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Abstract
Reef-building corals harbour an astonishing diversity of microorganisms, including endosymbiotic microalgae, bacteria,
archaea, and fungi. The metabolic interactions within this symbiotic consortium are fundamental to the ecological success of
corals and the unique productivity of coral reef ecosystems. Over the last two decades, scientific efforts have been primarily
channelled into dissecting the symbioses occurring in coral tissues. Although easily accessible, this compartment is only
2–3mm thick, whereas the underlying calcium carbonate skeleton occupies the vast internal volume of corals. Far from being
devoid of life, the skeleton harbours a wide array of algae, endolithic fungi, heterotrophic bacteria, and other boring eukaryotes,
often forming distinct bands visible to the bare eye. Some of the critical functions of these endolithic microorganisms in coral
health, such as nutrient cycling and metabolite transfer, which could enable the survival of corals during thermal stress, have
long been demonstrated. In addition, some of these microorganisms can dissolve calcium carbonate, weakening the coral
skeleton and therefore may play a major role in reef erosion. Yet, experimental data are wanting due to methodological
limitations. Recent technological and conceptual advances now allow us to tease apart the complex physical, ecological, and
chemical interactions at the heart of coral endolithic microbial communities. These new capabilities have resulted in an
excellent body of research and provide an exciting outlook to further address the functional microbial ecology of the
“overlooked” coral skeleton.

Looking below the surface: abundance and
diversity of endolithic communities

Endolithic environments—the pore spaces within solid
substrates—are ubiquitous habitats for microbial life on

Earth [1]. In terrestrial systems, these microenvironments
typically provide protection from intense solar radiation
and desiccation, as well as sources of nutrients, moisture,
and substrates derived from minerals [2, 3]. In marine
systems, endolithic communities similarly exploit the
rocky seafloors, but also dwell into limestone and miner-
alised skeleton of a broad range of marine animals [4, 5]. A
wide spectrum of boring microorganisms was already
described in the late 1880s, with several species of cyano-
bacteria, fungi, and eukaryotic green algae known to
penetrate coastal carbonate rocks and the shells of molluscs
[6]. Coral endolithic microorganisms forming distinct and
visible bands in the skeleton were first characterized not
long after, in 1902 [7], a mere 19 years after the description
of the unicellular symbiotic algae in coral tissues [8]. While
the past 120 years have seen a vast improvement in our
understanding of the ecology, physiology, metabolism,
diversity, and genetics of Symbiodiniaceae [9], the photo-
synthetic microalgal symbionts inhabiting the tissue of
corals, less effort was channelled into the characterization of
endolithic microorganisms. Their ecological significance
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remains underexplored and detailed descriptions of their
in situ microenvironment and activity are still scarce.

Endolithic microalgae

The dense green band in the skeleton that can be observed
underneath the tissue of many coral species is often domi-
nated by the filamentous green algae Ostreobium spp.
(Siphonales, Chlorophyta) [10]. This diverse genus can
penetrate both dead carbonate substrates as well as live
corals [11], and has been recorded in the aragonite skeletons
of Atlantic, south Pacific, and Caribbean reef corals
including Pocillopora spp., Stylophora spp., Acropora spp.,
Favia spp., Montastrea spp., Porites spp., and Goniastrea
spp. [11–18]. Recent molecular studies have revealed the
astonishing genetic diversity of this group, with up to 80
taxonomic units at the near-species level [19–22]. High-
throughput amplicon sequencing has also revealed the
presence of other, less abundant, boring green microalgae
closely related to Phaeophila, Bryopsis, Chlorodesmis,
Cladophora, Pseudulvella, and red algae from the Ban-
giales order in coral skeletons [19].

Endolithic fungi

Endolithic fungi are as prevalent as microalgae in coral
skeletons. They penetrate the calcium carbonate micro-
structures and ultimately interact with Ostreobium cells
[23]. The first endolithic fungi isolated from coral skeletons
in the Caribbean and the South Pacific belonged to the
divisions Ascomycota and Basidiomycota [24]. The intru-
sion of fungal filaments into the polyp zone of the herma-
typic coral Porites lobata is known to prompt a defence
mechanism involving a dense deposition of skeleton,
resulting in pearl-like structures [23]. These observations
were extended to acroporid and pocilloporid corals, sug-
gesting that endolithic fungi are geographically and tax-
onomically widespread [25]. Along with endolithic
algae, fungi are present in the newly deposited coral ske-
leton [5, 25], and exhibit rapid growth to match skeletal
accretion [23].

