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The A
3
adenosine receptor (A

3
AR) is overexpressed in inflammatory cells and in the peripheral blood mononuclear cells of

individuals with inflammatory conditions. Agonists to the A
3
AR are known to induce specific anti-inflammatory effects upon

chronic treatment. LUF6000 is an allosteric compound known tomodulate the A
3
AR and render the endogenous ligand adenosine

to bind to the receptor with higher affinity.The advantage of allostericmodulators is their capability to target specifically areas where
adenosine levels are increased such as inflammatory and tumor sites, whereas normal body cells and tissues are refractory to the
allosteric modulators due to low adenosine levels. LUF6000 administration induced anti-inflammatory effect in 3 experimental
animal models of rat adjuvant induced arthritis, monoiodoacetate induced osteoarthritis, and concanavalin A induced liver
inflammation in mice. The molecular mechanism of action points to deregulation of signaling proteins including PI3K, IKK, I𝜅B,
Jak-2, and STAT-1, resulting in decreased levels of NF-𝜅B, known to mediate inflammatory effects. Moreover, LUF6000 induced
a slight stimulatory effect on the number of normal white blood cells and neutrophils. The anti-inflammatory effect of LUF6000,
mechanismof action, and the differential effects on inflammatory and normal cells position this allostericmodulator as an attractive
and unique drug candidate.

1. Introduction

The A
3
adenosine receptor (A

3
AR) belongs to the family of

the Gi-protein coupled receptors (GPCR). Much evidence
including preclinical and clinical studies has accumulated
showing anti-inflammatory effects that are mediated via the
A
3
AR [1–8]. A

3
AR agonists induce anti-inflammatory effects

in bothmurine and ratmodels of autoimmune arthritis [2, 9],
via downregulation of nuclear factor kappa B (NF-𝜅B) and
related proteins aswell as tumornecrosis factor-𝛼 (TNF𝛼) [2],
resulting in the inhibition of inflammatory cytokines [1, 10,
11]. A
3
AR is overexpressed in cells from inflammatory tissues

whereas normal cells have a low expression of the receptor
[12, 13]. Furthermore, A

3
AR was found to be upregulated in

the peripheral blood mononuclear cells (PBMCs) of patients
with autoimmune inflammatory diseases [13–16]. PBMCs
drawn from rheumatoid arthritis (RA), psoriasis, andCrohn’s
disease (CD) patients showed A

3
AR upregulation compared

to that of healthy subjects, suggesting that the high A
3
AR

expression levels in the inflammatory tissues are reflected in
the PBMCs [15].

A
3
AR agonists such as CF101 (IB-MECA) and CF102

(Cl-IB-MECA) have been investigated in several phase II
clinical studies including RA, psoriasis, and hepatocellular
carcinoma, showing clear evidence of efficacy and an excel-
lent safety profile [17–19], proof of the validity of the A

3
AR as

a therapeutic target.
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Figure 1: Chemical structure of the A
3
AR allosteric enhancer,

LUF6000, used in this study.

While A
3
AR agonists bind at an orthosteric receptor

binding site to induce activation, a positive allosteric mod-
ulator (PAM) would bind to an additional binding site on
the receptor that is distinct from the agonist binding site,
thereby enhancing the affinity and/or efficacy of the natural
ligand adenosine at the A

3
AR. The advantage of allosteric

modulators is their capability to target specifically areas
where adenosine levels are increased such as at inflammatory
and tumor sites, whereas normal body cells and tissues are
in theory refractory to the allosteric modulators due to lower
adenosine levels [20].

N-(3,4-Dichloro-phenyl)-2-cyclohexyl-lH-imidazo [4,
5-c]quinolin-4-amine (LUF6000) is an imidazoquinolinam-
ine allosteric enhancer of the humanA

3
AR that upon binding

changes the native ligand interaction with the receptor and
raises its maximal effect by 45% [21] (Figure 1).

In a [35S]GTP𝛾S binding assay, LUF6000 was able to
convert the nucleoside antagonist MRS542 into an A

3
AR

agonist and was found to be highly effective in raising the
maximal effect of low-efficacy agonists. LUF6000 alone did
not induce receptor activation and therefore is potentially
safer than orthosteric agonists [22].

