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Abstract: Among the transition metal oxides, the Mn3O4 nanostructure possesses high theoretical
specific capacity and lower operating voltage. However, the low electrical conductivity of Mn3O4

decreases its specific capacity and restricts its application in the energy conversion and energy
storage. In this work, well-shaped, octahedron-like Mn3O4 nanocrystals were prepared by one-step
hydrothermal reduction method. Field emission scanning electron microscope, energy dispersive
spectrometer, X-ray diffractometer, X-ray photoelectron spectrometer, high resolution transmission
electron microscopy, and Fourier transformation infrared spectrometer were applied to characterize
the morphology, the structure, and the composition of formed product. The growth mechanism
of Mn3O4 nano-octahedron was studied. Cyclic voltammograms, galvanostatic charge–discharge,
electrochemical impedance spectroscopy, and rate performance were used to study the electrochemical
properties of obtained samples. The experimental results indicate that the component of initial
reactants can influence the morphology and composition of the formed manganese oxide. At the
current density of 1.0 A g−1, the discharge specific capacity of as-prepared Mn3O4 nano-octahedrons
maintains at about 450 mAh g−1 after 300 cycles. This work proves that the formed Mn3O4

nano-octahedrons possess an excellent reversibility and display promising electrochemical properties
for the preparation of lithium-ion batteries.

Keywords: Mn3O4 nano-octahedrons; hydrothermal reduction method; structure characterization;
electrochemical property; lithium-ion batteries

1. Introduction

In the past few years, lithium-ion batteries (LIBs) have increasingly held attention owing to
their great potential in powering and in hybrid electric vehicles [1]. Thanks to their flexible structure
and excellent chemical-physical properties, manganese-based materials (such as Mn3O4, MnO2, and
MnOOH) have been applied in the areas of energy storage and catalysis and attracted more interest [2,3].
Compared with other transition metal oxides, Mn3O4 nanostructure has higher theoretical specific
capacity and lower operating voltage [4]; it has been considered as one of the promising electrode
materials for the preparation of LIBs [5,6]. However, the low electrical conductivity and large volume
change during charge/discharge processes decrease its specific capacity, render rapid capacity loss, and
then restrict its applications in the energy conversion and energy storage [5,7].

Now, Mn3O4 materials with micro/nanosizes have been synthesized by a variety of methods,
such as the hydrothermal method [8,9], solvothermal method [10], precipitation method [11], chemical
decomposition [12], sputtering [13], electrodeposition [14], thermal decomposition [15], and so on.
Mn3O4 nanoparticles with different morphologies have been successfully prepared. Generally, Mn3O4

materials were synthesized using commercial materials such as manganese sulphate [16], nitrate [17],
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acetate [18–20], and KMnO4 [21–24]. Han et al. produced Mn3O4 nano-particles using solvent
evaporation technique from manganese acetyl acetonate [25]. Yue and Gu et al. synthesized hollow
nano-spheres and hierarchical microspheres of MnO2 materials using KMnO4 and MnSO4 via the
hydrothermal method, and to obtain hollow nanospheres and hierarchical micro-spheres Mn3O4 [26,27].
Raj et al synthesized Mn3O4 by the reduction of KMnO4 solution with hydrazine hydrate [21]. Thus,
substantial efforts for the preparation of nanosized Mn3O4 have been performed to improve the
electrochemical performance [3,28]. The LIBs prepared by Mn3O4 tetragonal bipyramids display high
initial discharge capacity (1141.1 mAh g−1), excellent reversible specific capacity (822.3 mAh g−1), good
rate performance, and higher coulombic efficiency [8]. Although much progress has been achieved, an
effective, low-cost, and safe method to prepare Mn3O4 nano-octahedrons with uniform size to improve
their electrochemical properties is highly desirable.

In this study, octahedron-like Mn3O4 nanostructures were prepared by the one-step hydrothermal
reduction method. The nature of the formed manganese oxides can be effectively controlled by the
initial reactant composition. A higher volume ratio of N-dimethylformamide (DMF) to KMnO4 in
the initial reaction solution contributes to the formation of pure Mn3O4 nano-octahedrons and the
improvement of the capacity stability of the formed product.