Endolithic prokaryotes

Only a few studies have characterized the diversity of coral
endolithic bacteria, but often ignored the potential spatial
heterogeneity within this coral compartment. Species of
filamentous marine cyanobacteria, such as Plectonema ter-
ebrans, Mastigocoleus testarum, and Halomicronema
excentricum, were some of the first described prokaryotes
from green bands of coral skeletons. These cyanobacteria
were initially observed in shells of mussels and barnacles
and subsequently found in association with a great diversity

of corals [11, 26–28]. High abundance of cyanobacteria and
anoxygenic phototrophic bacteria was suggested by spectral
signatures of bacteriochlorophylls in the green and deeper
bands of coral skeletons [18, 29]. Diversity surveys based
on 16S rRNA gene amplicon sequencing have revealed
more than 90 unclassified cyanobacterial OTUs (>97%
similarity cut off) across the skeleton of 132 coral fragments
[19]. In addition, anaerobic green sulphur bacteria from the
genus Prosthecochloris were found prevalent in the skele-
ton of Isopora palifera [30].

Physicochemical characteristics of the coral
skeleton

The coral skeleton is a porous substrate with unique phy-
sicochemical characteristics [29, 31–33], which are derived
from the influence of the overlying coral tissue and the
internal structure of the skeleton itself. These specific
physicochemical characteristics likely drive the spatial
structure, interspecies interactions, ecophysiology, and
functions of coral endolithic communities.

Light

Photosynthetically active radiation (PAR)—the waveband
of solar radiation ranging from 400 to 700 nm used by most
algae for photosynthesis—are strongly attenuated by
absorption from the Symbiodiniaceae cells within the coral
tissue and intense scattering from the skeleton [34]. Earlier
estimates suggested that up to 99% of the incident PAR
were absorbed or scattered before reaching the endoliths
[14, 35, 36]; similar values were derived from more recent
in situ measurements, with 0.1–10% of incident PAR
reaching the endolithic communities [29]. Besides water
depth, internal irradiance is also strongly influenced by
coral species through variation in tissue thickness and
skeletal morphology [29].

Although endolithic oxygenic phototrophs subsist in
extremely low levels of PAR, their light environment in
shallow waters is not as depleted in near-infrared radiation
(NIR) (wavelengths from >700 to 1000 nm) [29], as NIR is
not absorbed by the coral tissue and penetrates much deeper
into the skeleton [18]. These wavelengths can be exploited
by bacteria harbouring bacteriochlorophyll which sustains
anoxygenic photosynthesis [37], and by other long
wavelength-absorbing pigments (e.g., chlorophyll d and f)
in oxygenic phototrophs [38, 39]. However, since irradiance
attenuation increases for higher wavelengths, the amount
of NIR available for the endolithic communities is
strongly constrained by water depth. Therefore, NIR can
only sustain photosynthetic activity in reefs shallower than
15 metres [29].
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Oxygen and pH

Photosynthesis and respiration from endolithic communities
generate diurnal fluctuations in the pH and oxygen con-
centrations within the skeleton [32, 33]. Due to the lower
metabolic rate of endolithic microbes, these fluctuations are
not as extreme as the ones recorded in coral tissues (which
can fluctuate diurnally from pH 6.6 to 8.5 [32], and from
nearly anoxic to 400% air saturation [33]). At night, het-
erotrophic respiration lowers oxygen levels (10–60% of
ambient concentration) and pH (~7.69) in the pore water of
the skeleton [31, 40], while during the day, photosynthetic
activity triggers an increase of both oxygen (>210% of
ambient concentration) and pH (over 8.5) [41]. However,
the distribution of oxygen within the endolithic environ-
ment is not homogenous. Oxygen production pre-
dominantly occurs within the green Ostreobium-dominated
band, while consumption, although greater in the zone
directly below the corallites, does not exhibit a well-defined
permanent zonation in the skeleton, indicating large het-
erogeneity in endolithic respiration [15]. In particular, the
skeleton of the hydrocoral Millepora, which is highly por-
ous but has a relatively low permeability, can trap large
amounts of oxygen produced by endoliths. This oxygen can
often be seen bubbling out of broken branches [42].

