100
genes were defined as hub genes. Enrichment analysis of
the hub genes in each eigenvalue gene module was per-
formed with the “clusterProfiler” package in R [30], and
the Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways analysis in the “clusterProfiler” package is
based on KEGG website (https://www.kegg.jp/) [31-33].
P<0.05 was considered statistically significant.


https://www.ncbi.nlm.nih.gov/geo
https://gsea-msigdb.org
https://gsea-msigdb.org
https://portal.gdc.cancer.gov
http://string-db.org
http://string-db.org
https://www.kegg.jp/

Li et al. BMC Cancer (2022) 22:714

Prognostic-related hub gene identification and validation
A univariate survival analysis (P<0.2) was conducted to
select the significant hub genes related to overall survival
rate of patients in the TCGA final discovery cohort. Inde-
pendent prognostic-related hub genes were identified
by multivariate survival analysis. A correlation analysis
between the prognostic-related hub genes and the clini-
cal traits was performed. The prognostic-related hub
genes were validated in the GSE65858 and GSE41613
data sets.

Therapeutic response prediction

Immunophenoscores (IPS) were calculated according to
the four major immunogenicity categories, namely, effec-
tor cells, immunosuppressive cells, MHC molecules, and
immunomodulators [34]. The Cancer Immunome Atlas
(TCIA; https://tcia.at/home) webtool provided four
indexes for each TCGA patient: 1, The IPS index, and a
high IPS value showed increased immunogenicity; 2, The
IPS-PD1/PD-L1/PD-L2 blocker index, and a high value
means more sensitivity to PD1/PD-L1/PD-L2 antibod-
ies; 3, The IPS-CTLA4 blocker index, and a high value
means more sensitivity to CTLA4 antibodies; 4, The IPS-
PD1/PD-L1/PD-L2+ CTLA4 blocker index, and a high
value means more sensitivity to PD1/PD-L1/PD-L2 and
CTLA4 antibodies. According to the expression of hub
genes, samples were divided into hub gene high- and low-
group by the maximally selected rank statistics method.
IPS and derived indexes were downloaded, and the dif-
ferences in those indexes between high- and low- groups
were analysed. Except for surgery and radiotherapy, other
important treatment options for HNSCC patients are
chemotherapy and small-molecule targeted drugs. At the
same time, we are gradually increasing our understand-
ing of the rationality of concurrent chemotherapy and
immunotherapy. The CellMiner (https://discover.nci.nih.
gov/cellminer) and GSCALite (http://bioinfo.life.hust.
edu.cn/web/GSCALite/) databases can provide correla-
tions between specific genes and drug sensitivity in the
NCI-60 cell line set and in the CTRP or GDSC databases,
respectively. Accordingly, we analysed the associations
between the hub genes and the drug response in the
CellMiner, CTRP, and GDSC databases.

Correlations among prognostic-related hub genes,
immune infiltration levels, and downstream immune cell
effectors

The online webserver TIMER2.0 database (http://timer.
comp-genomics.org) is a comprehensive resource pro-
viding gene-associated immune infiltration data across
32 cancer types. TIMER2.0 database can provide mul-
tiple algorithms such as xCell, CIBERSORT, EPIC,
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MCP-counter and TIMER algorithms. The relationships
between prognostic-related hub genes and infiltrated
immune cells were explored. A Spearman’s rank analy-
sis was performed to analyse the correlations between
the hub genes and the downstream immune cell effec-
tors. The associate between the mRNA expression of the
identified hub genes and the mRNA expression of insulin
like growth factor 1 receptor (IGF1R), AKT serine/threo-
nine kinase 1 (AKT1), mammalian target of rapamycin
(MTOR), and eukaryotic translation initiation factor 4E
binding protein 1 (EIF4EBP1) for HPV- HNSCC were
also explored in TIMER2.0 database.

Cell culture and transfection of RNA oligonucleotides

HPV- HNSCC cell lines (HN6, CAL27) were cultured
in DMEM with 5% FBS (Gibco, USA) and maintained
in a humidified 5% CO2 environment at 37°C. Total
RNA was extracted using RNAiso Plus (Takara 9109,
Japan). Quantitative Real-time PCR (qRT-PCR) was
performed with ABI Real-Time PCR System (ABI 7500,
Thermofisher CA). Glyceraldehyde 3-phosphate dehy-
drogenase (GAPDH) was used to normalize the mRNA
expression of test gene, and the AA Ct method was con-
ducted to calculate the relative expression levels of test
gene. Test gene primers used in qRT-PCR were listed as
follows: ALOX12B, forward, 5-TCTCACTGACCATTG
TGGGGA-3’; ALOX12B, reverse, 5-TTGTGCAGGCGG
ATGATGATG-3'. The small interfering RNA (siRNA) was
chemically synthesized by Geneseed (Guangzhou, China).
HPV- HNSCC cell lines was transfected with siRNA using
lipofectamine " 2000 (Invitrogen, USA). The siRNA-medi-
ated knockdown of ALOX12B was achieved by targeting
the sequence 5'-CGCTATGCGGAGTTCTACA-3'.