2. Materials and Methods

2.1. Chemicals

Potassium permanganate (KMnO4), N, N-dimethylformamide (DMF), anhydrous ethanol,
acetylene black, polyvinylidene fluoride, N-methyl-pyrrolidone, metallic lithium, ethylene carbonate,
and dimethyl carbonate were of analytical grade and purchased from Sinopharm Chemical Regent
Co., Ltd. (Shanghai, China) The water used in the experiments was prepared from a Milli-Q water
purification system (≥18 MΩ).

2.2. Synthesis of Mn3O4 Nano-Particles

In this work, Mn3O4 nano-particles could be prepared by a KMnO4 hydrothermal reduction
process. Firstly, 20 mL DMF was added into 20 mL 0.02 mol L−1 KMnO4 aqueous solution under
stirring, and the formed mixture was transformed into a Teflon-sealed autoclave. Then, the reaction
system was heated to 150 ◦C and held for 9 h. Finally, the precipitates were collected by centrifugal
separation, washed thoroughly with water and ethanol, and dried for testing. The obtained particles
are Mn3O4 nano-octahedrons.

As 10 mL DMF was mixed with 30 mL 0.02 mol L−1 KMnO4, and used as initial reactants for
the above hydrothermal process, the obtained product contained MnOOH nano-columns and Mn3O4

nano-octahedrons and was named MnOOH/Mn3O4.

2.3. Material Characterization

The composition and phase of the obtained product were detected by an Ultima IV multipurpose
X-ray diffraction system (XRD, Rigaku Corporation, Tokyo, Japan) using Cu Kα radiation (λ = 0.15406
nm). The morphology of formed sample was determined using a Sirion 200 field emission scanning
electron microscope (FE-SEM, FEI Company, Eindhoven, Netherlands), while the chemical composition
was characterized by an INCA energy dispersive spectrometer (EDS, Oxford Instruments, Oxon,
England, UK). The lattice parameters and lattice images of as-prepared samples were tested by a Talos
F200X field-emission high resolution transmission electron microscopy (FE-HRTEM, Thermo Fisher
Scientific, Waltham, MA, USA). The surface constituents and element valence state of formed products
were detected with an ESCLAB MKII X-ray photoelectron spectrometer (XPS, VG Scientific, Waltham,
MA, USA). The binding energy of the obtained XPS spectra was calibrated by the C (1s) peak at 284.6
eV. The infrared absorption spectra were measured on a 6700 Fourier transformation infrared (FT-IR)
spectrometer (Thermo Fisher Scientific, Waltham, MA, USA).
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2.4. Electrochemical Measurements

In order to study the discharge/charge performances of Mn3O4 nano-octahedrons and
MnOOH/Mn3O4, working electrodes were fabricated. The as-prepared manganese oxide, carbon
black, and poly(vinylidene fluoride) were firstly blended in a weight ratio of 70:20:10. Then,
N-methyl-pyrrolidone was added to prepare a paste. The formed slurry was homogeneously coated
onto a copper foil, dried, and then used as anode. The assembly process of coin cells was conducted in
a Mikrouna glove box. Metallic lithium and a polypropylene membrane with Celgard 2400 micropores
were used as separator film and cathode, and 1 mol L−1 LiPF6 was selected as the electrolyte.

Galvanostatic charge–discharge properties and rate capabilities of the formed LIBs were conducted
on a CT2001A LAND battery test system. Cyclic voltammetry (CV) and electrochemical impedance
spectroscopy (EIS) were determined by a Zennium-pro electrochemical workstation.

3. Results

3.1. Microstructure and Morphology

The microstructures of the obtained products were characterized by XRD, as shown in Figure 1.
For the product prepared from 30 mL 0.02 mol L−1 KMnO4 and 10 mL DMF, two phases that
corresponded to MnOOH (JCPDS 74-1842) and Mn3O4 (JCPDS 24-0734) could be ascertained (Figure 1a).
The diffraction peaks that correspond to the crystal planes of hausmannite Mn3O4 were labelled.
The second phase represents an orthorhombic MnOOH, and the main diffraction peak at 26.30 degree
corresponds to the crystal plane (110) of orthorhombic MnOOH. Other diffraction peaks at 34.15, 37.20,
39.80, 40.60, 55.10, and 71.70 degrees could be attributed to the (020), (101), (120), (200), (211), and (301)
crystal planes of orthorhombic MnOOH, respectively.
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For the product prepared from 20 mL 0.02 mol L−1 KMnO4 and 20 mL DMF, all the diffraction
peaks can be indexed to the tetragonal hausmannite Mn3O4 (JCPDS 24-0734) (Figure 1b). The
sharp peaks imply that the product possesses high crystalline quality. The results indicate that an
increased volume ratio of DMF in the initial reactant solution contributes to the formation of pure
Mn3O4 nanooctahedrons.