Chemical gradients

Pore water within the skeleton differs drastically from the
surrounding seawater in its chemical profile. High enrich-
ment in phosphate, ammonium, nitrate, and nitrite have
been recorded [31, 40, 43]. Although the metabolic activity
of the overlying coral tissue undoubtedly will have an
influence on the chemical composition of skeletal pore
water, the diverse endolithic assemblages are likely
responsible for the remineralization of organic matter and
excretion of nutrients [31]. This enriched pore water has
been, until now, completely overlooked and could con-
stitute a potential source of nutrients for the tissue, but also
for the Symbiodiniaceae. For instance, dissolved inorganic
nitrogen concentrations present in pore water could fulfil
200% of the coral’s nitrogen demand [31]. It is however
currently unknown if this enormous nutrient pool is acces-
sible to the coral tissue.

Species-specific features

The structure, density, and pore sizes of the skeleton can
vary widely within and between coral species [44–46].
These differences in physical characteristics of the skeleton
directly impact the light, oxygen, pH, and chemical
microenvironments and therefore likely influence the dis-
tribution and structure of the endolithic communities [47].

For example, dense skeletons cause higher light attenuation
compared to skeletons that are less dense. Consequently,
denser skeletons more strongly promote the development of
anoxic microenvironments, favouring anaerobic micro-
organisms [47]. Further, skeletal density is dependent on
the growth form of the coral colonies: the densest
skeletons can be found in foliaceous (i.e., thin and leaf-like)
forms of the genera Agaricia, Leptoseris, Orbicella, or
Dichocoenia. The most porous skeletons are typically
associated with massive and bushy growth forms such as
Acropora or Seriatopora [48]. It is also important to note
that some branching species exhibit strong axial gradients
in density [48], resulting in variations in skeletal
porosity from 40 to 70% within the same Acropora colony
skeleton [44].

Taken together, the skeletal environment is characterised
by its extremely low ambient light, daily fluctuation in pH
and oxygen, and enrichment in inorganic nutrients that are
typically limiting primary production in reef water (Fig. 1).
The coral skeleton is a porous structure and species-specific
differences in pore size, shape, and volume can result in
~25–50% of “empty” space filled by water [49]. These
pores divide the skeleton into numerous microhabitats in
which slightly different microbial assemblages and meta-
bolic processes might occur. It is therefore very likely that
microscale heterogeneity in chemical, light, or pH might
stratify the endolithic microbiomes, ultimately promoting
spatially diverse and dynamic microorganism assemblages
[21]. However, this heterogeneity might have been masked
by the relatively low spatial resolution of most of the ana-
lyses conducted until now.

Contribution and function of the endolithic
microbiome to reef coral health

Recent molecular studies using amplicon sequencing of
multiple marker genes (e.g., 16S rDNA, 18S rDNA, 23S
rDNA, tufA) have provided many new insights into the
diversity of microbes associated with the coral skeleton
[19–21, 30, 50]. However, in situ functional characteriza-
tion of endolithic microbes has so far only been inferred via
the amplification of targeted functional genes [30]. Earlier
studies suggested that the complex assemblages of micro-
organisms populating the skeletons may influence coral
health and disease mainly via their important role in
bioerosion, primary production, and nutrient cycling.