Cell proliferation, invasion assays and metastasis assays
The CCK8 assays (YEASEN, Shanghai) was used to
assess cell proliferation. HN6 cells were seed into 96-well
plates with 1 x 10%/well and Cell Counting Kit-8 solu-
tion (YEASEN, Shanghai) was added to each well. Subse-
quently, the cells counting was performed daily for 4 days.
The matrigel-coated transwell assay and transwell migra-
tion assay were used to test invasion and migration abil-
ity, respectively. In the matrigel-coated transwell assay,
HNG6 cells (1 x 10°/well) were seed into 6-well transwell
plates (COSTAR, USA) that precoated Matrigel solution
(BD Biosciences, USA), and the 6-well plates was incu-
bated in a humidified incubator with 5% CO2 at 37°C for
24h. In the transwell migration assay, HN6 cells (1 x 10°/
well) were seed into 6-well transwell plates (COSTAR,
USA), and tested after 24 h. The migrated or invaded cells
were fixed and stained with crystal violet and counted
using Image] software.
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Statistical analysis

All data were processed in R v. 3.6.1 (http://www.R-proje
ct.org) and GraphPad Prism 8 software (GraphPad Soft-
ware, Inc., USA). P<0.05 was considered statistically
significant in both the multivariate survival analysis and
correlation analysis.

Results

DDR-related patients clustering in the TCGA discovery
cohort

A total of 433 HPV16- HNSCC patients were included
in the TCGA discovery cohort (Table S1). Based on the
DDR-related gene sets (Table S2), the ssGSEA method
categorized patients into the DDR_high group (Cluster
1; 364 patients) and the DDR_low group (Cluster 2; 69
patients) (Fig. 1A). The log-rank test showed a difference
in survival between the two groups (P=0.025) (Fig. 1B).

TM- and DDR- status classification in the TCGA discovery
cohort

In the TCGA discovery cohort, we divided patients into
two cluster through ESTIMATE scoring and the maxi-
mally selected rank statistics method. The cut-off value
for the maximally selected rank statistics algorithm
was —951.85 (Fig. 2A). A univariate survival analysis
showed a significant difference in survival between TM_
high (=380) and TM_low (n=53) groups (P=0.012;
Fig. 2B). After integrating the DDR-related clustering,
there were 53, 311, 69, and O patients in the DDR_high/
TM_low, DDR_high/TM_high, DDR_low/TM_high and
DDR_low/TM_low groups, respectively. We performed a
survival log-rank test among DDR_high/TM_low, DDR _
high/TM_high, and DDR low/TM_high groups and
found that the DDR low/TM_high group showed the
best overall survival rate (?=0.0072; Fig. 2C). We com-
pared the survival rates of the DDR_high/TM_high and
DDR_high/TM_low groups and observed that the for-
mer exhibited higher survival than the latter (P=0.032;
Fig. 2D). Then, we integrated the data for the DDR_high/
TM_low (n=53) and DDR_high/TM_high (n=311)
groups to create the TCGA final discovery cohort
(n=364).

The clinical characteristics of the DDR_high/TM_low
and DDR_high/TM_high groups were shown in Table
S3. The multivariate survival analysis disclosed that the
DDR_high/TM_low status was a risk factor for overall
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survival (OS) in HPV16- HNSCC (Table 1). As shown in
Table S3, N stage, T stage, TNM stage, alcohol history,
smoking history, lymphovascular invasion status, margin
status, perineural invasion status, pathological nodal ext-
racapsular spread status, anatomic neoplasm subdivision,
neoadjuvant treatment, radiation therapy, additional
pharmaceutical therapy, and additional radiation therapy
were all balanced between the DDR_high/TM_low and
DDR_high/TM_high groups. However, two groups dif-
fered in terms of sex and age.

Somatic mutant gene distinction between DDR_high/
TM_low and DDR_high/TM_high groups in the TCGA final
discovery cohort

We analysed the top 20 genes with the highest mutation
frequency in the TCGA final discovery cohort. In the
DDR_high/TM_low group, they were TP53, TTN, NSD1,
CDKN2A, and PKHDI1L1 (Fig. 3A). In the DDR_high/
TM_high group, they were TP53, TTN, FAT1, CSMD3,
and MUCI16 (Fig. 3B). NSD1, CSMD2, ERBB4, ITGAA4,
CUL3, and TP53 showed relatively a higher mutation
rate in the DDR_high/TM_low group, whereas CASP8
showed a relatively higher mutation frequency in the
DDR_high/TM_high group (Fig. 3C).

