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Loss of muscle mass and strength with aging, also termed sarcopenia, results in a
loss of mobility and independence. Exercise, particularly resistance training, has proven
to be beneficial in counteracting the aging-associated loss of skeletal muscle mass
and function. However, the anabolic response to exercise in old age is not as robust,
with blunted improvements in muscle size, strength, and function in comparison to
younger individuals. This review provides an overview of several physiological changes
which may contribute to age-related loss of muscle mass and decreased anabolism in
response to resistance training in the elderly. Additionally, the following supplemental
therapies with potential to synergize with resistance training to increase muscle mass
are discussed: nutrition, creatine, anti-inflammatory drugs, testosterone, and growth
hormone (GH). Although these interventions hold some promise, further research is
necessary to optimize the response to exercise in elderly patients.
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INTRODUCTION

The loss of skeletal muscle mass with aging is a well-known phenomenon (Doherty, 2003). Lean
muscle mass decreases substantially after the age of 60 (Melton et al., 2000). Severe, aging-associated
loss of muscle mass and strength, also termed sarcopenia (Rosenberg, 1989) and dynapenia (Volpi
et al., 2004), respectively, have profound consequences that extend beyond simple loss of mobility
(Wolfson et al., 1995). Specific diagnostic criteria for sarcopenia continues to evolve (Cruz-Jentoft
et al., 2010; Studenski et al., 2014), but it manifests with increased insulin resistance, loss of bone
density, and an increase in falls (Dutta and Hadley, 1995; Rantanen et al., 1999). As such, these
patients are at an increased risk of all-cause mortality, incident and mobility disabilities, and loss
of independence (Angulo et al., 2020). From a public health perspective, the economic burden
of caring for sarcopenic patients is tremendous and accounts for nearly $28.5 billion per year in
expenditures, after adjusting for inflation (Janssen et al., 2004).

Many recent studies suggest that regimented physical activity, including resistance training, can
be beneficial in maintaining muscle strength and function in elderly individuals (Pahor et al., 2014;
Losa-Reyna et al., 2019; Martínez-Velilla et al., 2019; Rodriguez-Mañas et al., 2019; Yu et al., 2019).
However, although physical training is beneficial at any age, the anabolic response to exercise
decreases substantially with aging (Welle et al., 1996; Phillips et al., 2017; Lee et al., 2019). This
review explores the mechanisms of cellular and molecular adaptations of skeletal muscle to exercise,
with a focus on the aging-associated changes that cause hinderance of its anabolic response to
exercise. We further evaluate the efficacy of supplements commonly used with physical training
to optimize the exercise benefit on skeletal muscle, with the ultimate goal of preventing sarcopenia
and associated adverse events.
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SKELETAL MUSCLE AND AGING

Aging is associated with changes in multiple biological processes
and impacts nearly every facet of tissue homeostasis (López-
Otín et al., 2013). Changes specific to skeletal muscle include
diminished fiber number and cross-sectional area (Lexell et al.,
1988), a decline in fast-twitch muscle-fibers (Lexell, 1995), and
increased fat infiltration (Marcus et al., 2010). These structural
changes are responsible for the loss of strength that accompanies
muscle aging (Thompson, 2002; Distefano and Goodpaster,
2018). A complex network of signaling factors are precisely
regulated to maintain myogenesis and muscle mass. Protein
metabolism is regulated by Akt and mammalian target of
rapamycin (mTOR) signaling pathways, which are, in turn,
activated by various anabolic stimuli to bring about hypertrophic
response in skeletal muscle. The induction of the insulin-like
growth factor (IGF) pathway, upstream of Akt/mTOR prevents
muscle atrophy (Yoon, 2017), highlighting its importance in
the maintenance of muscle mass. The circulating levels of IGF-
1 and IGF-1 binding proteins are decreased in aging, with a
corollary reduction in mTOR activation in sarcopenic individuals
(Pallafacchina et al., 2002; Léger et al., 2008; Deane et al., 2013;
Sharples et al., 2013).

