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The center stage of neuro-imaging is currently occupied by studies of functional

correlations between brain regions. These correlations define the brain functional

networks, which are the most frequently used framework to represent and interpret a

variety of experimental findings. In the previous study, we first demonstrated that the

relatively stronger blood oxygenated level dependent (BOLD) activations contain most

of the information relevant to understand functional connectivity, and subsequent work

confirmed that a large compression of the original signals can be obtained without

significant loss of information. In this study, we revisit the correlation properties of these

epochs to define a measure of nonlinear dynamic directed functional connectivity (nldFC)

across regions of interest. We show that the proposed metric provides at once, without

extensive numerical complications, directed information of the functional correlations,

as well as a measure of temporal lags across regions, overall offering a different and

complementary perspective in the analysis of brain co-activation patterns. In this study,

we provide further details for the computations of these measures and for a proof of

concept based on replicating existing results from an Autistic Syndrome database, and

discuss the main features and advantages of the proposed strategy for the study of brain

functional correlations.

Keywords: fMRI, resting state networks, functional connectivity, dynamic functional connectivity, autism (ASD)

1. INTRODUCTION

The large scale dynamics of the brain exhibits a plethora of spatio-temporal patterns. Since the first
description of voxel-wise correlation networks (Eguíluz et al. , 2005), there has been a continuous
interest in developing better ways to derive brain “networks” from fMRI time series data. Common
to all is the identification of functional “nodes” [i.e., fMRI time series extracted from regions of
interest (ROI)], functional edges (i.e., the cross-correlations), which allows for the subsequent
graph analysis. An important methodological challenge has been always to define an adequate
coarse graining of the brain imaging data to compress 1,000 of the so-called blood oxygenated
level dependent time series. The usual analysis aims at the identification of bursts of correlated
activity across certain regions, which requires extensive computations, complicated in part by the
humongous size of the data sets.
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In the previous study, we proposed that the timing of the brief
epochs of relatively stronger BOLD activations contain a great
deal of functional connectivity (FC) information (Tagliazucchi
et al., 2011, 2012). The results of subsequent work (Liu and Duyn,
2013; Liu et al., 2013; Petridou et al., 2013; Wu et al., 2013; Amico
et al., 2014; Jiang et al., 2014; Li et al., 2014; Allan et al., 2015; Chen
et al., 2015; Tagliazucchi et al., 2016) seems to provide ample
support to this idea, by confirming the functional relevance of
such relatively large amplitude BOLD events under a variety
of conditions.

The is study goes beyond the analysis of correlations between
BOLD time series to explore and define a set of measures of the
nonlinear directed dynamic functional correlation across ROIs.
The use of such measures, despite its simplicity, may help to
expand at once the perspective of the usual FC paradigms, such as
seed correlation maps and networks, into the realms of nonlinear
time-dependent directed correlations.

The study is organized as follows: In the next section, we
describe the essence of the method, starting with the basic
procedure to define the BOLD-triggered events followed by a
description of the available correlation measures that allow a
proper definition of the functional connectivity between the
events, including a definition of directionality and temporal lag
of the events. Section 3 contains the analysis of a simple example
as a proof of concept of healthy subject fMRI data set, followed
by the replication and further analysis of a voxel-wise published
data set from Autism Syndrome in order to show the method
features. This study closes with a discussion of the advantages
and limitations of the method and potential implications of the
results. Derivations and further technical details are condensed
in the Supplementary Material.

2. METHODS

The analysis to be discussed can use BOLD time series recorded
indistinctly from either resting state conditions or during an
experiment in which the subject is performing a given task. The
most common approach to determine functional connectivity
is to compute Pearson’s linear correlation between BOLD time
series (van den Heuvel and Hulshoff P., 2010; Finn et al., 2015).
In contrast, the objective of the present analysis is to determine
the relation between relatively large amplitude BOLD activations
from a given pair of signals. In this section, it will be discussed:
2.1 how large amplitude events are selected given series of fMRI
data; 2.2 correlations computed with the selected events; 2.3 how
directionality is understood when working with events; and 2.4
how the dynamic connectivity, understood here as lags between
time series, is computed.