TM- and DDR- related hub DEGs identification

and functional enrichment analysis in the TCGA final
discovery cohort

We obtained 2140 DEGs in the TCGA final discovery
cohort. Of these, 1589 were downregulated and 551
were upregulated in the DDR_high/TM_low group,
when compared with the DDR_high/TM_high group.
The heatmap shows clustering of the top 50 upregu-
lated and top 50 downregulated genes in the DDR_high/
TM_low group (Fig. 4A). During the WGCNA calcula-
tion, the corresponding soft threshold was three and
R?>0.8 (Fig. 4B). Modules with eigenvalue similarity
>0.75 were merged for further analysis (Fig. 4C). Then,
the WGCNA algorithm identified seven DEGs modules
designated blue, green, red, pink, black, brown, and gray
(Fig. 4D). For the PPI analysis, we calculated gene nodes
in the black, brown, blue, green, and red gene modules,
respectively. After ranking the connecting node numbers
between genes in each module, we screened out the top
50 hub genes in the black and brown modules (Fig. 4E, F).
Similarly, we screened out the top 100 hub genes in the
blue, green, and red modules, respectively (Fig. S1).

(See figure on next page.)

Fig. 1 Patient sample stratification based on DNA damage response (DDR) level in human papillomavirus 16 negative (HPV16-) head and neck
squamous cell carcinoma (HNSCC) TCGA discovery cohort (n =433). A ssGSEA matrix plot of two subtypes identified in HPV16- HNSCC TCGA
discovery cohort according to five DDR-associated genesets. B Kaplan-Meier (K-M) plot of overall survival probability for patients in the above two
subtypes. One patient belonging to DDR_high subtype lacked survival data as shown in risk table



http://www.r-project.org
http://www.r-project.org

Li et al. BMC Cancer (2022) 22:714

Page 6 of 23

s N
A S Cluster Cluster
7 ] ' 1 ' ' 3 IDDR-high
DDR-low
2
Non-homologous end joining
1
| I 0
-1
Base excision repair -2
-3
] —— Nuceotdeexcson repair
Homologous recombination
Mismatch repair
B Strata=+DDR-low+DDR-high
1.00
2
%0.75
Qa
4
a
T
2
2 0.50:
3
0]
o
0
>
0025
p=0025
0.001
0 1 2 3 4 5 6 7 8 9 10 " 12 13 14 15 16 17 18 19 20
Year
Number at risk: n (%)
g_ 69 (100) 57 (83) 37(54) 24(35) 16(23) 10(14) 7(10) 6(9) 3(4) 3(4) 3(4) 2(Q) 23 1) (1) 1(1) 000 00 0(0) 0() 0(0)
g
o = 363 (100)268 (74) 149 (41) 91(25) 64 (18) 36(10) 22(6) 17(5) 12(3) 10(3) 8(2) 7() 5(1) 5(1) 3(1) 10 1(0) 1(0) 0(0) 0() 0(0)
0 1 2 3 4 5 6 7 8 9 10 " 12 13 14 15 16 17 18 19 20
Year
L Fig. 1 (See legend on previous page.)




Li et al. BMC Cancer (2022) 22:714

For the black gene module, the top 50 hub genes were
enriched in ten biological process (BP) items, ten molecular
function (MF) items, ten cellular component (CC) items,
and one KEGG pathway (Fig. 5A, B). For the brown mod-
ule, the top 50 hub genes were enriched in ten biological
process (BP) items, ten molecular function (MF) items,
one cellular component (CC) item, and 24 KEGG path-
ways (Fig. 5C, D). In the BP analysis of the black module,
the hub genes were enriched in keratinocyte differentiation,
epidermal cell differentiation, and keratinization. In the BP
analysis of the brown module, the hub genes were enriched
in xenobiotic stimulus, glutathione metabolic process, and
cellular detoxification. The involved KEGG pathways in the
black module were glycosphingolipid biosynthesis-lacto
and neolacto series. The KEGG pathways involved in the
brown module were metabolism of glutathione metabo-
lism, drug metabolism—cytochrome P450, platinum drug
resistance, and ferroptosis. For the blue gene module, the
top 100 hub genes were enriched in several KEGG pathway
(Fig. 6A), such as, Natural killer cell mediated cytotoxicity,
Th17 cell differentiation, Neutrophil extracellular trap for-
mation, PD—L1 expression and PD —1 checkpoint path-
way in cancer, and Leukocyte trans-endothelial migration
pathways. For the green module, the top 100 hub genes
were enriched in 30 KEGG pathways (Fig. 6B), such as,
PI3K — Akt signaling pathway, Focal adhesion, MAPK sign-
aling pathway, and TGF — beta signaling pathways. For the
green module, the top 100 hub genes were enriched in 31
KEGG pathways (Fig. 6C), such as, Herpes simplex virus 1
infection, Epstein—Barr virus infection, Human papilloma-
virus infection, and Viral carcinogenesis pathways.