The maintenance of muscle mass may be further limited by
diminished nutritional stimuli due to poor nutritional intake
(Buford et al., 2010). A lack of nutrients, including essential
amino acids (EAAs), is further paired with improper post-
prandial nutrient handling in the elderly (Wall et al., 2015).
These changes contribute to an inability to increase muscle
protein synthesis in response to exercise or nutritional availability
and results in muscle atrophy with aging (Wilkinson et al.,
2018). The inability to properly utilize nutrition is synonymous
with anabolic resistance, in which skeletal muscle in old age
cannot gain mass despite appropriate cues. Two major factors
contributing to this phenomenon in elderly subjects are poor
nutrition and a reduction in regimented physical activity (Steffl
et al., 2017; Wilkinson et al., 2018).

Muscle hypertrophy can also be negatively regulated by
catabolic signals, most prominent of which are the transforming
growth factor (TGF)-β superfamily and related cytokines.
Myostatin and TGF-β both limit muscle hypertrophy by
regulating the expression of genes involved in differentiation
and proliferation in muscle stem cells (Langley et al., 2002;
Yang et al., 2007), increasing protein degradation (Sartori et al.,
2009), and inhibiting mTOR activation by anabolic stimuli in
mature myofibers (Trendelenburg et al., 2009). While their role
in sarcopenia remains unclear, some studies have shown that an
age-related increase in TGF-β signaling from myofibers occurs in
parallel with a decline in Notch signaling in satellite cells (Conboy
et al., 2003; Chakkalakal et al., 2012), thus resulting in a reduced
regenerative capacity of aged muscle. Myostatin was found to
be increased in type II muscle fibers (Shibaguchi et al., 2018),
suggesting that myostatin may play a role in selective type II fiber
atrophy as seen in old age.

Androgenic depravation may be a factor contributing to
sarcopenia in old males (Katznelson et al., 1996; Kenny et al.,
2001; Ly et al., 2001). Testosterone promotes skeletal muscle

hypertrophy directly by increasing protein synthesis (Ferrando
et al., 1998) and muscle stem cell division (Powers and Florini,
1975), and indirectly by increasing IGF-1 expression via ERK
and mTOR signaling (Sculthorpe et al., 2012). The exact
role of testosterone in sarcopenia remains to be established;
however, a study reported a significant association between
serum-free testosterone and muscle mass in well-nourished,
elderly men (Baumgartner et al., 1999). A corollary study
demonstrated that lower circulating testosterone was associated
with decreased maximal performance capacity in elderly men
(Häkkinen and Pakarinen, 1993).

Chronic inflammation, as occurs with aging, has been
shown to have detrimental effects on muscle physiology. In
particular, the NF-κB pathway may be causative in limiting
skeletal muscle repair following injury and hastening atrophy
(Li et al., 2008). NF-κB is highly expressed in elderly people
with muscle wasting (Bruunsgaard and Pedersen, 2003) and its
level correlates with decreased anabolic response (Cuthbertson
et al., 2005). In multiple preclinical models, NF-κB limited
myoblast differentiation and regeneration following injury
(Oh et al., 2016). Taken together, the evidence suggests that
pharmacological inhibition of chronically activated NF-κB may
limit aging-associated muscle loss. Indeed, non-steroidal anti-
inflammatory drugs (NSAID)s promote muscle regeneration
following injury, although its benefit in limiting sarcopenia
remains to be elucidated (Thaloor et al., 1999; Oh et al., 2016).