The morphology of the obtained sample was investigated by typical FE-SEM, as shown in Figure 2.
For the mixture of MnOOH and Mn3O4, it contains two different nanostructures (Figure 2a–c). The
long thin nano-columns are about 4.0 µm in length and 200 nm in diameter. Their aspect ratios are
about 20. The nano-octahedrons are about 400 nm in an edge length. For the pure Mn3O4, nano
octahedrons with uniform size, clear boundary, and point angle can be seen, and the mean edge length
of nano-octahedron is about 400 nm (Figure 2d–f).

On the basis of the XRD patterns, we can assume that the formed nano-octahedrons correspond
to Mn3O4, while the nano-columns can be attributed to the MOOH structure. FE-SEM images also
demonstrate that the increased volume ratio of DMF in the initial reactant solution can contribute to
the formation of pure Mn3O4 nano-octahedrons.
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Figure 2. Field emission scanning electron microscope (FE-SEM) images of MnOOH/Mn3O4 (a–c) and
pure Mn3O4 (d–f).

EDS was applied to determine the chemical composition of obtained samples, it confirms the
existence of Mn and O. For the MnOOH/Mn3O4, the atomic ratio of Mn to O is 35.45:64.55 (Figure 3a),
and the atomic ratio of Mn/O is less than 3:4, but larger than 1:2, which also suggests that the obtained
product is the mixture of MnOOH and Mn3O4. For the Mn3O4 nano-octahedrons, the atomic ratio of
Mn to O is 41.42:58.58, which is close to 3:4 and certifies the formation of Mn3O4.
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In the hydrothermal process, DMF plays an important role in chemical reaction and in oriented
self-assembly. Firstly, DMF is one kind of Lewis base; it is easy to combine with H+ in aqueous solution.
So the initial reaction solution that contains DMF and KMnO4 is alkaline. At the initial stage of the
reaction, Mn3+ or MnOOH nuclei are formed as a sequence of the reduction of KMnO4. Plenty of
−OH groups in the water molecules would contribute to the formation of MnOOH and restrict the
phase transformation of MnOOH to Mn2O3. At the same time, DMF was oxidized to N,N-dimethyl
carbamic acid. The formation of N,N-dimethyl carbamic acid will change the pH value of the reaction
solution, and act as a binding agent to control the nucleation and growth of crystals [29,30]. The formed
nano-crystallites will accumulate and grow into lamellar MnOOH nano-structures. However, the
formed lamellar nano-structures are just intermediates. As the reaction time is prolonged, lamellar
MnOOH nano-structures will be re-dissolved and then grow into small nanowires as a result of the
anisotropic growth [31,32]. The small nanowires prefer to combine with each other and grow into
larger and longer nano-columns by the oriented attachment along their side surfaces [33]. As Mn2+

partially formed by further reduction of MnOOH, some octahedron-like Mn3O4 nanostructures began
to occur. So the product obtained from the high volume ratio (3:1) of 0.02 mol L−1 KMnO4 to DMF is
the mixture of MnOOH nano-columns and Mn3O4 nano-octahedrons.
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As the volume ratio of 0.02 mol L−1 KMnO4 to DMF decreases to 1:1, the MnOOH nano-column
will be reduced into Mn2+ by DMF. MnOOH nano-columns dissolve and disappear with the formation
of octahedron-like nanostructures. It should be noted that DMF can coordinate with MnO- and regulate
the growth rate of Mn3O4 crystal by binding crystal facets [34,35]. The formed complex provides a
suitable micro-environment for the formation of Mn3O4 nano-octahedrons [36,37]. At the same time,
the pH value of the reaction system is important to the formation of uniform Mn3O4 nano-octahedrons.
The increased volume ratio of DMF in the initial reactant solution means a higher pH value, which
facilitates the growth along the <100> direction of Mn3O4. Furthermore, the ratio of crystal growth rate
in the <100> direction to that in the <111> direction dominates the lattice structure and morphology of
formed Mn3O4 [38]. Because the <111> plane of Mn3O4 has the lowest energy, eight stable crystal
planes arrange on the surface of nano-octahedron. Finally, all of the products transformed into uniform
nano-octahedrons with smooth surfaces. Under hydrothermal conditions, the coexistence of Mn2+ and
Mn3+ facilitates the formation of the Mn3O4 crystal. So, the nature of formed manganese oxides can
be effectively controlled by the initial reactant composition. Pure Mn3O4 nano-octahedrons can be
synthesized by the higher volume ratio of DMF to KMnO4 (1:1).