Prognostic value of the hub genes in the TCGA final
discovery and GEO validation data sets

Among the 100 hub genes in the black and brown mod-
ules, 28 genes were correlated with OS in HPV16-
HNSCC (Table 2). The multivariate survival analysis
identified ALOX12B and SPRR1A as protective survival-
related genes (Table 3). Geographical validations were
performed on the GSE65858 and GSE41613 data sets.
Multivariate survival analysis revealed that SPRR1A
was significantly correlated with better OS in both GEO
cohorts, whereas ALOX12B was an independent predic-
tor of survival in patients at GSE65858 data set.
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Correlation analysis demonstrated that ALOX12B was
upregulated in NO-1 stage as compared with N2-3 stage
in the TCGA final discovery cohort (P=0.028). Elevated
ALOX12B expression was also observed in the earlier
cancer stage in the GSE65858 and GSE41613 data sets
(P=0.024 and P=0.028, respectively). SPRR1A down-
regulation was correlated with advanced N stage and can-
cer stage in the TCGA final discovery cohort (P=0.0016)
and GSE41613 (P=0.038), respectively (Fig. 7).

Drug sensitivity analysis based on prognostic gene
expression levels

Increased IPS and IPS-CTLA4 blocker indexes
were observed in the groups with high expression of
ALOX12B (P=0.0018, P=0.018) or SPRR1A (P=0.0014,
P=0.063) (Fig. 8A-H). The IPS-PD1/PD-L1/PD-L2
blocker and IPS-PD1/PD-L1/PD-L2+ CTLA4 blocker
indices did not markedly differ between the two groups.
Subsequently, we explored anti-tumor drug sensitivity
based on hub genes. Poor survival patients with down-
regulated SPRR1A and ALOX12B were sensitive to cis-
platin, rapamycin, Idelalisib, everolimus (Fig. 8I), and
were resistant to lapatinib, and afatinib, fluorouracil,
and PHA-793887(Fig. S2, Fig. S3). We also observed that
CSTA downregulation was an indicative of docetaxel
resistance (Fig. S2, Fig. S3).

Correlation between survival-related hub DEGs

and immune/stromal cell infiltration determined

in TIMER2.0

In the HPV- HNSCC TCGA database (TIMER2.0 online
database), the xCell, EPIC, MCP-counter, and TIDE algo-
rithms showed that downregulation of both hub genes
(ALOX12B and SPRR1A) were correlated with increased
cancer-associated fibroblasts (CAFs) (Table 4). The
downstream effector of CAFs contained FAP, IGF1/2,
PDGFs, IL6, TGEP, LIF, NT5E, ADORA2B, CCL2/5,
CXCL12, and CXCR4 [35, 36]. Table 5 shows that nearly
all the foregoing effectors were negatively associated with
the expression of ALOX12B and SPRR1A. After adjusting
tumor purity, the expression of ALOX12B was negatively
associated with IGFR1, AKT1, MTOR, and EIF4EBPI,
and the same correlation could also be observed in
SPRR1A (Fig. 9).

(See figure on next page.)

Fig. 2 The Kaplan—-Meier (K-M) overall survival (OS) curve of patients in the TCGA final discovery cohort (n =364). A Two clusters were obtained
from TCGA discovery cohort (n=433) by dichotomizing tumor microenvironment (TM) score (“ESTIMATE" package in R). B K-M plot of OS
probability in high- and low- TM score group. C K-M plot of OS probability in DDR_high/TM_low, DDR_high/TM_high, and DDR_low/TM_high
groups. D K-M plot of OS probability for patients in the TCGA final discovery cohort including only DDR_high/TM_high and DDR_high/TM_low
groups. One patient in the TCGA final discovery cohort lacked survival data as mentioned in Fig. 1
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Table 1 Multivariate survival analysis in the TCGA final discovery

cohort

Overall survival HR (95%Cl) P value
T stage T4vs. T1-3 0.76 (0.55-1.06) 0.105
N stage N2-3 vs. NO-1 73(1.22-2 44) 0.002**
Age > 60 vs.<= 60 1 39( .00-1.95) 0.056
Sex Male vs. Female 0.75 (0.53-1.05) 0.097
Grade category G3vs. G1-2 0.94 (0.66-1.35) 0.746
Subgroups DDR-high/TM-low vs. 1.78 (1.15-2.75) 0.009**

DDR-high/TM-high

HR Hazard ratio, C/ Confidence interval, DDR-high High DNA repair level at
transcriptome level, TM-high/—low Tumor microenvironment score -high/—low
at transcriptome level, respectively. ** p value<0.01

ALOX12B suppressed invasion and migration of HPV-
HNSCC cell

The mRNA expression of ALOX12B was tested in two
HPV- HNSCC cell lines, and the basal expression level
of ALOX12B was high in HNG6 cell line (Fig. 10A). There-
fore, we knock down ALOX12B in HN6 cell line by
siRNA, and the expression of ALOX12B was found to be
suppressed using qRT-PCR (P <0.05) (Fig. 10B). Knock-
down of ALOX12B promoted HN6 cell proliferation in
the CCKS8 cell viability assay (P <0.05) (Fig. 10C). Besides,
transwell assays demonstrated that the knockdown of
ALOX12B increased the migratory (P <0.01) and inva-
sive (P <0.05) ability of HNG6 cell (Fig. 10D-E).

