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During the development of B lymphocytes, genes rearrange in sequential order,
first heavy (H), then light (L) chain genes (1) . Since the recombinase for all types
ofIg gene rearrangements appears to be the same (1, 2), the locus specificity of rear-
rangement must be a property of the particular targets. It has been postulated that
accessibility of H genes to the recombinase is associated with transcription of germ-
line V� genes (1). So far, no experimental evidence for a similar mechanism in L
chain genes has been obtained . However, a regulating role for turning on K gene
rearrangement has been found in the expression of p genes; when functional p genes
were transfected into cells of a pre-B cell line, rearrangement of K genes was ob-
served (3).
While the control ofturning on Ig gene rearrangement is important for the tissue

anddevelopmental specificity ofIg gene activation, the controlled turning offofrear-
rangement is essential for allelic exclusion (4, 5) of Ig gene expression . That is, any
one B cell will produce an Ig molecule consisting of H and L chains each produced
from only one oftwo possible alleles . Previous work with transgenic mice has impli-
cated g, S, and K proteins in the feedback inhibition of H and K gene expression
(6-10) . Endogenous K gene arrangements were inhibited by intact Ig molecules con-
sisting of a transgenic K chain plus an endogenous H chain (6). H gene rearrange-
ments appear to be influenced by the presence of g or S transgenes (7-10) .

In this report we have analyzed the abilities of membrane bound g (pm)i com-
pared with secreted p (gs) to promote feedback inhibition of H and K gene rear-
rangement . The experiments were carried out with transgenic mice that harbor a
K transgene and either a g transgene (g x K) or a g transgene whose transmem-
brane and intracytoplasmic portion had been deleted (pArn x x) (11) . As a control,
mice with the x transgene only were used. Hybridomas were produced from the
spleen and the status of their endogenous Ig genes was determined . It was found

This work was supported by NIH grants AI 24780 and HD 23089 to U. S. ; NIH grant HD 17321 to
R. B. Support to J. M. from NIH training grant T32 CA 09537. J. M. had also been supported by
a stipend from Genetic Systems Corporation.

I Abbreviations used in this paper: AMuLV, Abelson murine leukemia virus; gm, membrane bound g;
gs, secreted g ; pAm, g transgene whose transmembrane and intracytoplasmic portion has been deleted.

J. Exp. MED. m The Rockefeller University Press " 0022-1007/88/10/1363/19 $2 .00

	

1363
Volume 168 October 1988 1363-1381



1364

	

INHIBITION OF Ig GENE REARRANGEMENT

that gm, but not gs was capable of inhibiting rearrangement of endogenous Ig genes
in the transgenic B cells. The inability of ps to cause feedback inhibition was
confirmed in Abelson murine leukemia virus (AMuLV)-transformed bone marrow
cells .
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CK

Materials and Methods
Transgenes.

	

The transgenes were constructed as described (11) . Briefly, three constructs
were made (see Fig. 1) ; a rearranged x gene, w gene, or 4Am gene with the variable regions
from the productively rearranged x or heavy (H) chain genes of the myeloma MOPC 167 .
The gAm construct lacks the u membrane exons .

Transgenic Mice.

	

Transgenic mice were produced as described (12, 13) from (C57BL/6 x
SJL) F 2 zygotes . The specific lines used in this study have been characterized (11) . The mice
used in this analysis were produced by mating transgenic x mice from the 234-4 line to ei-
ther w mice from the 243-4 line or to 4Am mice from the 254-3 line. The specific mice used
in this study were 2-5 (u x x) and 12-9 and 13-3 (pAm x x) . The x line 234-4 and two
other 1c lines (233-4 and 233-8) were also used without the w transgene . Pre-B cell lines were
made from mice of a gAm x x strain (217-4) . The transgenic mice had been kept on a (SJL
x C57BL/6) background by mating the founder lines with F 1 mice . In this way, in several
of the mice used for this study the endogenous, unrearranged x genes could be distinguished
from one another by a Bam HI polymorphism . Thus the following x alleles were seen in
the hybridomas (letters refer to hybridoma designations in Figs . 2-4 and Table I) : A(x 233-8),
B (x 233-4), D (x 234-4), and F (x x gAm [234-4 x 254-31) had C57 and SJL x alleles ;
C (K x w [234-4 x 243-4]) and E (x x gAm [234-4 x 254-3]) had only SJL x alleles .

Hybridoms.