2.1. Definition of BOLD-Triggered Events
First, each BOLD time series is z-scored (its mean is subtracted,
and it is divided by its SD). Next, a threshold for detecting strong
activity is chosen, (typically the results remain unchanged when
using a range of 1 − 2 SDs) and for each time series, the timing
of each upward threshold crossing is determined (Figure 1A).
Note that the number of threshold crossings depends on the
auto-correlation of the BOLD signals (which stays in the range

0.6–0.85 Ochab et al., 2019) and more generally on the exponent
of the 1/f α frequency spectrum. Empirically, for the threshold
of 1σ , in a BOLD signal we find on average 8.5 ± 2.8 upward
crossings per 4 min of fMRI scan.

The timing is further used to define the seed or source events.
For a given seed voxel or region of interest (ROI), they consist
of segments of BOLD time series starting typically 4− 5 s before
and ending 9 − 15s after the crossing (which translates to 2 − 3
TRs before and 4− 7 TRs after, with TR = 2.3 in the data we are
using as a proof of concept in this study). This timescale is chosen
by the typical duration of these events, which in turn is dictated
by the longest timescale of the hemodynamic response function
(∼ 10− 15 s).

Finally, for each seed event, the target events are extracted
from all the other BOLD time series at the exact same times
as the seed, see Figures 1B,C. The average time courses of the
events follow typically a smooth pattern, although they do exhibit
variability, for both the seed (see Figure 1D) and targets (see
Figures 1E,F). If the interest of a given experiment is to define
an average inter-relation measure between ROIs, then all the
seed and target events can be averaged (as shown by red-and-
black circles in Figures 1D–F), for instance over the entire scan
fMRI session.

2.2. Correlations
Once the source and the target events are extracted from the
BOLD time series, a few options of computing correlations
are possible:

1. rP(i, j) linear Pearson’s correlation between the whole time
series i and the whole time series j (computed in section III
where we perform a proof of concept). This option is not
related to events, but in the next section we will compute for
comparison purposes,

2. r
(k)
E (i, j) linear correlation between a k-th source event in time
series i and a respective target event in time series j . This
option seems the most plausible when analyzing transient
events, for instance localized tics on a motor disease.

3. r̄E(i, j) = 1/K
∑K

k=1 r
(k)
E (i, j) average linear correlation

between K source events in time series i and respective target
events in time series j,

4. rC(i, j) linear correlation between concatenated source events
in time series i and concatenated respective target event in
time series j,

5. rE(i, j) linear correlation between an average source event
in time series i and an average target event in time series
j (computed in section III where we perform a proof
of concept).

In this study, we will only use measures defined by 1 and 5.
The other choices, 3, 4, are not discussed here, but it is worth
considering them in future studies to obtain statistically less
biased estimators of correlations.

2.3. Directionality
Given two regions of interest i and j, the linear Pearson
correlation between their BOLD time series by definition is
symmetric, i.e., rP(i, j) = rP(j, i). It is not the case, if the
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FIGURE 1 | Definition of the large amplitude BOLD events: For each source region (A), BOLD-triggered events (asterisks) are defined at the times at which the BOLD

signal crosses an arbitrary threshold [here set to 1σ , denoted by the dashed line in (A)]. For each detected source event, a target event is extracted (coinciding with

the times of the source) from the BOLD signals of the other regions of interest (as the two examples in (B,C) denoted by vertical lines). Subsequently, the extracted

events can be averaged (D–F), and used for further computation of correlations, delays, and directionality.

correlations are computed using events. Then, the distinction
between source and target becomes relevant, as shown in
Figure 2A. The shaded areas in the plots mark the positions of
source events of each of the two relatively strongly correlated
ROIs. Visibly, the first two events are common for both time
series, but for instance the BOLD activations around TR = 30
and TR = 40 are source events for ROI 2 but not for ROI 1.

Consequently, the set of events over which one computes
correlations when ROI 1 is considered the source is different
from those observed when ROI 2 is considered the source, as it
can be seen in Figure 2B. The four plots in Figure 2B, shows an
example for two ROI’s in which (in a matrix format) the sources

as columns and the targets as rows. The top left panels contain
the source events of ROI 1 (and its average) and the top right
one its target (ROI 2). Similarly, the bottom right panel shows the
source events extracted from ROI 2 (and its average) and the left
bottom one its target (ROI 1). So even though the BOLD series
of both regions are highly correlated, the source and target events
are different, and hence, the event correlation is not symmetric
rE(i, j) 6= rE(j, i).