Discussion

Based on the transcriptional expression profiles of
HPV16-HNSCC patients, we found that high DNA dam-
age levels or low tumor microenvironment scores were
associated with poor prognosis in HPV16- HNSCC
patients. In addition, there were significant differences
in the enriched core signaling pathways between the
DDR_high/TM_high group and the DDR_high/TM_low
group, and the DDR_high/TM_high group was enriched
in immune cell development, polarization and activity-
related signaling pathway, while the DDR_high/TM_low
group was enriched in glutathione metabolism, drug
metabolizing enzymes, platinum resistance, and fer-
roptosis. In multivariate survival analysis, we identified
ALOX12B and SPRR1A as two protective survival-related
genes in HPV16- HNSCC and found that the expression
of the above two genes were negatively correlated with
CAFs infiltration. We also showed the mRNA expres-
sion of ALOX12B and SPRR1A was negatively correlated
with the mRNA expression of IGF1R, AKT1, MTOR, and
EIF4EBP1 in HPV- HNSCC. In addition, downregulation
the expression of ALOX12B promoted the invasion and
migration ability of HPV- HNSCC cell.
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WGCNA clusters genes with highly similar biological
functions into a single module [37]. In the DDR_high/
TM_low group, the positively correlated black and
brown modules were enriched in several pathways. In the
black module, the glycosphingolipid biosynthesis-lacto
and neolacto series pathway was upregulated. A recent
study revealed that an increased neolacto-series gly-
cosphingolipid on the membrane of tumor cells hinders
the interaction between HLA-I and CD8+ T cells, and
then impedes CD8+ T cell activation [38]. In the brown
module, glutathione metabolism and drug metabolism-
cytochrome P450 pathways were enriched. Previously
studies reported that cancer stem cells can scavenge
intracellular reactive oxygen species (ROS) through glu-
tathione or resistant to treatment through abnormal
drug metabolizing enzyme pathways [39-41]. We also
noticed the cancer stem cell gene signature SOX2 and
EPCAM was clustered in the brown module, moreover,
cancer stem cell has been reported exhibiting resistance
to immunotherapy [42—-44]. Besides, ferroptosis pathway
that enriched in brown module was disturbed during epi-
thelial-to-mesenchymal transition (EMT) process [45]. In
the DDR_high/TM_high group, the positively correlated
blue module was enriched the neutrophil extracellular
traps (NETs) pathway and PD — L1 expression and PD — 1
checkpoint pathway in cancer. We note that a study has
shown that the barrier formed by NETs impedes the cell-
to-cell contact between tumor cells and CD8+ T cells,
and then hinders the antitumor activity of cytotoxic T
cells, and simultaneously targeting PD-1 and NETs can
increase tumor regression in vivo [46]. The mutation
of a single gene can reflect the immune status to a cer-
tain degree. An example is the MUC16 mutation status
for gastric cancer [47]. Our somatic mutation analysis
showed an increased NSD1 mutation frequency in the
DDR_high/TM_low group and a high CASP8 mutation
rate in the DDR_high/TM_high group. The results were
consistent with previous reports that NSD1 mutation is
an intrinsic feature of cold immune phenotype, and the
frequency of CASP8 mutation is increased in HNSCC
with hot immune phenotype [48, 49].

SPRR1A and ALOX12B downregulation was observed
in HPV16- HNSCC patients at advanced cancer stage.
SPRR1A expression was positively associated with
favorable survival and lower lymph node metasta-
sis in HNSCC patients [50]. ALOXE3 as a paralog of
ALOX12B, inhibits glioblastoma tumor migration [51].
Our results revealed that ALOX12B is an independ-
ent protective prognostic indicator in HPV16- HNSCC
patients. However, another study revealed that ALOX12B
mediates cervical cancer cell proliferation and migration
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via the PI3K-ERK1 pathway [52]. We also noticed that
both hub genes (SPRR1A and ALOXI12B) participate
in epidermal cell differentiation and the skin barrier.
ALOX12B participates in constructing the mature cor-
neocyte lipid envelope [53]. SPRR1A is a structural com-
ponent of the epidermis [54]. Mutation of ALOX12B
and/or SPRR1A may result in skin barrier-related dis-
eases, such as psoriasis and autosomal-recessive exfo-
liative ichthyosis [55]. ZNF750 and GLIS1 that regulating
ALOX12B and SPRR1A expression belong to Zinc-finger
proteins (ZNFs) [55]. ZNF750 is recognized as a tumor
suppressor gene in HNSCC, and ALOX12B downregu-
lation may indirectly reflect a loss of ZNFs expression in
advanced HNSCC [56, 57]. A single-cell transcriptomic
research including HPV16- HNSCC samples assessed the
gene signatures of epithelial differentiation. SPRR1A and
ZNF750 were listed in the top 50 genes of epithelial dif-
ferentiation characteristic genes [58]. A low epithelial dif-
ferentiation score was negatively correlated with a high
partial epithelial-to-mesenchymal transition (p-EMT)
score in the mesenchymal and basal subtype. The pro-
portion of mesenchymal and basal subtypes increased
with the elevating of p-EMT score. Patients classified as
mesenchymal and basal subtypes showed poor survival
in the whole TCGA cohort. Hence, a low epithelial score
could serve as a surrogate for worse survival in HPV16-
HNSCC patients.