Primary productivity

Coral reefs are among the most productive marine ecosys-
tems on Earth and several lines of evidence indicate that
endolithic communities might contribute significantly to the
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high primary productivity of coral reefs. For example, the
role of endolithic Ostreobium as primary producers was first
demonstrated using incubation with 14C-bicarbonate [51].
Indeed, these algae assimilate inorganic carbon during the
day and transfer photoassimilates (as lipids) into the tissues
of the azooxanthellate coral Tubastrea micranthus within
24–48 h. Using similar methodology, Fine and Loya
demonstrated the transfer of photoassimilates from endo-
liths to the coral tissues in the Mediterranean coral Oculina
patagonica [52] and in zooxanthellate corals from the Great
Barrier Reef [53], suggesting high primary production by
these endolithic communities. Several studies have since
supported the role of endolithic communities as primary
producers in Porites corals [54], exceeding 40% of holo-
biont productivity in some instance [55]. In contrast, a
number of studies have proposed that primary productivity
and transfer of carbon by endoliths to coral hosts is rather
limited [41, 56]. For instance, oxygen production mea-
surements of endoliths in coral colonies suggested that the
endolithic contribution accounted for <4% of the total pri-
mary production of corals [41]. Further, Titlyanov et al. also
proposed that transfer of photoassimilates from endoliths to
the host tissues of Porites lutea and P. cylindrica was
limited to sunlit shallow waters [56]. While it is becoming
increasingly clear that endolithic communities potentially
play a significant role in coral reef primary productivity, it is
important to note that this role may vary greatly with
environmental conditions [57]. Further work is therefore
needed to better understand the contribution of endolithic
microbes to the overall carbon budget and primary pro-
ductivity in corals.

Nitrogen cycling

Given that most coral reefs inhabit waters where planktonic
food supplies and dissolved nitrogen can be limiting, the
ability to assimilate nitrogen and cycle it rapidly is crucial for
the coral holobiont [58]. The first evidence for nutrient
cycling within the coral skeleton dates back to 1955 [59].
Based on measurements of endolithic biomass and chlor-
ophyll a concentration, it was hypothesized that the products
of coral host metabolism and excretion could diffuse through
the porous skeleton to benefit the endoliths, while the coral
host could benefit in return from diffusion of organic sub-
stances produced by the endoliths [59]. However, the coral
tissue and associated Symbiodiniaceae are a net sink for
inorganic nitrogen, which might limit the diffusion of these
compounds from the tissue into the underlying skeleton [60].
Consequently, the high concentrations of inorganic nitrogen
within the pore water of coral skeletons suggests that
endolithic microbes actively accumulate and efficiently
recycle the nitrogen within this environment. It has been
estimated that endoliths may satisfy 55–65% of nitrogen
required by corals for balanced growth [31]. Indeed, coral
endolithic microbial communities include a diversity of
prokaryotic and eukaryotic microbes capable of driving key
steps of the nitrogen cycle including nitrogen fixation and
nitrification.

Nitrogen fixation refers to the conversion of dinitrogen
(N2) molecules into ammonia (NH3) and occurs through
a complex reductive process involving the activity of
the nitrogenase enzyme. Using acetylene reduction mea-
surements, Shashar et al. were the first to show that the

Fig. 1 Spatial structure and
physicochemical environment
experienced by microbes within
the coral skeleton. The close-up
depicts a typical skeletal pore
populated by a range of
autotrophic (green) and
heterotrophic microbes (other
colours). These organisms
typically experience daily
fluctuations in pH (from
7.5–8.5) [41], oxygen (10–210%
air saturation) [15] and light
(0–10% of PAR and 0–80% of
NIR) [29]. In addition, they are
exposed to enriched levels of
dissolved inorganic phosphorus
(DIP) and to concentrations of
dissolved inorganic nitrogen
(DIN) 10 times higher than in
reef water [31, 40]. Outline of
the coral from [54]
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microbes associated with the skeleton of massive faviid
corals can fix N2 and act as a significant source of nitrogen
for the coral host [61]. These results were supported by a
more recent quantification of N2 uptake by endolithic
communities [54, 62]. Cyanobacteria were long thought to
be the key players mediating nitrogen fixation in endolithic
microbial communities, because of their abundance in coral
skeletons and the previous report of nitrogen fixation by
unicellular cyanobacteria within the tissue of Montastraea
cavernosa [63]. However, recent studies have also identi-
fied the presence of ubiquitous populations of green sulfur
bacteria, capable of anoxygenic photosynthesis and nitrogen
fixation, in the coral skeleton [30, 64]. These green sulfur
bacteria harbour genes involved in nitrogen metabolism,
including glutamine/glutamate synthases, reduction of
hydroxylamine, and nitrogen fixation [47]. The ability of
these bacteria to fix N2 was indeed confirmed in cultures
using acetylene reduction assays and nanoscale secondary
ion mass spectrometry (NanoSIMS) [47].