The asymmetry in the correlations may indicate that
on average, the co-activations between regions have a
preferred direction. Being cautious about extrapolating these
results to neuronal activation, we can estimate and assess a
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global correlation asymmetry of the functional connectivity
by computing

A =
∑

i,j

(

rE(i, j)− rE(j, i)
)

, (1)

for a given region, or similarly to determine the asymmetry
of each ROI, or of each pair of time series i and j. In
practice, we computed this metric subtracting the transposed
mean correlation matrix from the non-transposed one (see
Supplementary Material 1).

The directionality can be also computed , in the spirit of
analysis of point processes (Tagliazucchi et al., 2012, 2016; Cifre
et al., 2020), from the relative number of events occurring
simultaneously in two regions. For instance, in Figure 2, there
are two out of six source events in ROI 1 that are also triggers
(i.e., above threshold) in ROI 2, and two out of five in ROI 2
that are also triggers in ROI 1. This approach takes into account
event amplitudes, which to a large extent could be also achieved
by computing covariance instead of the Pearson correlation
between source and target events. Below, we call such ratio
event directionality.

2.4. Delays
Several studies (Mitra et al., 2014, 2015a,b; Mitra and Raichle,
2016, 2018) have provided consistent evidence for the presence
of very slow (>1 s) fluctuations in the fMRI BOLD signal
propagating throughout the neocortex, thalamus, striatum, and
cerebellum. More recently, these slow waves of activity were
shown to be associated with spontaneous arousal fluctuations
that, in turn, can account for the topographic organization of the
brain functional connectivity (Raut et al., 2021). This information
was gathered by the use of conventional lagged cross-covariance
between pairs of BOLD time series xi(t) and xj(t) extracted from
regions i and j:

Ci,j(τ ) =
1

T

T
∑

t=1

xi(t + τ )xj(t) (2)

where τ is the lag (in units of TRs). The value of τ (i, j) at
which Ci,j(τ ) exhibits an extremum defines the delay between
signals xi and xj. To improve the resolution beyond multiple
integers of TR, a parabolic interpolation of the cross-covariance
extremum allows to determine the temporal lags with a finer
resolution, as done in Mitra et al. (2014). Since by definition
the time delay matrix τ (i, j) is anti-symmetric, i.e., τ (i, j) =

−τ (j, i), the information on the cross-covariance value and
the lags can be used to determine the structure of the entire
spatio-temporal processes.

Here, we propose a different approach to determine temporal
delays. Instead of computing (Equation 2) of the entire BOLD
time series, we make use of the fact that the BOLD-triggered
events have a well-defined timing (see Figure 3). Given a source
time series xi(t) and a target time series xj(t), we obtain a set
of ki source events. For each source event in xi(t), we find the
closest peak in xj(t) irrespective of its size and whether it occurred
before or after the source event. We search for the peak within a

window of [−6, 8] TRs from the source threshold crossing. As
shown in Figure 3, to obtain a finer timing of both the source
and target peak we also use a parabolic fit. The lag τ (i, j) is then
defined as the difference between the timing of the target and
the peaks of the source parabola. As a technical side note, when
getting a peak value at the left or right edge of the time windowwe
do not perform the parabola peak estimation, which could have
unbounded values, but we set the lag to −6 or 6, respectively. If
there is a particular interest, the same approach could be used to
search for a negative peak (i.e., a de-activation) following a source
event and estimate the activation de-activation delay between
specific ROIs.

Since the sets of source (threshold crossing) events of xi(t)
and xj(t) can be (and usually are) different, the matrix τ (i, j) is,
in general, non-symmetric irrespective of the length of the time
series. Additionally, for each i, j pair of ROIs we can obtain a set of
delays for each individual source event k: τ (k)(i, j), an average of
these values τ̄ (i, j), or alternatively a delay between average events
τ (i, j) (like the ones in Figures 1D–F).