In this study we present data showing that LUF6000 has a
specific and potent anti-inflammatory effect in vivo. Amolec-
ular mechanism associated with these effects is presented as
well.

2. Materials and Methods

2.1. Reagents. The allosteric modulator LUF6000 (N-(3,4-
dichloro-phenyl)-2-cyclohexyl-lH-imidazo [4,5-c]quinolin-
4-amine) was synthesized for Can-Fite BioPharma at Leiden
Academic Centre for Drug Research (Leiden, The Nether-
lands)/Haoyuan Chemexpress Co., Ltd (Shanghai, China). A
stock solution of 10mM was prepared in DMSO and further
dilutions were prepared in PBS. ConA (Canavalia ensiformis,
Jack Bean Hemagglutinin) was purchased from Calbiochem-
EMD Millipore (San Diego, CA). Monosodium iodoacetate
(MIA; Sigma, St. Louis, MO) was prepared in saline solution.

Rabbit polyclonal antibodies against rat A
3
AR, phospho-

inositide 3-kinase (PI3K), I𝜅B kinase (IKK), I𝜅B, nuclear

factor kappa B (NF-𝜅B), Janus kinase 2 (Jak-2), and signal
transducer and activator transcription 1 (STAT-1), glyceral-
dehyde-3-phosphate dehydrogenase (GAPDH), and 𝛽-actin
were purchased from Santa Cruz Biotechnology, Inc. (Dallas,
TX, USA).

2.2. Effect of LUF6000 on the Development of Adjuvant
Induced Arthritis. Female Lewis rats, 9 weeks of age, were
obtained from Harlan Laboratories (Jerusalem, Israel). Rats
weremaintained on a standardized pelleted diet and supplied
with tap water. Experiments were performed in accordance
with the guidelines established by the Institutional Animal
Care and Use Committee at Can-Fite BioPharma, Petach
Tikva, Israel. The rats were injected subcutaneously (SC)
at the tail base with 100𝜇L of suspension composed of
incomplete Freund’s adjuvant (IFA) with 10mg/mL heat
killed Mycobacterium tuberculosis, (Mt) H37Ra, (Difco,
Detroit, USA). Each group contained 10 animals. LUF6000
(100 𝜇g/kg) treatment was orally administered by gavage,
thrice daily, starting with the disease onset.The control group
received vehicle only (DMSO at a dilution corresponding to
that of the DMSO stock solution of LUF6000).

A clinical disease activity score was assessed, blinded, as
follows: the animals were inspected every day for clinical
signs of arthritis. The scoring system ranged from 0 to 4
of each limb: 0, no arthritis; 1, redness or swelling of one
toe/finger joint; 2, redness and swelling of more than one
toe/finger joints, 3, the ankle and tarsal-metatarsal joints
involvement; 4, redness or swelling of the entire paw. The
clinical score was calculated by adding the four individual
legs’ score to a maximum.

At the end of the study, rats were sacrificed using a CO
2

method. The hind paws were dissected above the ankle joint.
In addition, blood samples were collected and subjected to a
Ficoll-hypaque gradient. The PBMCs were then washed with
PBS and protein extracts were prepared as is detailed below.

The bony tissue was broken into pieces, snap frozen in
liquid nitrogen, and stored at−80∘Cuntil use.The paw tissues
were added to (4mL/g tissue) radioimmunoprecipitation
assay (RIPA) extraction buffer containing 150mM NaCl,
50mM Tris, 1% NP40, 0.5% deoxycholate, and 0.1% SDS.
Tissueswere homogenized on icewith a polytron, centrifuged
and the supernatants were subjected toWestern Blot analysis.
Each group included 10 animals, and the study was repeated
at least 3 times.

2.3. MIA Induced OA Experimental Model. Male Wistar
rats (150–175 g) were obtained from Harlan Laboratories
(Jerusalem, Israel). Rats were maintained on a standardized
pelleted diet and supplied with tap water. Experiments were
performed in accordance with the guidelines established by
the Institutional AnimalCare andUseCommittee at Can-Fite
BioPharma, Petach Tikva, Israel.