While nitrogen fixation is an important source of ‘new’
nitrogen within the coral holobiont [65], this strictly prokar-
yotic process is highly energy consuming. Hence, efficient
recycling and retention of fixed nitrogen are critical to fulfill
the nitrogen requirements of endolithic microbes and poten-
tially the overlying coral tissue. Nitrification, the aerobic
oxidation of ammonium into nitrite and nitrate, is an impor-
tant component of nitrogen cycling in corals and may reg-
ulate nitrogen availability for Symbiodiniaceae [66]. Nitrate
concentrations may exceed ammonium concentrations by
more than-tenfold in skeletal pore water [40], suggesting that
nitrifying microbes may play a critical role in controlling
nitrogen availability within the coral skeleton. Heterotrophic
fungi, ubiquitous members of the coral skeleton, are able to
reduce nitrate and nitrite into ammonium and assimilate the
latter for biosynthesis [67]. Together, this interplay of pro-
karyotic and eukaryotic nitrogen cycling processes may
efficiently accumulate and conserve nitrogen within the coral
skeleton. Indeed, the interaction of anaerobic (e.g., nitrogen
fixation) and aerobic (e.g., nitrification) processes may be
supported by the high spatial and temporal variability in
oxygen concentrations within the coral skeleton [15]. Endo-
lithic microbes may thus be able to fulfill their nitrogen
requirements despite the limited supply of inorganic nitrogen
from the surrounding seawater and coral tissue.

Bioerosion

Bioerosion, the biogenic dissolution of CaCO3 [68], is one
of the main destructive forces of coral reef structures and is
driven by a diversity of macro- and micro-organisms,
including bacteria, cyanobacteria, algae, and fungi [69, 70].
The main microboring taxon, Ostreobium, can dissolve up
to 0.9 kg of CaCO3 per m

2 of reef per year [71].

Our understanding of microbioerosion is still very
incomplete. The acidic nature of metabolic by-products
released by bioeroding microbes was long thought to be
responsible for this process [72]. However, most members
of the endolithic microbial community are photosynthetic
(Chlorophyta, Rhodophyta, and Cyanobacteria), which
typically increases the pH and precipitates carbonates
instead of dissolving them [73]. Alternative mechanisms to
explain the paradox of boring phototrophic microbes have
more recently been proposed [74, 75]. A series of seminal
papers used imaging and molecular techniques to demon-
strate that the activity of the bioeroding cyanobacterium
Mastigocoleus testarum was based on shifting the dissolu-
tion equilibrium by lowering Ca2+ concentration [75–78].
Indeed, this cyanobacterium uses a combination of trans-
porters to take up Ca2+ at the excavation front, promoting
dissolution of CaCO3 locally, and to further transport and
excrete Ca2+ away. It remains unclear though if this
mechanism is common in other endolithic cyanobacteria
and microboring algae [78].

Do endolithic microbes affect coral survival
after stressful events?