3. RESULTS

In this section, we will proceed to describe the performance
of the method. It will be carried out on two settings: The
first (section 3.1) corresponds to the analysis of BOLD time
series from 90 ROIs defined by the automated anatomical
labelling (AAL) parcelation (Tzourio-Mazoyer et al., 2002),
and the second (section 3.2) describes a voxel-wise functional
connectivity analysis using both the classical Pearson correlation
and our methodology. From the outset, we note that the objective
of these comparisons is not to re-interpret or scrutinize the
study under replication, but only to illustrate the use and caveats
of our method. The validation of our method needs to wait
for the use of this approach by others in different settings. To
facilitate those enquires, the code is available at the repository
https://github.com/remolek/NFC.

3.1. Functional Connectivity, Delay, and
Directionality Computed From AAL
Parceled Time Series
Here, we will provide examples of typical results of the
computations explained previously. To that aim, we will use
fMRI BOLD data from 32 healthy participants downloaded
from the Autism Brain Imaging Data Exchange (ABIDE)
database (Craddock et al., 2013). Each dataset comprises 90
AAL preprocessed time series (using Data Processing Assistant
for Resting-State fMRI (DPARSF) pipeline). In all cases,
the time series are demeaned and normalized to their SD
(i.e., z-scored),

Typical results from the computations using both, the
standard FC approach and our method are presented in Figure 4.
For each of the three measures and for both methods, the figure
shows a matrix from single subject results, a mean matrix of the
whole group and the distributions for each of the computations.

First, Figure 4A shows typical results obtained from
Pearson’s correlations between all the time series, and
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FIGURE 2 | Example of directionality in source events of two regions of interest. (A) The shaded areas indicate the location of the source events (BOLD activity around

threshold crossing). The source events of ROI 2 may appear at different times than source events of ROI 1 (e.g., around TR = 30 and TR = 40). (B) Individual events

(in gray) and their averages (in red for ROI 1 and blue for ROI 2); source events are shown in the diagonal subplots, and target events in the off-diagonal ones. Different

sets of source events for each ROI give rise to asymmetry in the correlations between any two regions.

FIGURE 3 | Estimation of the delay τ between two events with finer resolution than the TR. First, the peak of the source event is centered at time TR = 0 to estimate

the closest peak of the target signal (here around time TR = 2). To obtain a better resolution of the delay between the two signals, two parabolas are fitted to three

points in each of the peaks. The time between the peaks of the parabolas is used to define the delay τ .

note that the distribution exhibits the usual Gaussian
shape. This is not the case for the distribution of
event correlations (Figure 4B) that is expected for the
sampling distribution of Pearson’s estimator for a small
length of time series. This feature is further discussed in
Supplementary Material 3.

Figure 4C shows the matrix and the distribution of
the edges’ directionality computed as the proportion
of shared events between regions (two leftmost panels)
as explained in section 2.3. The alternative measure
performed by subtracting the transposed matrix is shown
in Supplementary Material 3.
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FIGURE 4 | Examples of the matrices and distributions for each calculation performed over a fMRI dataset of 90 time series from the AAL atlas Tzourio-Mazoyer et al.

(2002). The first and the second columns corresponds to a single subject statistics, while the average results from a group of healthy subjects (n = 32) are shown in

the third and the fourth column. (A–E) show results for Pearson functional correlations, event correlations, event asymmetry, Pearson’s delay, and event delay,

respectively. For each measure, the first and the third columns show results in a matrix format, while the second and the fourth columns show the distributions of each

measure (mean values and S.D. error bars are used for the group distributions).

Delay between time series is shown in Figure 4D, for
shifted time series as in Mitra and Raichle (2018) and
Figure 4E, for delay computed using events. Note that for

Figure 4D, the apparent asymmetry is due to the TRs
subtracted at the beginning and end of the signal, to allow
the computation, while for Figure 4E, the event selection
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FIGURE 5 | Comparison between Pearson’s correlation of the BOLD time series and the correlation of the large amplitude BOLD events. (A) Results for zero-lag

seed-voxel correlations using the left ventral agranular insula as seed. It is shown the Z-transformed Pearson’s correlation one-sample t-test for each group of

participants (first-second columns for AU and third-fourth for HS) and two-sample t-test to assess differences between groups (fifth and sixth columns of brain

surfaces) (GFR corrected voxel p < 0.001, cluster p < 0.05). (B) The same distribution of columns as (A), for the results of correlating the large events (Z-transformed,

GFR corrected voxel p < 0.001, cluster p < 0.05). (C) Correlations from A and B compared, gray areas show coincidences between metrics, pink shows correlations

only detected in A and green correlations only detected in (B).

between target and source, so it is not an artifact of
the computation.