OA experimental model was induced withMIA, 2mg at a
total volume of 50𝜇L.TheMIA was injected intra-articularly
through the patellar ligament of the right knee using a 26G
needle under anesthesia. The left knee joint (control) was
injected with saline.
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Oral treatment with LUF6000, 100 𝜇g/kg, BID started on
day 7 (after MIA injection) and lasted until the termination
of the study.The control group was treated with the LUF6000
vehicle. Each group included 10 animals, and the study was
repeated at least 3 times.

The diameter of the knees was measured every other day
using a digital caliper (Mitotoyo, Tokyo, Japan).

2.4. Liver Inflammation Model. Male C57BL/6J mice 8 weeks
of age were obtained from Harlan Laboratories (Jerusalem,
Israel). The animals were maintained on a standardized
pelleted diet and supplied with tap water. Experiments were
performed in accordance with the guidelines established by
the Institutional AnimalCare andUseCommittee at Can-Fite
BioPharma, Petach-Tikva, Israel.

Male C57BL/6J mice were injected intravenously (tail
vein) with concanavalinA (ConA) (20mg/kg). LUF6000was
orally administered by gavage, in a dose of 10 and 100𝜇g/kg,
twice daily starting 8 h after Con A administration. The con-
trol group received only DMSO in a dilution corresponding
to a 100 𝜇g/kg dose of LUF6000. Blood sampleswere collected
21 h after Con A administration from the retroorbital vein
and serum levels of liver enzymes (SGOT and SGPT) were
determined. Mice were sacrificed by CO

2
inhalationmethod.

The livers were subjected to Western blot and pathological
analysis. Each group included 8–10 mice, and the study was
repeated 3 times.

2.5. Differential Blood Cell Count upon Oral Treatment with
LUF6000. ICR male mice (23–25 g) were treated thrice daily
with LUF6000, 100 𝜇g/kg for 48 hours. Blood samples were
withdrawn 24 and 48 hours after the last treatment. A
differential blood cell count was performed. Each group
included 10 mice, and the study was repeated 4 times.

2.6. Western Blot Analysis of A
3
AR and Additional Signaling

Proteins in PBMCs. Western blot analyses were carried out
according to the following protocol. Sampleswere rinsedwith
ice-cold PBS and transferred to ice-cold lysis buffer (TNN
buffer, 50mM Tris buffer pH = 7.5, 150mM NaCl, NP
40). Cell debris was removed by centrifugation for 10min,
at 7500×g. Protein concentrations were determined using
the Bio-Rad protein assay dye reagent. Equal amounts of
the sample (50𝜇g) were separated by SDS-PAGE, using
12% polyacrylamide gels. The resolved proteins were then
electroblotted onto nitrocellulose membranes (Schleicher &
Schuell, Keene, NH, USA). Membranes were blocked with
1% BSA and incubated with the desired primary antibody
(dilution 1 : 1000) for 24 h at 4∘C. Blots were then washed
and incubated with a secondary antibody for 1 h at room
temperature. Bands were recorded using BCIP/NBT color
development kit (Promega, Madison, W1, USA). Units were
determined by calculation of the ratio between the house-
keeping gene and the subjected protein. 𝛽-actin was used
in the MIA and AIA models, while GAPDH was used in
the liver inflammation model due to previous experiments
indicating a much accurate results with the GAPDH in the
liver.
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Figure 2: Effect of LUF6000 on the clinical manifestation of
adjuvant induced arthritis (AIA) in a rat model of RA. Lewis rats
were injected subcutaneously (SC) at the tail base with complete
Freund’s adjuvant. LUF6000 (100𝜇g/kg) treatment was given PO,
thrice daily, starting upon disease onset. LUF6000 decreased disease
manifestation compared to the vehicle-treated group. Values are the
mean of pooled data from 3 independent experiments (𝑛 = 10).

2.7. Statistical Analysis. The results were evaluated using
Student’s 𝑡-test, with statistical significance set at 𝑃 < 0.05.
Comparison between the mean values of different experi-
ments was carried out. All data are reported as mean ± SD.

3. Results

3.1. LUF6000 Inhibits the Development of Adjuvant Induced
Arthritis (AIA). LUF6000 reduced the RA clinical score in
an adjuvant induced arthritis rat model, demonstrating a
significant anti-inflammatory effect (Figure 2).