In addition to alterations in the systemic milieu, intrinsic
changes within myofibers and muscle stem cells with aging also
affects the ability of skeletal muscle to respond to anabolic stimuli.
Hyperphosphorylation of mTORC1, which impairs its activation
(Kang et al., 2013), is found in aged muscle of human (Markofski
et al., 2015). Therefore, defective mTOR signaling likely underlies
the resistance of skeletal muscle to anabolic stimuli (Guillet
et al., 2004), insulin resistance (Rasmussen et al., 2006), and
impaired protein/glucose homeostasis in aged skeletal muscle
(Petersen et al., 2015). Mitochondrial dysfunction has also been
associated with sarcopenia (Coen et al., 2013) and mitochondrial
DNA damage has been shown to cause muscle wasting (Amara
et al., 2007). While there are no pharmacotherapeutics that
are efficacious in attenuating skeletal muscle loss in aging,
resistance training may limit some of these pathologic aging
associated changes in skeletal muscle by augmenting mTOR
activity (Song et al., 2017).

EFFECT OF RESISTANCE EXERCISE
TRAINING ON SKELETAL MUSCLE

Physical activity, especially resistance training, is unequivocally
beneficial for elderly patients with regards to enhancing muscle
mass and strength (Fiatarone et al., 1990; Dibble et al., 2006;
Peterson et al., 2011; Drummond et al., 2012). A recent
review found that when progressive resistance training (PRT)
is performed 2–3 times a week at a high intensity, it results in
improved physical function and strength (Liu and Latham, 2009).
The frequency and duration of resistance exercise in elderly are
recommended at 2–4 times per week on alternating days and
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lasting 30–60 min each; 1–3 sets of 8–15 reps at 80% of one-
rep maximum strength, with a monthly progressive adjustment
(American College of Sports Medicine Position Stand, 1998;
Law et al., 2016). In skeletal muscle, functional overload induces
hypertrophy resulting in increased muscle mass and fiber size in a
dose-dependent manner (Frontera et al., 1988). Previous studies
have demonstrated that resistance exercise or muscle contraction
increases overall muscle protein turnover in favor of protein
synthesis through the activation of the mTOR pathway (Biolo
et al., 1995). In addition to its direct anabolic effect, exercise has
been shown to increase the circulating levels of IGF-1 (Borst et al.,
2001) and androgens (Hawkins et al., 2008), while decreasing
myostatin levels (Hittel et al., 2010). Furthermore, physical
activity promotes restoration of insulin sensitivity, mitochondrial
biogenesis, and reduces inflammation (Nieman et al., 2003;
Campbell and Turner, 2018).

ATTENUATED EXERCISE BENEFIT IN
THE ELDERLY ON MUSCLE MASS AND
STRENGTH

Despite the consensus that regimented physical training is
beneficial for the maintenance of strength and function,
numerous studies suggest that the effects of exercise on skeletal
muscle physiology decreases with aging. Anabolic resistance
describes the inability of the body to add muscle mass despite
physical activity (Kumar et al., 2009; Rivas et al., 2012; Francaux
et al., 2016). In older patients, the increase in lean muscle
mass following resistance exercise training is substantially less
than younger subjects (Pedersen et al., 2003). As such, the
gain in strength following regimented exercise programs are
substantially less in the elderly (Welle et al., 1996; Kosek et al.,
2006; Booth and Laye, 2010). Diminished induction of muscle
regeneration following exercise further dampens the overall
hypertrophic response in the elderly (Ogawa et al., 1992; Behnke
et al., 2012; Suetta et al., 2013). In addition, elderly patients suffer
from impaired muscle activation secondary to aging-associated
changes in motor unit density and morphology (Campbell
et al., 1973; Raj et al., 2010; Hepple and Rice, 2016). Resistance
exercise training improves innervation and thus muscle strength
in elderly even without fiber hypertrophy (Messi et al., 2016).
Despite exercise, however, the numbers of motor units may
still decline with aging (Power et al., 2012; Piasecki et al.,
2016), limiting the functional improvement attainable from
exercise. Understanding the limitations of resistance training and
potential mechanisms underlying this phenomenon is critical for
improving exercise benefit in the elderly population.