To further inspect the behavior of these metrics, we
computed average path length and clustering coefficient of the
networks given a certain threshold, and it can be seen in
Supplementary Material 2.

3.2. Replication of Voxel-Wise Functional
Connectivity Findings
As a further test of the computations explained above,
we have used fMRI data from the ABIDE preprocessed
database (Craddock et al., 2013) to replicate recent findings
on functional connectivity between insular sub regions on
Autism Syndrome patients Xu et al. (2018). ABIDE is an
open database with thousands of pre-processed fMRI brain
scans of Autistic Syndrome patients (AU) and age-matched
Healthy subjects (HS) http://preprocessed-connectomes-project.
org/abide/quality_assessment.html (Rolls et al., 2016; Zheng

et al., 2016; Dadi et al., 2019). For these computations, we
collected a sample of 47 AU and 32 HS. TheMRI data acquisition
as the preprocessing pipeline used can be accessed here: http://
preprocessed-connectomes-project.org/abide/Pipelines.html.

3.2.1. Pearson’s Correlations
For each subject, the average BOLD time series from six insular
subregions (using brainnetome functional atlas, Fan et al., 2016)
as extracted and correlated using Pearson’s correlation with all
the rest of the voxels of the brain (gray matter masked) as
in Xu et al. (2018). One-sample t-test was computed for each
group of participants (AU and HS) to result in the correlation
pattern of each insular subregion, obtaining comparable results
as in Xu et al. (2018) (Figure 1). In this study, we are showing
results from the left ventral agranular insula subregion as a
proof of replication. As in Xu et al. (2018), HS resulted in
higher correlation of this ROI with bilateral precuneus cortex (see
Figure 5).
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FIGURE 6 | Directionality computed from-insula and to-insula for all brain voxels. (A) Shows group averages for asymmetry from insula subregion mean time series to

the rest of the brain for Autistic patients (left columns), Healthy subjects (middle columns), and histograms showing the distribution of these directionalities. (B) Shows

the same computations but for directionality from all the brain to the Insula subregion mean time series.

3.2.2. Nonlinear Functional Co-activations
Following the method explained in Tagliazucchi et al. (2011),
relevant events from themean time series of left ventral agranular
insula subregion were extracted (triggering events where the
amplitude is above a 1 S.D. threshold, 2 TR previous to this
trigger, and 4 TR after). All time series from all the voxels in
the brain (gray matter masking) corresponding to those events
were extracted. Then, the correlations between the average source
event of the insula and the average target event of each voxel were
computed. As it can be observed in Figure 5B, similar results to
Pearson’s correlation of the whole signal were obtained (note that
here we have only taken into account the signal from events, not
the whole time series). The same cluster of higher correlation
between insula and precuneus cortex in the HS group can be
observed by computing a two-sample t-test (GFR corrected,
p-voxel= 0.001, p-cluster= 0.05).

3.2.3. Directionality
As it has been explained above, the correlation value between
two signals (i,j) obtained when computing relevant events is
not symmetric. The correlation of the source events with its
target r(i, j) is not necessarily the same as the correlation of
the events of that target, acting as a source, with the original
source, acting as a target r(j, i). The difference between this r(i, j)
and r(j, i) can be understood in terms of directionality of the

correlations. To test whether the functional activity of the left
ventral agranular insula exhibits such property, we computed
directionality across the whole brain. Overall, we have observed
only very small differences (see histograms in Figure 6) but they
are no significant differences between groups in specific areas
(Figure 6, GFR corrected all p > 0.05). This contrasted with
the significant findings we found for the correlation and delay
computations (Figures 5, 7. The density distributions shown in
Figure 6 (right panels) indicate that in both, HS and AU subjects,
the correlations are directed (asymmetric) and that the mode of
the directionality is most frequent in the AU subjects (depicted in
light blue) than in the HS (p < 0.01).