3.2. HR-TEM and Elemental Mapping

TEM can be used to observe the morphology of obtained manganese compounds. For the
MnOOH/Mn3O4, nano-columns and nano-octahedrons can be identified, which is identical to
FE-SEM images. The edge lengths of as-prepared nano-octahedrons are about 400 nm, while the
formed nanocolumns are about 100–200 nm in diameter and up to 10 µm in length (Figure 4a,b).
The interplanar distances calculated from the HR-TEM images are 0.219 and 0.262 nm (Figure 4c),
which correspond to the (111) and (020) planes of monoclinic Mn3O4, respectively. The elemental
mapping images demonstrated that Mn and O components are uniformly distributed all over the
Mn3O4 nano-octahedrons and MnOOH nanocolumns (Figure 4d–f).
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For the Mn3O4 nano-octahedrons, an average rhombic length of 300–500 nm can be found
(Figure 4g–h), which is in agreement with the FE-SEM images. The HR-TEM image of an octahedral
nanocrystal displays a lattice spacing of 0.236 nm (Figure 4i), and it can be assigned to the (004) plane
of hausmannite Mn3O4 crystal [39]. Elemental dot-mapping images show that Mn and O components
are evenly scattered throughout the nano-octahedrons (Figure 4j–l).

3.3. XPS Analysis

The surface composition and valence state of obtained products were analyzed by the XPS
spectrum, as shown in Figure 5. For the MnOOH/Mn3O4, the Mn2p spectrum shows that the peaks of
Mn2p3/2 and Mn2p1/2 center at 641.5 and 653.1 eV, respectively (Figure 5a). It can be deconvoluted into
two pairs of doublets by fitting with the Gaussian function. The former doublet at 641.3 and 643.35 eV
corresponds to Mn3+ 2p3/2 and Mn2+ 2p3/2, respectively, while the latter doublet at 652.90 and 654.45
eV could be attributed to Mn3+ 2p1/2 and Mn2+ 2p1/2, respectively [40]. Quantitative analysis indicates
that the ratio of Mn2+/Mn3+ is about 1:4. Considering the different valence ratio of the Mn element in
the Mn3O4 and MnOOH, the above calculated value is reasonable. O 1s spectrum can be decomposed
into three components (Figure 5b). The first peak at 529.65 eV is the characteristic of lattice oxygen, the
second peak at 530.85 corresponds to the O2− ions in oxygen vacancy defect regions, and the third peak
at 531.55 eV is related to the adsorbed oxygen or dissociated oxygen [40,41]. The relative percentages
of above three O components are 47.3%, 34.5%, and 18.2%.
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For Mn3O4 nano-octahedrons, the Mn 2p XPS spectrum consisted of two spin-orbital lines
(Figure 5c). The peaks at 641.50 and 653.20 eV are the characteristic peak of Mn 2p3/2 and Mn 2p1/2,
respectively. A splitting of 11.7 eV occurs between Mn 2p1/2 and Mn 2p3/2, which is in agreement with
the reported value of Mn3O4 [42,43]. Furthermore, the Mn 2p XPS spectrum could be divided into four
components. The peaks at 641.4, 643.4, 652.90, and 654.45 eV can be ascribed to Mn3+ 2p3/2, Mn2+ 2p3/2,
Mn3+ 2p1/2, and Mn2+ 2p1/2, respectively [40]. Quantitative analysis indicates that the ratio of Mn2+ to
Mn3+ is about 0.5, which is consistent with the Mn components with different valence states in Mn3O4.
O 1s spectrum of the formed nano-octahedrons can be resolved into three components with binding
energies of 529.75, 530.95, and 532.4 eV (Figure 5d), which correspond to the lattice oxygen of Mn3O4,
the O2- ions of oxygen-vacancy defects within the matrix of Mn3O4 [41,44], and the adsorbed/dissociated
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oxygen on the surface of Mn3O4 [40,41,45]. The relative percentages of above three O components are
55%, 36.7%, and 8.3%. The proportion of lattice oxygen in Mn3O4 nano-octahedrons is higher than that
in the MnOOH/Mn3O4, while the proportion of adsorbed/dissociated oxygen species is lower. XPS
analysis further confirms that the as-prepared nano-octahedrons are pure Mn3O4.