The xCell and MCP-counter algorithms used the gene
marker-based method while EPIC was based on the
deconvolution approach [59]. All four algorithms showed
that the down-regulation of ALOX12B and SPRR1A
genes was correlated with increased CAFs infiltration in
HPV16- HNSCC. A study demonstrated SPRR1A down-
regulation in MCF-10A breast cancer cells when cocul-
ture with CAFs [60]. CAFs promote tumor progression
via promoting EMT and metabolic reprogramming [61].
These vicious behaviors are achieved via the expression
of specific membrane proteins and paracrine cytokines
or chemokines, such as FAP, IL6, TGFp, LIF, NT5E,
ADORA2B, CCL2/5, CXCL12, CXCR4, IL7, IGF1/2
[35, 36]. Our research indicated that the ALOX12B and
SPRR1A expression levels were nearly always negatively
correlated with the above effectors. Thus, both genes
potentially reflect infiltrated CAFs quantity and qual-
ity. However, another study identified ALOX12B as an
immunosuppressive factor based on a cytolytic activity
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analysis [49]. Therefore, the integrated roles of ALOX12B
in the tumor microenvironment (CD8+ T cell, CAFs,
regulatory T cells, myeloid-derived suppressor cells and
so on) merit further investigation.

A docetaxel plus cisplatin and fluorouracil (TPF)
chemotherapy regimen is recommended as the induc-
tion therapy for patients with stage III-IV in head and
neck cancer [62]. In the present study, we observed that
the downregulation of SPRR1A was associated with high
sensitivity of cisplatin, and upregulation of ALOX12B
and CSTA was associated with high sensitivity of fluoro-
uracil, and docetaxel, respectively. LUX-Head & Neck 1
trial showed the efficacy of afatinib as a second-line treat-
ment for recurrence or metastatic (RM) HNSCC patients
[63]. We found that SPRR1A and CSTA expression
were correlated with afatinib sensitivity. A phase II trial
reported the efficiency of lapatinib and capecitabine ther-
apy against RM HNSCC [64], and our results showed an
association between SPRR1A and CSTA expression with
lapatinib response. We also found that high ALOX12B
expression was sensitive to CTLA4 inhibitors by calcu-
lating IPS-CTLA4 blocker scores. Notably, our research
showed the expression of ALOX12B was negatively cor-
related with CAFs infiltration, and decreased ALOX12B
expression indicated a better response to rapamycin or
everolimus (drug target for mTOR). We try to explain
the result in this way: The proliferation and develop-
ment of CAFs are regulated by PI3K/AKT/mTOR sign-
aling pathway, and CAFs might promote tumor progress
via IGFIR/AKT1/mTOR pathway in tumor microenvi-
ronment [65, 66]. Moreover, for patients with head and
neck squamous cell carcinoma, the level of phosphoryl-
ated mTOR in the junction zone between tumor and
normal tissue or in tumor area was higher than that in
the normal mucosal tissue, and the level of phosphoryl-
ated mTOR in the junction zone was higher than that
in tumor area [67]. Meanwhile, upregulated mTOR
expression predicted poor overall survival in HPV16-
HNSCC patients [68]. The combination of everolimus
plus docetaxel represented greater tumor regression
than the use of docetaxel alone in a nude mouse xeno-
graft model [69]. Therefore, poor prognosis patients
with low ALOXI12B expression had high infiltration
of CAFs surrounding tumor cells, and rapamycin or
everolimus may provide survival benefits by inhibiting
mTOR signaling.

(See figure on next page.)