3.2.4. Delay
All previous computations correspond to correlations computed
at equal time. In addition, it is straightforward to estimate the
average delay between the peak of the source events to the peak
of its closest target events. We computed this delay measure from
the source events extracted from the left ventral agranular insula
in respect to all the rest of the brain voxels. Comparing the delays
between the groups, it can be seen that while the left postcentral
gyrus and the precuneus cortex exhibit a positive delay in the
AU group, the HS subjects show a negative delay (Figure 7). To
illustrate these delay differences, Figure 8 shows examples of time
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FIGURE 7 | Comparison of the delays values estimated with the Pearson (A) and the event correlation (B) for AU and HS. Left columns show the average delays for

AU, middle columns the average delays for HS, and the right column the comparison between groups (AU minus HS). The two circles (postcentral gyrus) indicate

significant differences not evident with standard methods (GFR corrected voxel p < 0.001, cluster p < 0.05). (C) Compares (A,B), where gray areas show

coincidences between metrics; pink shows areas where B>A, and green shows A>B.

series of the postcentral gyrus and the ventral agranular insula for
a single AU subject (Figure 8A) and an HS subject (Figure 8B).

4. DISCUSSION: FEATURES,
ADVANTAGES, AND LIMITATIONS OF THE
PROPOSED STRATEGY

Since its introduction, almost a decade ago, it has been suggested
that the point process (or its variants) extracted from the
large amplitude BOLD deflections contains enough dynamical
information (Tagliazucchi et al., 2011, 2012), to identify the
timing and the location of epochs of high correlations among
brain regions. This identification has acquired relevance in the
context of dynamical functional connectivity see, for instance,
the reviews by (Keilholz et al., 2017) and (Iraji et al., 2020).
In line with this, the recent report of Esfahlani et al. (2020)
emphasizes the fact that few events of co-activation can estimate

the functional connectivity architecture of a system, a finding
that is in full agreement with our original arguments. Thus, it is
important to remark that behind all these reports there is a basic
reason why these few points contain most of the information as
discussed recently (Cifre et al., 2020).

Emphasizing the relevance of relatively high amplitude
BOLD signal while compressing the data motivated the two
paradigms we have proposed previously, namely, the point
process (Tagliazucchi et al., 2012) and the so-called rBeta
technique (Tagliazucchi et al., 2011). Both attempt to capture the
spatio-temporal dynamics with the smallest possible sampling
with a trade-off between temporal and spatial resolution. The
point process compresses in the temporal domain, which implies
that to smoothly represent spatio-temporal correlated patterns,
one needs to sample more voxels. On the other hand, the rBeta
approach uses much fewer voxels, but at the expense of keeping
additional temporal information around each threshold crossing.
These two variants have demonstrated two main advantages
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FIGURE 8 | Single subject postcentral gyrus (blue lines) and ventral agranular insula (red lines) BOLD time series. (A) shows example data from an AU, (B) shows data

from a HS. Black circles show several instances in which the delays between the time series are consistent with the statistics compiled from the entire groups shown

in Figure 7. The example shows that the insular events on the AU patient are usually preceding the postcentral events, resulting in a negative delay, while the opposite

results are observed on the BOLD time series of the Healthy Subject.

comparing to the above-mentioned functional connectivity
measures, the first one is that they imply a data size reduction
and less computational resources to obtain comparable results
to full time series analyses, and second, as these are only
focusing on relevant high amplitude time-points, or events, non-
significant events occurring during the scan are not blurring
the computations.

It is important to remind that, in terms of neurophysiology,
the observed changes in the BOLD signal can not be simply
and exclusively attributed to change in neural responses (Aguirre
et al., 1998; Noseworthy et al., 2003; Handwerker et al., 2004; Raut
et al., 2021). The HRF variability has been pointed several times
as a common confounder in the determination of functional
connectivity using Pearson’s correlation of the BOLD signals
(Rangaprakash et al., 2018; Yan et al., 2018). It has been suggested
the need to de-convolve the BOLD signal in order to obtain a
confounder-free robust FC [as discussed in Wu et al. (2013) and
more recently in Wang et al. (2020)].