3.4. FT-IR Spectrum Analysis

FT-IR spectra can be used to confirm the formation of Mn3O4 and MnOOH [40,46]. For the
MnOOH/Mn3O4 (Figure 6a), sharp peaks at 448, 491, and 593 cm−1 are the characteristic modes of Mn-O
bonds in Mn3O4 and γ-MnOOH [47]. The peak at 418.6 and 531 cm−1 are the characteristic stretching
mode and the bending mode of Mn-O bond at the octahedral sites of Mn3O4, respectively [48]. The peak
at 632 cm−1 originated from the stretching vibrations of the Mn-O (Mn3+) bond at the tetrahedral sites
in the Mn3O4 [10,49]. The peak at 1085 cm−1 corresponds to the out-of-plane bending vibration of
γ-OH, while the peaks at 1118 and 1151 cm−1 arise from the in-plane bending vibrations of δ-2-OH
and δ-1-OH, respectively [50]. The above vibration absorption bands are consistent with that of the
reported γ-MnOOH and hausmannite Mn3O4.
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For the Mn3O4 nano-octahedrons (Figure 6b), the characteristic peak at 412 cm−1 is associated
with the stretching mode of Mn-O-Mn bonds [51], the peak at 446 cm−1 comes from the band stretching
modes of the octahedral sites [52]. The peak at 594 cm−1 is the characteristic band of Mn3O4, which
corresponds to the stretching mode of the Mn-O bond at the tetrahedral site and the stretching mode
of the Mn-O bond in an octahedral environment [53]. The peaks at 632 and 530 cm−1 originate from
the coupling of Mn-O stretching vibrations at the tetrahedral site and at the octahedral site [54]. FT-IR
measurement indicated that the obtained products are Mn3O4 nano-octahedrons.

3.5. Electrochemical Property

In this work, the galvanostatic charge–discharge process, CV, EIS, and rate capability were
performed to compare the electrochemical properties of as-prepared samples.

During the galvanostatic measurements, the current density was set at 1.0 A g−1, while the cutoff

voltage was conducted within 0.01–3.0 V. The discharge/charge curves in initial three cycles were
presented (Figure 7). For the MnOOH/Mn3O4 electrode, the discharge voltage drops steeply to 0.34 V.
A long discharge voltage plateau at 0.3 V can be found in the first discharge curve, which comes from
the reaction between MnOOH/Mn3O4 and Li [20,55]. In the second discharge process, the main voltage
plateau at 0.58 V originates from the reaction between the MnO and Li, the formation of Mn and
amorphous Li2O [20]. In the third discharge curve, a discharge voltage plateau appears at 0.50 V. For
the charging–discharging curves of the Mn3O4 nano-octahedrons electrode, a short voltage platform at
0.43 V can be found in the first discharging curves, which arises from the reaction occurred between
Mn3O4 and metallic Li. In the second and third cycles, the discharge curves are coincided with each
other, and the well-defined discharge voltage platform at 0.45 V originates from the reaction between
the MnO and Li. The results indicate that the main discharge platform does not change obviously in
the following cycles.
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Figure 7. Galvanostatic charge/discharge profiles of MnOOH /Mn3O4 (a) and Mn3O4 nanooctahedrons
(b) with a potential window from 0.01 V to 3.0 V at the current density of 1.0 A g−1.

The long-term cyclabilities of as-prepared samples were recorded, as shown in Figure 8. For the
MnOOH/Mn3O4 electrode, the specific capacities in the first discharge and charge processes are 1172.1
and 796.3 mAh g−1. The low coulombic efficiency of 67.9% is related to the formation of solid electrolyte
interphase (SEI) film [56]. However, the discharge and charge specific capacities decrease to 793.1 and
753.4 mAh g−1 in the second cycle. SEI films retard further lithiation of the inner part of Mn specimens
and result in decreased discharge/charge capacity [57]. At the same time, the coulombic efficiency
increases up to 92.7%. Cyclic performance examination reveals that the charge/discharge specific
capacity continuously reduces to 391 mAh g−1 in the 73rd cycle. Since then, the discharge/charge
specific capacity gradually increases. Finally, the discharge and charge capacity gradually increased
to 724.2 and 722.4 mA h g−1 in the 300th cycle. Because the shape and size of formed MnOOH
nano-columns and Mn3O4 nano-octahedrons are inhomogeneous, the cracking and fragmentation
that originate from the stress during the lithiation reaction will lead to the increased discharge/charge
specific capacity.
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Figure 8. Cycle properties of MnOOH/Mn3O4 (a) and Mn3O4 nanooctahedrons (b) at the current
density of 1.0 A g−1.