Corals are susceptible to a range of stressors, including the
effects of global climate change [79, 80]. Coral bleaching is
a general stress response of corals, but in recent decades has
been most commonly observed during prolonged high-
temperature anomalies, such as particularly severe El Niño/
Southern Oscillation events [81, 82]. The term bleaching
refers to the disruption of the coral-algae symbiosis caused
by the loss of photopigments or endosymbiotic dino-
flagellates from the animal tissues [79, 83]. Bleaching
thereby rapidly deprives the coral host of its main energy
source, specifically photoassimilates translocated by the
endosymbiotic dinoflagellates [84–87]. When symbiotic
corals undergo bleaching, endolithic microbial commu-
nities, in particular, Ostreobium spp. exhibit pronounced
responses, which have been attributed to the stark increase
in PAR, as increasing light is able to penetrate the trans-
lucent coral tissues [53]. Exposed to low levels of PAR
under normal conditions [14, 36, 51], the endolithic com-
munities can rapidly photoacclimate during bleaching
[53, 88] and subsequently ‘bloom’ due to increased light
availability [89]. As a result, biomass, photosynthetic pig-
ments, and rates of photoassimilate translocation can
increase in the skeleton of bleached corals compared to non-
bleached corals [52, 90]. This observation suggests that
endolithic phototrophic microbes may indeed constitute a
key supply of energy for the stressed coral animal, poten-
tially supporting survival or even recovery following
bleaching.
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The ecological consequences of endolithic blooms in the
coral skeleton following bleaching, however, may be com-
plex, and not necessarily exclusively beneficial (Fig. 2).
Rather, the higher abundance of endoliths may result in sti-
mulated bioerosion rates, increasing the porosity of the coral
skeleton [91, 92]. Indeed, increased abundances and micro-
bioerosion by Ostreobium spp. were previously reported
under elevated pCO2 and ocean warming simulations
[91, 93, 94]. Thereby, while endolithic communities may
sustain the coral host with a critical supply of organic carbon
during bleaching, they may also slowly weaken the structural
integrity of the skeleton, potentially rendering the entire coral
colony more vulnerable to mechanical damage. Considering
that the effects of ocean warming inevitably include the
increasing frequency and severity of storms, endoliths may
ultimately contribute to the degradation and loss of three-
dimensional structure of coral reefs.

Beyond corals: endolithic communities in
reef ecosystems

On tropical coral reefs, endolithic microbial communities
are not restricted to the coral skeleton, but rather, can
occupy a large variety of niches such as coral rock, sand,
and other calcifying benthic organisms [5, 55, 95]. For
example, endoliths commonly occur in association with
crustose coralline algae [96], foraminifera [97], calcifying
algae (e.g. Halimeda spp.) [97], and mollusc shells [5, 95].
Similar to the communities present in corals, the endoliths

reported in these benthic organisms include cyanobacteria,
filamentous algae, fungi, and bacteria [5, 95], but a full
assessment of their diversity and exact taxonomic compo-
sition is currently lacking.

Coral rock (the dead carbonate substrate creating the reef
framework) and coral ‘rubbles’ (generated by the progressive
breakdown of coral rock into increasingly smaller pieces) are
typically colonised by diverse communities of phototrophic
eukaryotes, including Ostreobium [98]. In addition, the
cyanobacteria Acaryochloris spp. can thrive in coral rock
overgrown by the crustose coralline algae [99]. Acaryo-
chloris are known to be the only oxygenic photoautotroph
that uses the red-shifted chlorophyll d as their main photo-
synthetic pigment, enabling them to take advantage of the
NIR light conditions [100]. Hence, this genus might be a
significant contributor to oxygenic photosynthesis given that
its endolithic habitat is particularly common and widespread
in coral reefs [99]. Endolithic microorganisms are therefore
considered the main driver of photosynthesis in abundant
dead carbonate substrates [55], but the impact of their pri-
mary production at the ecosystem scale remains unknown.

In addition, sediments also constitute important micro-
bial habitats and can represent a substantial fraction of reef
substrates. The microbial environment of reef sediments is
influenced by water motion, grazing pressure, and benthic
productivity [101], which create fluxes in oxygen, nutrients,
and DOC, potentially affecting endolithic communities. In
addition, abiotic factors such as sediment grain size, surface
structure and area, permeability and transparency to light
can also affect microbial communities and their activity in

SkeletonEndoliths

Host cells

Host cell

Symbiont

Fig. 2 Climate change affects endolithic microbiomes and their
interactions with the coral host. a In the intact symbiosis, the nutrient
exchange between coral cells and the endosymbiotic microalgae is
maintained. In this scenario, endoliths remain deep in the skeleton.
b Exposure to prolonged high-temperature anomalies causes the loss
of Symbiodiniaceae from coral tissues, resulting in bleaching. Sub-
sequently more light penetrates into the skeleton, causing endolithic
microbiomes to bloom. Endoliths were previously shown to increase
their biomass and primary production, physically reaching the animal