OPTIMIZING SKELETAL MUSCLE
RESPONSE TO EXERCISE IN AGING

Nutritional Supplementation
The acute anabolic responses to feeding and exercise were
found to be dampened in old subjects compared to their young

counterparts, thus limiting their recovery, and muscle growth
(Cuthbertson et al., 2005; Durham et al., 2010). It has been
hypothesized that the blunted increase in protein synthesis
following acute muscle loading may influence the smaller gains
in lean tissue following resistance exercise training in older
adults (Durham et al., 2010). As such, supplementation of high-
quality protein may improve anabolic response to a single bout
of exercise (Drummond et al., 2008; Dideriksen et al., 2011;
Pennings et al., 2011). Whole protein supplements such as whey
and casein, both milk-derivatives, are popularly ingested with
the intention to increase muscle mass. Casein, when used as
a pre-sleep protein supplement, has been shown to increase
myofibrillar protein synthesis rates overnight in older adults
(Kouw et al., 2017). When combined with a bout of resistance
exercise in the evening, rates of protein synthesis were even
higher (Holwerda et al., 2016). While fiber hypertrophy was
seen with pre-sleep protein ingestion during a resistance training
regimen in young men (Snijders et al., 2015), outcomes in older
individuals require further investigation (Holwerda et al., 2016).

Specific amino acid supplements are also available, in the
forms of EAAs, branched-chain amino acids (BCAAs), and
leucine. Leucine-rich EAA supplementation enhanced muscle
strength following exercise, although the study included elderly
women only (Kim et al., 2012). It is important to note, however,
that prolonged protein supplementation with whey or casein,
in the setting of a training program, does not appear to
improve the exercise response in elderly patients (Godard et al.,
2002; Kukuljan et al., 2009; Verdijk et al., 2009). β-hydroxy-β-
methylbutyrate (HMB), a metabolite of leucine which directly
activates mTOR, has also been investigated and increased lean
muscle mass and strength in sarcopenic individuals (Oktaviana
et al., 2019). In total, protein and amino acids are a promising
exercise supplement for the elderly. Current recommendations
for daily protein intake in most older individuals are 1.2–
1.5 grams protein/kilogram body weight (Duetz et al., 2014).
Interventional trials are required to identify the appropriate
composition of proteins and/or amino acids, as well as the
timing of delivery.

Separately, creatine is essential for muscle ATP production
and has been commonly ingested to enhance anabolic response
to exercise. Multiple studies have presented some evidence that
creatine treatment, in combination with resistance training,
enhances gains in muscle mass and strength following exercise
beyond what is attainable with resistance exercise alone (Candow
et al., 2019). The benefit of creatine therapy alone without
resistance training remains unclear; some have suggested that
creatine ingestion improves lean muscle mass in the elderly
(Gotshalk et al., 2002), whereas others have observed no benefit
in muscle mass or strength with creatine administration (Lobo
et al., 2015; Baker et al., 2016; Chami and Candow, 2019).
However, in elderly subjects, supplementing resistance training
with creatine increased lean muscle mass and strength when
compared to placebo (Candow et al., 2014; Devries and Phillips,
2014; Chilibeck et al., 2017). In addition to its known role in
ATP production, numerous studies suggest that creatine’s positive
effect on aging muscle may work through several mechanisms,
including by inducing proteins downstream of the mTOR
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pathway (Safdar et al., 2008), decreasing protein degradation
(Parise et al., 2001), and functioning as an antioxidant (Sestili
et al., 2011). Importantly, creatine therapy appears to have a low
risk profile with minimal adverse effects (Kreider et al., 2017),
making it an attractive supplement.