Fig. 4 Identification of DDR- and TM- related hub genes in the TCGA final discovery cohort. A Heatmap of clustered top 100 differentially expressed
genes (DEGs) between DDR_high/TM_high and DDR_high/TM_low groups. B-D WGCNA algorithm screened out seven eigengenes module
(blue, green, red, pink, black, brown, and grey) based on DDR and TM status. E-F The top 50 hub genes selected in black and brown modules by

protein-to-protein network method; respectively
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Table 2 Univariate survival analysis for the prognostic value of
hub genes in the TCGA final discovery cohort

Gene HR HR.95%Low HR.95%High P value
ALOXE3 0.9723 0.9386 1.0073 0.1195
ANXA9 0.9758 0.9420 1.0107 01714
FUT2 0.9803 0.9541 1.0072 0.1492
MUC15 1.0238 0.9913 1.0574 0.1535
ASPG 0.9579 0.9044 1.0146 0.1428
PI3 1.0000 0.9999 1.0000 0.1149
CSTA 0.9997 0.9994 1.0001 0.1825
BNIPL 0.9868 0.9682 1.0057 0.1709
HPSE 0.9639 09138 1.0167 0.1768
SPRRTA 0.9999 0.9999 1.0000 0.1046
GCNT3 1.0336 1.0042 1.0638 0.0248
LY6G6C 0.9962 0.9909 1.0016 0.1647
PRSS3 0.9933 0.9834 1.0034 0.1913
ECM1 0.9983 0.9959 1.0007 0.1583
ALOX12B 0.9886 09777 0.9996 0.0420
PTGR1 1.0040 1.0002 1.0077 0.0383
TXNRD1 1.0033 0.9994 1.0073 0.0997
NQO1 1.0018 0.9995 1.0042 0.1270
ASNS 1.0169 1.0017 1.0324 0.0294
SLC7AN 1.0092 0.9981 1.0205 0.1047
G6PD 1.0019 0.9995 1.0044 0.1215
ENO2 1.0095 0.9973 1.0219 0.1284
SRXN1 1.0311 0.9864 1.0778 0.1753
GNGT1 1.1803 1.0139 1.3740 0.0325
ADH7 1.0047 1.0009 1.0086 0.0162
CLDN8 1.0242 0.9933 1.0560 0.1260
OoDC1 0.9994 0.9985 1.0003 0.1863
CYP2S1 1.0039 0.9993 1.0086 0.0984

Our study has several limitations: 1, The clinical value
of ALOX12B and SPRR1A was only validated in one
GEO data set. Considering the different anatomical sites
in HNSCC have different transcriptome profiles [70],
TCGA and GSE65858 data set contained mixed HNSCC
samples, while the GSE41613 data set only included oral
squamous cell carcinoma samples. Thus, the difference
in the anatomy of the two external verification data sets
may be the reason for the different verification results,
and further prospective research is required to verify the
prognostic and drug sensitivity value of ALOX12B and
SPRR1A in HPV16- HNSCC; 2, The specific mechanism
of the abnormal expression of ALOX12B affecting the
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Table 3 Multivariate survival analysis for the prognostic value
of SPRRTA and ALOX12B in the TCGA final discovery cohort and
GEO validation data sets

Dataset Stratification HR (95%Cl) Pvalue
SPRR1A expression for the TCGA final discovery cohort

T stage T3-4vs. T1-2 1.17(0.82-1.67) 0380

N stage N2-3 vs. NO-1 1.50 (1.06-2.14)  0.022*
Age 1.03(1.01-1.04) <0.001 ***
Sex Male vs. Female 0.84 (0.59-1 20) 0.344
Grade category  G3vs.G1-2 0.88 (0.6 27) 0486
SPRRTA 0.99 (0.99-1 OO) 0.040*
SPRR1A expression for GSE65858 data set

T stage T3-4vs. T1-2 192(1.13-326) 0.016*
N stage N2-3 vs.NO-1 2.26(1.38-3. 70) 0.001 **
Age 03(1.0 05)  0.005%*
Sex Male vs. Female 01 (0.55-1 85) 0972
SPRRTA 81(0.69-0.94) 0.007 **
SPRR1A expression for GSE41613 data set

Cancer stage Stage lll-IV vs. Stage |-l 3.33 (1.68— 662) 0.001 ***
Age 0.99 (0.97-1.02) 0.726
Sex Male vs. Female 1.22 (0.67-2. 22) 0.511
SPRRTA 0.88 (0.79-0.98) 0.016*
ALOX12B expression for the TCGA final discovery cohort

T stage T3-4vs. T1-2 1.13(0.79-1.60) 0.506

N stage N2-3 vs. NO-1 2(1.07-2.16) 0.018*
Age 1.03(1.01-1.04)  <0.001 ***
Sex Male vs. Female 0.84 (0.59-1.20) 0335
Grade category  G3vs.G1-2 0.90 (063-1.29) 0.561
ALOX12B 0.99(0.98-0.99) 0.034*
ALOX12B expression for GSE65858 data set

T stage T3-4vs. T1-2 193(1.13-329) 0.016*
N stage N2-3 vs. NO-1 2.16 (1.32-3.55)  0.002 **
Age 1.03(1.01-1.06)  0.002**
Sex Male vs. Female 1.12(0.62-2.05) 0.707
ALOX12B 0.76 (0.59-0.98) 0.032*
ALOX12B expression for GSE41613 data set