	

Mice were injected intraperitoneally with 20 wg of LPS (Gibco Laborato-
ries, Grand Island, NY) 3-4 d before spleen removal and subsequent fusion (14) with X63-
Ag8.653 (15) . Cloning was done either by limiting dilution and by micromanipulation of
a single cell into a 96-well dish or by micromanipulation alone . Hybridomas that had re-
tained expression of both 4 and x transgenes were selected on the basis of secretion of PC
binding antibody in a PC binding ELISA (16) . Hybridomas from x only transgenic mice
were screened for the presence of x MOPC-167 mRNA and/or the transgene .

Antisera and Monoclonal Antibodies .

	

Rabbit antisera specific for mouse IgA, IgG, or IgM
were purchased from ICN Biomedicals (Naperville, IL) . Horseradish peroxidase (HRP)-
conjugated goat anti-rabbit Ig antiserum was purchased from Bio-Rad Laboratories (Rich-
mond, CA). HRP-conjugated anti-mouse Ig antiserum was purchased from Kirkegaard &
Perry Laboratories (Gaithersburg, MD).
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FIGURE 1.

	

Restriction maps of the MOPC 167 u, pAm, and x transgenes (see Materials and
Methods) . B, Bam HI ; E, Eco RI ; K, Kpn I.
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The rat mAb 331.12 recognizes both the allelic Igh6a and Igh6b p proteins when they as-
semble with light chain into an IgM molecule (17) . AF6-78.25 is a mouse mAb that recog-
nizes the Igh6b g protein (18). DS-1 is a mouse mAb specific for the Igh6a p protein (D. Sieck-
man, Naval Medical Research Institute, Bethesda, MD). Biotinylated orunconjugated 331.12,
AF6-78.25, and DS-1 were kindly provided by A . M . Stall and L . A . Herzenberg (Stanford,
CA), and D. Sieckman .

Pre-B CellLines.

	

Bone marrow from five 4-wk-old transgenic mice (217-4, RAm [17 copies]
+ x [8 copies], reference 11) and from two normal littermates was transformed by AMuLV
(19, 20) . Production ofp and x was determined by cytoplasmic staining of fixed cells or two-
dimensional gels of cytoplasmic extracts .

Detection ofthe is Allotype Produced in Hybrrdomms.

	

Hybridoma supernatants were tested in
an ELISA to determine if either the pe protein was produced from the transgene (BALE/c
origin) and/or gb was produced from the endogenous g genes (C57BL/6, SJL) . Supernatants
were placed into microtiter wells coated with the 331.12 antibody and bound IgM was de-
tected with either the biotin-AF6-78 .25 or biotin-DC-1 antibody followed by.incubation with
a streptavidin-biotin-peroxidase complex (SABC kit ; Zymed Laboratories, San Francisco, CA) .

Nucleic Acid Procedures .

	

DNA from hybridomas and mouse kidney was prepared as de-
scribed (21) . The DNA was digested with either Eco RI or Barn HI restriction enzymes (New
England Biolabs, Beverly, MA), run on a 0.8 % agarose gel, and blotted to nitrocellulose filters
by the method of Southern (22) . Filters were then hybridized with either [ 32p]RNA or DNA
probes. Filters that were to be reprobed had bound labeled probe removed by either soaking
in a solution of 100 mM NaOH, 100 mM NaCl for 10 min at 20'C (RNA probes) or by
soaking in 10 mM Tris-HC1(pH 7.5), 1 mM Na2EDTA for 5 min at 95°C (DNA probes) .

Probes.

	

C,, sequences were detected using either labeled RNA or DNA from pGEM2C,,
which contains -500 by of exon-specific BALB/c C K sequences (11) . The plasmid, pX2.1,
contains a 2.1-kb Xba I fragment from the region 5' of JK (23) cloned into pBSC, a
chloramphenicol-resistant version (Engler, P., and U. Storb, unpublished observations) of
pBS (Stratagene, La Jolla, CA). J� sequences were detected using labeled RNA produced
from pGEM1JH34, which contains a 2.2-kb Barn HI-Eco RI insert from the BALB/c J �
3 and 4 region (24) cloned into PGEM1 (Promega Biotec, Madison, WI) . Sequences 5' of
JH and 3' of D� were detected using labeled RNA from p4-11 (a gift of D . Weaver and D.
Baltimore, MIT, Cambridge, MA), which contains a 1 .85-kb Eco RI-Xba I insert from a
region 5' of the JH cluster (8) (5'j.) . Sequences 5' of the D � cluster but 3' of V� were de-
tected using labeled RNA from pDFL-2.7 (5' of D �) . pDFL-2 .7 was constructed by sub-
cloning the Eco RI-Bgl II fragment from pj38B9-7.1 (a gift of F. Alt, Columbia University,
New York, NY) (25) into pBSC .