Other recently proposed nutritional supplements to counter
sarcopenia and dynapenia include vitamin D and omega-3
polyunsaturated fatty acids. Vitamin D is diminished by up to
4 fold in older adults (MacLaughlin and Holick, 1985). Low
vitamin D levels have been linked to muscle atrophy (Visser et al.,
2003). Several studies found that vitamin D3 supplementation
in the elderly results in increased muscle strength (Moreira-
Pfrimer et al., 2009) as well as reduction in falls and fractures
when combined with calcium (Pfeifer et al., 2009). However,
others have reported no improvement in functional capacity with
vitamin D supplementation (Uusi et al., 2015; Levis and Gómez-
Marín, 2017; Shea et al., 2019). Omega-3, commonly found in
fatty fish and seafood, may also limit sarcopenia progression and
improve protein synthesis in response to anabolic stimuli (Smith
et al., 2011). In addition, multiple studies show that omega-3
augments the effects of resistance training and further increases
muscle mass and strength in older adults (Rodacki et al., 2012; Da
Boit et al., 2017). Further interventional studies will be required
to better define the efficacy and dosage for these compounds, but
both are potentially efficacious supplements.

Multi-ingredient protein (MIP)-based supplements may
prove to be more efficacious in improving muscle mass and
strength gains with exercise as compared to single nutritional
supplements alone. In a clinical trial, a MIP supplement
consisting of whey protein, creatine, calcium, vitamin D,
eicosapentaenoic acid, and docosahexanoic acid improved both
lean muscle mass and strength in elderly patients, during exercise,
as compared to placebo (Bell et al., 2017; O’Bryan et al., 2020).
However, within a metanalysis, there was no benefit in muscle
strength and mass, as compared to protein supplementation
alone, in response to exercise (O’Bryan et al., 2020). This
highlights that future research must focus on defining specific
combinations and dosages.

NSAID Therapy
Chronic, age-related inflammation in skeletal muscle may play
a role in aging-associated muscle loss (Barnes and Karin,
1997). As mentioned previously, NF-κB, a master transcriptional
regulator of inflammation, becomes upregulated in skeletal
muscle with aging (Hayden and Ghosh, 2004). This has led to
investigations of whether NF-κB inhibition using commercially
available NSAIDs can improve the maintenance of muscle mass
(Yamamoto and Gaynor, 2001). Inhibition of NF-κB directly
improves muscle regeneration after injury in aged muscle (Oh
et al., 2016) and limits muscle atrophy by decreasing MuRF
signaling (Cai et al., 2004). The efficacy of NF-κB inhibition, using
commercially available NSAIDs, on the maintenance of muscle
mass and strength in response to exercise has been explored
in many clinical studies in elderly patients. A 3-month bout of
resistance exercise in elderly patients with knee osteoarthritis,
NSAIDs therapy resulted in a mild improvement in muscle
strength, however, without hypertrophy (Petersen et al., 2011).

Other studies found that NSAID treatment augmented training-
induced improvement in strength with associated muscle
hypertrophy and limited muscle catabolism (Trappe et al., 2011,
2013). Others have instead shown that NSAID supplementation
does not improve skeletal muscle strength or function during
physical training (Dideriksen et al., 2016). In addition, it should
be noted that NSAID therapy is not without its risks in the
elderly population. Chronic NSAID use can result in risk of renal
failure, cardiovascular events, and gastrointestinal ulceration
(Wongrakpanich et al., 2018). As such, the use of NSAIDs during
exercise remains a controversial, but potential treatment to
augment response to exercise in the aging population. Improved
specificity and identifying the correct dosage are, however,
requisite to further promotion of this therapy.