A
3
AR expression levels in paw extracts and in the PBMCs

were downregulated in the LUF6000-treated rats compared
to the vehicle-treated ones (Figure 3(a)), demonstrating that
A
3
AR levels in the PBMCs are a reflection of the receptor

level in the remote inflammatory organ. PI3K, IKK and I𝜅B
expression levels in the PBMCs were downregulated upon
treatment with LUF6000 resulting in a decrease in NF-𝜅B
expression levels (Figure 3(b)).

3.2. LUF6000 Inhibits the Development of MIA-Induced
Osteoarthritis (OA). LUF6000 inhibited osteoarthritis devel-
opment in an experimental rat model manifested by a
decrease in knee swelling and edema in the LUF6000-treated
group compared to the vehicle (Figure 4). A

3
AR expression

levels in the PBMCs were down regulated in the LUF6000-
treated group (Figure 5(a)) followed by down regulation of
the expression levels of the inflammatory proteins Jak-2 and
STAT-1 compared to the vehicle-treated group (Figure 5(b)).

3.3. LUF6000 Protects against Liver Inflammation. TheA
3
AR

agonist, CF102, had been found to have a protective effect in
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Figure 3: LUF6000 downregulates the NF-𝜅B signaling pathway via the A
3
AR. Protein analysis was performed using Western blot (WB)

analysis in both PAW and PBMCs. LUF6000 downregulates A
3
AR expression levels in both PAW and PBMCs (a). PI3K, IKK, I𝜅B, and

NF-𝜅B, all members of the NF-𝜅B signaling pathway, were downregulated upon LUF6000 administration (b).
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Figure 4: LUF6000 effect on disease manifestation in a
monosodium iodoacetate (MIA) model of osteoarthritis (OA)
in rats. The OA experimental model was induced by injection of
MIA to the intra-articularly through the patellar ligament of the
right knee. LUF6000 (100 𝜇g/kg) administered PO; BID starting
upon onset of disease showed a decrease in disease manifestation
compared to the vehicle-treated group. Values are the mean of
pooled data from 3 independent experiments (𝑛 = 10).

a liver inflammation model of acute hepatitis in mice [23]. In
the current study we explored the effect of LUF6000 on liver
inflammation induced by Con A induction. A decrease was
observed in serum glutamic pyruvate transaminase (SGPT)
and serum glutamic oxaloacetic transaminase (SGOT)
levels, compared to the vehicle-treated group (Figure 6).
LUF6000 showed a protective effect in both 10 and 100 𝜇g/kg
groups, resulting in dose-dependencywith the 100𝜇g/kg dose
demonstrating a better protective effect than at 10𝜇g/kg.

3.4. LUF6000 Induces an Increase in WBCs and Neutrophils.
LUF6000 administration to normal ICRmice for 2 sequential
days resulted in an increase in white blood cell (WBC)
count at 48 h after the last treatment. Neutrophil counts were
increased at both 24 h and 48 h after LUF6000 administration
demonstrating a slight stimulatory effect on bone marrow
myeloid cells (Figure 7).

4. Discussion

Small molecules that bind to topographically distinct sites
on GPCRs are known to generate a conformational change
in the orthosteric site of the receptor, thereby modulating
the affinity or efficacy of natural ligands. Such allosteric
modulators, which may alternately enhance or reduce the
effect of the native agonist, are considered as safe and
efficacious drug candidates.

LUF6000 is an imidazoquinolinamine allosteric modu-
lator at the human A

3
AR, known to enhance the efficacy

of receptor agonists acting at the receptor’s orthosteric site.
This was shown in both [35S]GTP𝛾S binding assays [22] and
a number of other functional assays [23]. Accumulation of
the endogenous agonist adenosine in the microenvironment
of inflammatory sites has been extensively documented and

serves as a good basis to utilize LUF6000 as an allosteric
ligand of A

3
AR to evoke a specific anti-inflammatory effect.

LUF6000 was also shown to enhance the agonist effect of
inosine, which serves as a second, albeit weak, endogenous
agonist at the human A

3
AR [21–23].

In this study we have looked at the effect of the allosteric
modulator LUF6000 on three different experimental animal
models, sharing common mechanistic pathways.