For the Mn3O4 nano-octahedrons electrode, the discharge and charge specific capacities in the first
cycle are 971.8 and 592.9 mAh g−1, which reveals that the initial discharge capacity of octahedron-like
Mn3O4 nano-structures measured at 1.0 A g−1 is higher than the theoretical capacity (937 mAh g−1)
for the conversion reaction to Mn and Li2O [58]. In the second cycle, the discharge and charge
specific capacity decreased to 599 and 567.4 mAh g−1, while the coulombic efficiency increases up to
94.7%. In the 73rd cycle, the charge/discharge specific capacity reduces to 340 mAh g−1. After that, it
gradually increases. At the 150th cycle, the reversible specific capacity reaches 443 mAh g−1. Since
then, the charge/discharge specific capacity basically maintains at 450 mAh g-1. Compared with the
reported Mn3O4 nano-rods/wires [59], Mn3O4 nanotubes [60], Mn3O4 tetragonal bipyramids [8], Mn3O4

hierarchical microspheres [27,61], Mn3O4 hollow microspheres [62], Mn3O4 nanooctahedra [63], Mn3O4

nanosheets [64], and spherical-like Mn3O4-S nanoparticles [65], the formed Mn3O4 nano-octahedrons
present better electrochemical properties.
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Because the exposed (011) facets of as-prepared Mn3O4 nano-octahedrons are highly active, the
improved cycling performance could be attributed to their smaller charge transfer resistance. At
the same time, the alternating Mn and O atom layers on the exposed (011) facets can speed up the
conversion reaction that occurs between Mn3O4 and Li, facilitate the multi-electron reaction, and ease
the formation and decomposition of the amorphous Li2O [63].

The details of the lithium insertion–extraction process can be evaluated by the CV method [66–68].
In this work, the initial three CV curves were recorded within 0.01–3.0 V at a scan rate of 0.1 mV s−1, as
shown in Figure 9.
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For the MnOOH/Mn3O4 electrode, two reduction peaks can be found in the first cathodic sweep.
The cathodic peaks centered at 0.166 and 0.86 V corresponded to the multistep lithium ion insertion
mechanism, which included the reduction of Mn3+ to metallic Mn and the decomposition of organic
electrolyte. The anodic peak that appeared at 1.21 V originated from the lithium ion extraction
and oxidation of Mn to MnO [69]. In the following cycles, the cathodic peaks shifted to 0.30 and
0.41 V, demonstrating the occurrence of irreversible phase transformation after the first cycle. The
first reduction peak may be mainly related to the drastic structural modifications that is impelled by
lithium [70] and the reduction of MnO to metallic Mn [69], while the second reduction peak corresponds
to the irreversible phase transformation during the lithium insertion in the first cycle [20,71,72]. In
the initial three anodic sweeps, the oxidation peak is located at 1.2 V. Thus, equations of MnOOH
nanocolumns/Mn3O4 nanooctahedrons electrode used for the rechargeable LIBs can be formulated [73]:

MnOOH + 3Li+ + 3e− →Mn + Li2O + LiOH (1)

Mn3O4 + 8Li+ + 8e− → 3Mn + 4Li2O (2)

Li2O + Mn→MnO + 2Li+ + 2e− (3)

For the Mn3O4 nano-octahedrons electrode, three reduction peaks at 0.12, 0.88, and 1.06 V can
be found in the first cathodic sweep. The intensive peak emerging at 0.12 V may be related to the
reduction of Mn3O4 to MnO [71], the second peak locating at 0.88 V corresponds to the formation of
the SEI layer on the electrode surface [69]. The third peak appearing at 1.06 V can be attributed to the
reaction between Mn3O4 and Li during the process of the SEI layer formation [14]. The latter two weak
peaks disappeared in the following cycles because they were annihilated in the next cycles [74]. The
peak at 1.18 V in the first anodic sweep originated from the oxidation of Mn to MnO and reduction of
Li2O to Li [75]. In the second cycle, two reduction peaks are located at 0.25 V and 0.39 V, while the
oxidation peak is much like that of the first anodic sweep. In the third cycle, the reduction/oxidation
peaks are identical to those appeared in the second cycle, which indicate the good reversibility of
Mn3O4 nano-octahedrons electrode [7,70,75]. So the electrochemical reaction that occurs in the first
discharge/charge cycle will be summarized as the following equations [14,76,77]:
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Initial discharge cycle