Testosterone Therapy
Testosterone has emerged as another potential supplement
to exercise for the elderly population. Multiple studies have
demonstrated that testosterone levels decrease with age (Morley
et al., 1997; Wang et al., 2009). Testosterone administration
to elderly patients increases both muscle mass and maximal
voluntary strength in a dose-dependent fashion, possibly by the
induction of myogenic gene expression (Bhasin et al., 2001).
Despite this assertion, the additional benefits of physiological
testosterone replacement in elderly patients remains unclear.
A prospective study demonstrated increased upper body strength
following testosterone treatment of elderly patients with low
to normal serum testosterone, but this treatment did not
offer any benefit beyond resistance exercise alone (Hildreth
et al., 2013). Others have similarly reported no synergistic or
additional benefits of testosterone treatment in PRT (Sullivan
et al., 2005). Of note, this is in direct contrast to the benefits of
supra-physiological testosterone supplementation with regards to
muscle strength and mass in young men, in whom combined
treatment with testosterone and exercise was more efficacious
than treatment with testosterone or exercise alone (Bhasin et al.,
1996). Therefore, it is necessary to consider adjustment of the
duration and dosage of testosterone supplementation in exercise
regimens for the elderly before conclusion about its efficacy
can be drawn. Additionally, like NSAID therapy, testosterone
supplementation does not come without potential adverse events,
and therefore the clinical efficacy of testosterone for sarcopenia
treatment should be carefully evaluated (Basaria et al., 2010).

Growth Hormone/Insulin-Like Growth
Factor Supplementation
The growth hormone (GH) axis is another area that has received
attention as a potential supplement for exercise therapy for the
elderly. GH is made in the pituitary gland and promotes IGF-1
(insulin growth factor) expression in skeletal muscle (Jorgensen
et al., 2006; Velloso, 2008). IGF-1, in turn, stimulates the
Akt/mTOR pathway which, as discussed before, promotes muscle
anabolism and protein synthesis in response to exercise (Bolster
et al., 2003). In elderly patients, GH treatment increases lean body
mass and decreases fat-to-muscle ratio from baseline, although
it is unclear as to whether this was attributable to increased
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skeletal muscle mass (Rudman et al., 1990, 1991). However,
multiple studies have shown that healthy elderly patients do not
see any additional benefit in strength or muscle hypertrophy with
GH supplementation as compared to exercise alone, even at 6-
month follow-up (Taaffe et al., 1994, 1996; Hennessey et al., 2001;
Lange et al., 2002), despite confirmation of increased levels of
circulating IGF-1. Interestingly, IGF-1 administration in isolation
does not increase lean muscle mass. Its effects in combination
with exercise, however, have not been independently tested
(Friedlander et al., 2001). Separately, losartan, an angiotensin
II type I receptor blocker which potentiates IGF-1 activity,
failed to improve the anabolic response to physical resistance
training (Heisterberg et al., 2018). Despite the integral role of
the GH/IGF axis on muscle development or hypertrophy, it does
not appear to have a therapeutic benefit in physical training in
healthy individuals.

CONCLUSION

Aging is a complex and heterogenous process. It is, however,
uniformly associated with loss of skeletal muscle mass, strength,
and function. Resistance exercise in older patients unequivocally
results in substantial benefits exemplified by muscle fiber
hypertrophy, increased strength, extended independent living,
and reduced fall risk (Fragala et al., 2019). Many efforts have
focused on improving this response further with nutritional
supplements, anti-inflammatory drugs, and anabolic agents.
While numerous studies have reported synergistic benefits of
combining a supplement with exercise, many others suggest
marginal benefits versus exercise alone, especially in elderly

individuals. Future studies should utilize a standard resistance
training regimen, guided by previously published position
statements (American College of Sports Medicine Position Stand,
1998), with resistance exercise three times weekly at 30 min
per bout at 60–80% resistance. Moreover, supplements must be
individualized to patients. Elderly patients with low levels of IGF-
1 or testosterone may benefit from those specific supplements,
where as other elderly patients may not. New studies may
focus on MIP therapies combining supplements which have
demonstrated significant benefit with regards to muscle mass and
strength during exercise, such as combining EAAs, Creatinine,
Vitamin D, and omega-3 fatty acids. Heterogeneity in the
patient population, physical training intensity, and duration of
interventions make it difficult to draw generalizable conclusions,
but understanding the mechanisms of anabolic resistance and
augmenting response to exercise is paramount to maintaining
muscle strength and function in aging.
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