In the AIA andMIAmodels, an antiarthritic effect, mani-
fested by a reduced clinical score of the disease, was observed.
Interestingly A

3
AR expression levels in the animals’ PBMCs

were found to be downregulated, demonstrating that receptor
modulation, most probably internalization and degradation
took place. The downstream molecular mechanism entailed
inhibition in the expression of PI3K, IKK, and I𝜅B resulting
in inhibition of NF-𝜅B. This mechanistic pathway corrobo-
rates with the one described for A

3
AR agonists, supporting

the notion that the natural ligand adenosine mediated the
response and that LUF6000 is a positive allosteric modulator,
other mechanisms cannot be excluded though, and it should
be kept in mind that A

3
AR ligand pharmacology may differ

between rodent (in the present study) and man [22, 23].
This study is the first to present data showing the anti-

inflammatory effect of LUF6000 in vivo. The role of A
3
AR

in mediating inflammatory responses has been extensively
described in preclinical and clinical studies. A

3
AR upreg-

ulation has been described in patients with RA [24] and
in animals in which arthritis was induced [2]. Receptor
upregulation has been attributed to transcription factors such
as NF-𝜅B, known to be overexpressed in arthritis. Treatment
with A

3
AR agonists such as CF101 and CF502 led to a

marked improvement in disease parameters in vivo [2, 4,
25]. In experimental animal models, downregulation of the
NF-𝜅B and the Wnt signaling pathways has been shown to
mediate the anti-inflammatory effect of the A

3
AR agonists

[2, 25]. The mechanistic pathway described in this study
shows that LUF6000 induces its anti-inflammatory effect via
a similar mechanistic pathway as described earlier for A

3
AR

agonists.
An additional mechanism explored in the OA model

entailed a decrease in the inflammatory proteins STAT-1 and
Jak-2. Inhibition of Jak-2 is known to block STAT-1 activation
as well as matrix metalloproteinase 13 in chondrocytes,
resulting in the protection of chondrocytes and cartilage in
OA [26].

We next checked the effect of LUF6000 in a liver inflam-
mation model of Con A-induced hepatitis in mice. LUF6000
administration resulted in a decrease of liver enzymes, thus
counteracting the effect of Con A in a dose-dependent
manner. These results indicate that LUF6000 administration
has a protective effect on the liver. Earlier studies showed
that A

3
AR agonists have a hepatoprotective effect on the liver

mediated via downregulation of TNF𝛼 levels and inhibition
of the apoptotic proteins Bax and Bad [26, 27].

The effect of LUF6000 on normal cells was explored
upon its administration to ICR mice and the followup on
peripheral WBC and neutrophil counts. Interestingly, WBC
counts were normal upon treatment with LUF6000, and
even a slight increase in neutrophil numbers was noted. This
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Figure 5: LUF6000 down-regulates the A
3
AR and key inflammatory proteins. Protein analysis was performed using WB analysis. LUF6000

downregulates A
3
AR expression levels in the PBMCs of OA-induced rats (a). Jak-2 and STAT-1 were downregulated upon LUF6000

administration (b).

effect demonstrated that LUF6000 has differential effects on
normal and pathological cells, again, similar to the effect of
the A
3
AR agonists IB-MECA and Cl-IB-MECA, which were

mediated via the secretion of granulocyte colony-stimulating
factor (G-CSF) [27–32].

5. Conclusion

LUF6000 has been shown to be effective when given orally,
inducing specific anti-inflammatory effects, rendering this
molecule to be considered as a potential drug candidate.
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Figure 6: Effect of LUF6000 on the development of a Con A-induced hepatitis model in mice. LUF6000 (10 and 100𝜇g/kg), administered
twice daily PO, starting upon the disease onset, markedly decreased both SGOT and SGPT liver enzymes levels compared to the vehicle in a
dose-dependent manner. Values are the mean of pooled data from 3 independent experiments (𝑛 = 10).
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Figure 7: LUF6000 induces an increase in white blood cells total count and neutrophils (ANC). LUF6000 (100 𝜇g/kg), was administered, PO,
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both WBCs and neutrophils. Values are the mean of pooled data from 3 independent experiments (𝑛 = 10).
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