Mn3O4 + Li+ + e− → LiMn3O4
(
1.5− 0.5VvsLi+/Li

)
(4)

LiMn3O4 + Li+ + e− → Li2O + 3MnO
(
1.5− 0.5VvsLi+/Li

)
(5)

MnO + 2Li+ + 2e− →Mn + Li2O
(
0.5− 0.0VvsLi+/Li

)
(6)

Generally,
Mn3O4 + 8Li+ + 8e− → 3Mn + 4Li2O (7)

Initial charge cycle:

Mn + Li2O→Mn + 2Li+ + 2e−
(
0.5− 3.0V vs Li+/Li

)
(8)

Electrochemical impedance spectroscopy (EIS) was used to investigate the Mn3O4 electrodes. It
can supply related information to compare the electrochemical, electron, and ion transport properties
of different electrode materials [78–80]. The Nyquist plots as well as the equivalent electrical circuit
for the prepared two Mn3O4 electrodes are shown in Figure 10a. The high frequency intercept on the
real axis corresponds to the ohmic resistance (Rs), which originated from the electrolyte resistance,
internal resistance of electrode, and contact resistance [81]. The results indicate that the Rs values of
the MnOOH/Mn3O4 and pure Mn3O4 electrodes are 2.1 and 2.5 Ω, respectively. The semicircle in the
high frequency region of Nyquist plot corresponds to charge-transfer resistance (Rct). For the Mn3O4

nano-octahedrons electrode, the smaller diameter suggests that Mn3O4 nano-octahedrons possess a
much lower charge transfer resistance (267.6 Ω) than that of the formed MnOOH/Mn3O4 (304.2 Ω). In
addition, the slope of Nyquist plots in the low-frequency range of the EIS spectra correlates with the
diffusion barrier of electrolyte ions. For Mn3O4 nano-octahedrons electrode, the much larger slope
at low frequency intimated the faster electrolyte ion transfer than that in MnOOH/Mn3O4 electrodes
(Figure 10b).
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The rate capabilities were examined at the current densities of 0.2, 0.5, 1.0, 2.0, 5.0, and 0.20 A g−1.
The testing results were applied to compare the electrochemical characteristics of two formed samples,
as shown in Figure 11. For the MnOOH /Mn3O4 electrode, the reversible specific capacities were 627,
516, 439, 368, 303, and 480 mAh g−1 (retention: 76.6%; 0.2–0.2 A g−1 in the last cycle) (Figure 11a).
For the Mn3O4 nano-octahedrons electrode, the reversible specific capacity gradually decreases with
the increase in the testing current density. The specific capacities of 1050, 840, 633, 475, 315, and
958 mAh g−1 are obtained. Even at a high current density of 5.0 A g−1, Mn3O4 nano-octahedrons
still deliver the specific capacity of 315 mAh g−1. After the high current density of 5.0 A g−1 was
conducted, the charge/discharge specific capacity measured at 0.2 A g−1 could be retrieved (retention:
91.2%; 0.2–0.2 A g−1 in the last cycle) (Figure 11b), which indicates that Mn3O4 nano-octahedrons
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possess an excellent reversibility and display promising electrochemical properties as high capacity
LIB electrode materials.
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4. Conclusions

In this work, KMnO4 and DMF were used for the preparation of Mn3O4 nano-octahedrons by
the one-step hydrothemal reduction method. The structure, morphology, and composition of the
obtained products were characterized, respectively. Galvanostatic charge–discharge, CV, EIS, and
rate performance were used to study the electrochemical properties of obtained samples. The results
indicated that the nature of as-prepared manganese oxides could be controlled by tuning the initial
reactant composition. As the galvanostatic charge–discharge process was conducted at 1.0 A g−1,
the initial discharge-charge specific capacities of prepared Mn3O4 nano-octahedrons are 971.8 and
592.9 mAh g−1. After 300 cycles, a discharge/charge specific capacity of 450 mAh g−1 can be delivered.
The results indicated that the formed Mn3O4 nano-octahedrons possess outstanding capacity stability
and can be used for the preparation of LIBs.
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