In that regard, the present approach explicitly takes into
account such variability because the source events extracted
from any given ROI represents (by construction) the local
HRF. This similarity was already noted in Tagliazucchi et al.
(2012) by comparing the de-convolved BOLD signal using
either a canonical HRF or the source event extracted by our
approach (see Figure 1D in Tagliazucchi et al., 2012). The most

recent work of Urunuela et al. (2021) summarizes this point
very well: “deconvolution approaches hold a close parallelism
to recent methodologies aiming to understand the dynamics
of neuronal activations and interactions at short temporal
resolution and that focus on extreme events of the fMRI signal
(Lindquist et al., 2007).” In that work, the authors provide a
very persuading evidence of such parallelism: “Figure 6 shows
that the innovation- or activity-inducing CAPs computed from
deconvolved events in a single resting-state fMRI dataset closely
resemble the conventional CAPs computed directly from extreme
events of the fMRI signal (Tagliazucchi et al., 2011, 2012, 2016;
Liu andDuyn, 2013; Liu et al., 2013, 2021; Cifre et al., 2020; Zhang
et al., 2020; Rolls et al., 2021).”

The nonlinear dynamic functional connectivity method
we are proposing offers an unexplored and widely different
perspective in the analysis of brain co-activation patterns
without much numerical complications, since it implies no more
than thresholding and the computation of linear correlations,
facilitating a simple interpretation of the resulting functional
connectivity paths. The fact that the correlations are computed
from events identified either as sources or targets allows for a
straightforward definition of directed graphs (i.e., asymmetric
correlation matrices). These source-target relations may lead to
novel approaches to understand brain dynamics, for instance, as
in the example of Autism Syndrome in which the computation
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of delays between events showed uncovered distinct information.
Indeed, the Pearson correlation, computed between left ventral
agranular insula and postcentral gyrus, does not show any
differences between AU and HS, while it has been reported
that postcentral gyrus has a differential connectivity in Autistic
Syndrome when analyzing big samples Gu et al. (2015).
However, when we computed the delays from insula to other
regions, differences between the two groups in Postcentral
Gyrus appeared, which leads us to think that this differential
connectivity may be expressed on a spatio-temporal domain.
Another example is the additional difference we have found
between the two groups concerning a weaker functional
connectivity between precuneus cortex and ventral agranular
insula, which is accompanied by the above-mentioned differences
in delay (Figure 7B).

Note two practical advantages provided by the present
approach. The results are highly reproducible on correlations
asymmetry and delays, being robust to changes in the threshold
used to extract the source events. The method is equally
applicable to the analysis of fMRI data during a task, by extracting
the source events from the task convolved with a HRF function.
A similar approach can be used to study dynamic functional
connectivity fluctuations possibly due to ongoing cognition, as
suggested in Gonzalez-Castillo et al. (2014).

Further testing of the method should be performed to
identify more specifically its limitations. For instance, we
have not compared the method with results obtained from
sliding-window Pearson’s correlation, a widely used method to
inspect dynamics in functional connectivity (Hutchison et al.,
2013; Preti et al., 2017). In further work, we expect that
will uncover a relation between this window-based functional
connectivity and the information provided from the delays of
our method. Another point that deserves to be clarified is
the meaning of the peaks in the delay distribution, something
already intriguing from previous results obtained using Pearson’s
correlation delays (see Figure 5 in Mitra et al., 2015a), which
was recently related to very slow arousal fluctuations (Raut et al.,
2021).

Finally, we shall mention that while here we concentrated on
the activation events, i.e., denoted by the BOLD signal upward
crossing of a threshold, the same method can be applied without
modification to de-activation events. In such a way, graphs of
regions of interest to are correlated with the deactivation of

regions can be obtained, something that we are not aware was
considered before.

In conclusion, we have analyzed undisclosed properties of
the previously published rBeta method (Tagliazucchi et al.,
2011). Overall, these calculations provide a different kind
of information than the usual Pearson correlation of the
entire BOLD time series. As a proof of concept, we have
used the method to replicate a recently published study
of functional connectivity in Autism Syndrome, reproducing
their main findings and uncovering additional features. Given
that the proposed approach implementation is simple and
robust, it is expected that future work can be dedicated
to validate and extend the method to other settings and
experimental paradigms.
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