tissues, and enhance the rates of organic carbon (photoassimilate)
translocation to the animal host. It is hypothesized that nutrient
exchange between the coral host and endoliths may potentially help
the coral animal to survive or even to recover from bleaching. At the
same time, the increased growth of endoliths may cause micro-
bioerosion to intensify, undermining the structural integrity of the coral
skeleton, and rendering the coral colony more vulnerable to breakage
(e.g., during storm events)
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reef sands [102]. For instance, carbonate sands were
recently shown to exhibit higher nitrogen fixation rates than
silicate sands in coral reefs of the Gulf of Aqaba, Jordan
[102]. Notably, nitrogen fixation rates were positively cor-
related with gross photosynthetic rates in carbonate sands,
but these variables were negatively correlated in silica sand,
likely because of differences in their diazotroph commu-
nities [102]. In addition, eukaryotic microalgae such as
diatoms [103] and dinoflagellates [104], including Sym-
biodiniaceae, are abundant in reef sediments [104–106].
While it remains unclear whether Symbiodiniaceae simply
adhere to sand grains, or exhibit a microboring lifestyle in
the reef, they can calcify and populate spherical calcium
carbonate structures in association with Gammaproteo-
bacteria in cultures [107], which suggest that Symbiodi-
niaceae might also inhabit reef sediments as endoliths.

Future directions

Despite recent progress in our understanding of the tax-
onomy [19, 50] and structure [21, 108] of endolithic com-
munities, many questions remain yet to be answered. In
particular: (a) Does microscale heterogeneity, driven by
chemical, light, or pH gradients, spatially stratify the
endolithic microbiomes into distinct taxonomic assem-
blages? (b) What are the functional roles of endolithic
communities and do their functional capacities vary spa-
tially in situ? (c) If communities are spatially structured, do
the metabolic processes occurring in specific skeleton sec-
tions influence neighbouring communities and by extension
the coral host? (d) Do the endoliths sustain or harm their
coral host during stressful events? Unfortunately, due to the
compact nature of the skeleton, most studies to date have
relied on the use of hammer and chisel, which result in
sampling efforts with coarse spatial resolution and potential
loss of microscale heterogeneity by accidental homo-
genisation. The highest sampling resolution to date fol-
lowed a geometric progression design on massive Porites
spp. colonies (with distance ranging from 0.4 to 199.2 cm)
and observed high level of microbial taxonomic hetero-
geneity [21]. Similar fine-scale sampling approaches
should, therefore, be emulated and could even be improved
in future studies, as outlined below.

Ideally, (1) a comprehensive characterization of skeletal
microenvironments and associated gradients (e.g., light
levels, nutrient concentrations, pH) using micro-sensors and
hyperspectral imaging should clearly identify species-
specific “skeletal micro-regions”, i.e. distinct regions or
bands prior to sampling. This characterisation could be done
by physically taking representative colonies into the
laboratory and making large cross sections, using a diamond
blade, which could then be measured. (2) After collecting a

skeletal cross-section, researchers should subsample it using
“hollow punching” of a suitable diameter that would target
the predefined “skeletal micro-regions”. This approach will
enable the determination of phylogenetic diversity and
functional potential of these spatially coherent regions using
a combination of marker-based high-throughput amplicon
sequencing and –omics approaches (e.g., metagenomics,
transcriptomics). (3) Finally, confirming community spatial
structures and metabolic exchange would be paramount.
This could be achieved via a novel sample preparation
technique suitable for high-resolution imaging that retains
the structural integrity of the skeleton, coral tissues, and all
associated microbes. Most imaging techniques require
relatively thin and flat sections, which were until recently
impossible to achieve with hard and brittle calcium carbo-
nate skeletons. However, a recent methodological break-
through now enables unconstrained access to the spatial
structure of cryptic endolithic communities by directly
cutting micrometre-thin sections of frozen coral samples
without the need for prior decalcification [109]. Leveraging
on such new methods, researchers could conduct a targeted
localization of specific microbial taxa using in situ hybri-
dization on these thin coral cross-sections, or image and
quantify the transfer of metabolites using stable isotope
probing and NanoSIMS between different skeletal micro-
regions and even between the skeleton and the coral tissue.
These integrated approaches (Fig. 3) would undoubtedly
help to identify the roles endolithic communities play in
healthy coral holobionts, as well as during stressful events
such as coral bleaching.
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