Cancer stage Stage IV vs. Stage -l 3.52(1.78-6.96)  <0.001 ***
Age 0.99(0.97-1.02) 0.895
Sex Male vs. Female 1.20 (0.66-2.20)  0.555
ALOX12B 0.93(0.83-1.04) 0.209

HR Hazard ratio, C/ Confidence interval, SPRR1A Small Proline Rich Protein
1A, ALOX12B Arachidonate 12-Lipoxygenase, 12R Type. * p value<0.05; **p
value<0.01; ***p value< 0.001
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Table 4 The correlation analysis between the expression of SPRRTA and ALOX12B and the amount of infiltrated cancer associated

fibroblasts
Gene Immune cell Spearman’s coefficient P value Adjusted p
value

SPRR1A CAF_EPIC —033 1.32E-11 4.50E-10
CAF_MCP-counter —-037 1.55E-14 1.24E-12
CAF_TIDE —037 121E-14 1.24E-12
CAF_XCELL —0.26 1.53E-07 1.88E-06

ALOX12B CAF_EPIC —0.20 3.91E-05 0.0005
CAF_MCP-counter —0.25 3.71E-07 9.89E-06
CAF_TIDE —0.27 7.24E-08 2.32E-06
CAF_XCELL —0.25 6.20E-07 1.42E-05

EPIC, MCP-counter, TIDE, and XCELL are algorithm for calculating the amount of immune cell infiltration in samples, CAF Cancer associated fibroblasts

Table 5 The correlation analysis between the expression of SPRRTA and ALOX12B and the expression of cancer associated fibroblasts

effector

Down-effector gene Hub gene Spearman’s coefficient Pvalue Adjusted p value
ADORA2B ALOX12B —0.1703 0.0004 0.0013
ADORA2B SPRRTA —0.1822 0.0002 0.0011
CcCL2 ALOX128B —0.1225 0.0118 0.0882
CccL2 SPRR1A —0.1893 0.0001 0.0014
CCL5 ALOX12B —0.1719 0.0004 0.0022
CCL5 SPRR1A —0.2548 <0.001 <0.001
CXCL12 ALOX12B —0.2081 <0.001 0.0003
CXCL12 SPRR1A —0.2720 <0.001 <0.001
CXCR4 ALOX12B —0.1739 0.0005 0.0024
CXCR4 SPRR1A —02515 <0.001 <0.001
FAP ALOX12B —0.3224 <0.001 <0.001
FAP SPRR1A —0.4550 <0.001 <0.001
IGF1 ALOX12B —0.1402 0.0050 0.0331
IGF1 SPRR1A —0.1742 0.0005 0.0037
IGF2 ALOX12B —0.0738 0.1405 0.3779
IGF2 SPRRTA —0.1439 0.0039 0.0315
IL6 ALOX12B —0.1210 0.0129 0.0573
IL6 SPRR1A —0.1861 0.0002 0.0022
LIF ALOX12B —0.2408 <0.001 <0.001
LIF SPRR1A —0.2480 <0.001 <0.001
NTSE ALOX128B —0.2220 <0.001 0.0002
NTSE SPRR1A —0.2635 <0.001 <0.001
PDGFA ALOX12B —0.3593 <0.001 <0.001
PDGFA SPRR1A —04350 <0.001 <0.001
PDGFB ALOX12B —0.2685 <0.001 <0.001
PDGFB SPRR1A —0.3193 <0.001 <0.001
PDGFC ALOX12B —0.2454 <0.001 <0.001
PDGFC SPRR1A —0.3551 <0.001 <0.001
PDGFD ALOX12B —0.1346 0.0070 0.0256
PDGFD SPRRTA —0.2002 0.0001 0.0003
TGFB1 ALOX12B —0.1009 0.0436 0.1246
TGFB1 SPRR1A —0.1852 0.0002 0.0027
TGFB2 ALOX12B —0.2396 <0.001 <0.001

TGFB2 SPRRTA —0.3247 <0.001 <0.001
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invasion and metastasis of HPV-HNSCC cell needs to
be revealed by further experiments in vitro and in vivo;
3, The association between hub genes and drug sensitiv-
ity in CellMiner platform was based on NCI-60 tumor
cells, while the cell assay lacks HNSCC cells. Besides, a
zero-inflation data was used to analyse the correlation
of the expression of SPRR1A and cisplatin sensitivity,
and the reliability of this association needs to be further
verified. Thus, the identified drug pattern based on hub
genes needs to be validated in a patient-derived xenograft
model.

Conclusion

Our bioinformatics analysis indicated that the intrinsic
DNA repair level and tumor microenvironment status
were associated with prognosis in HPV16- HNSCC
patients. We identified two hub genes ALOX12B and
SPRR1A, and showed that they can predict the clini-
cal outcomes of HPV16- HNSCC. In addition, the
two genes may be indicators of the amount of infil-
trated CAFs. Nevertheless, further clinical research
is required to validate drug sensitivity based on the
expression of the those genes.
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