Protein Gel Electrophoresis and Western Blotting.

	

Hybridoma supernatants and lysates were
examined by immunoblot analysis . 40 pl of supernatants or 40 pl of cell lysate were electro-
phoresed on a one dimensional gradient (8-15.5%) SDS-polyacrylamide according to the
method of Laemmli (26) . Proteins were electroblotted to nitrocellulose for 4 h in 25 mM
Tris-base, 192 mM glycine, and 20% methanol (27) . Blots were blocked with 5% nonfat dry
milk solution in PBS (28) for 60 min at 20'C and were sequentially probed with rabbit an-
tisera specific for mouse IgA, IgG, IgM, and HRP-goat anti-rabbit Ig antisera (29) . The
blots were developed with HRP Color Developing Reagent (Bio-Rad Laboratories) and
H202 .

Results
Rearrangement Profile of Endogenous H Chain Genes in Hybridomms .

	

The p gene en-
codes two different forms of p message, either ps or pm (30) . B cells contain both
forms of p RNA, while mature plasma cells produce predominately ps (31, 32) ; the
choice between ps and pm appears to be regulated at the cleavage/poly(A) addition
step (32, 33) . To examine the possible regulatory role of the gs vs . gm or the IgM
molecule on both H and L chain gene rearrangements, hybridomas were made from
LPS stimulated transgenic B cells . The transgenic mice were the positive offspring
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from a x 167 transgenic mouse bred to either a g or to a gt>m transgenic mouse.
Pure x mice were used as controls .
As described previously, the 234-4, 233-4, and 233-8 x lines contain -18, 41, and

13 copies, the g and gt>m lines contain N6 and 4 copies of the transgene, respec-
tively (11) . Each line expresses high amounts of the transgenic message in spleen
cells, as detected by RNA hybridization analysis (11), and the transgenic g and x
proteins are present at high levels in serum as detected by ELISA (Pinkert, C., J.
Manz, R. Brinster, and U. Storb, manuscript in preparation) . The R line contains
a complete, rearranged g transgene that encodes both the am and the gs proteins .
The 1iAm line, however, contains a transgene that is lacking the exons necessary
for membrane insertion (Fig . 1). Two combinations of transgenic mice were exam-
ined in this analysis ; (a) g x x and (b) pAm x x. It should be noted that the same
x line (234-4) was used for these crosses and that the transgenes are located on two
different chromosomes since the genes were injected separately.

To examine the effect of the transgenes on endogenous heavy chain gene rear-
rangements, Southern blot analysis was performed on DNA from 34 R x x, 23 Pt>m
x x, and 29 x hybridoma clones . Several of the hybridomas had lost the transgenes
at the time when subclones were expanded . We presume that they lost the respective
chromosme during culture, because evidence of transgene expression hadbeen there
early after cell fusion . Because H chain genes rearrange by two deletional events,
we were able to examine the extent of H chain gene rearrangement by using probes
that hybridize either to regions upstream ofJH or to regions upstream ofDH (see
Fig. 2 A) . Theabsence ofhybridizing bands is indicative ofrearrangements . By using
the 5' ofJ. probe, we found that hybridomas C6, 14, 23, 25, 27, and 41 (all from
the p x x mouse 2-5) have retained at least one H chain allele in germline configu-
ration (Fig . 2 B, left panel ; Table I), and evidence presented later suggests that all,
except C6, have both alleles completely unrearranged . These six hybridomas repre-
sent 18% of the g x x hybridomas examined . In contrast, no hybridizing sequences
were detected with this probe in the gAm x x hybridomas (Fig. 2 B, right panel),
which indicates that minimally there was a D-J rearrangement on both alleles . A
second probe, pDFL.7, hybridizes to sequences just 5' of a family of D� segments
that includes the most 5' gene in the D� gene cluster (see Fig. 2 A) . This probe will
hybridize only ifnoV-DJ rearrangements have occurred . Therefore, it will hybridize
to germline alleles and to alleles that have only undergoneD-J rearrangements . When
the two sets ofhybridomas were analyzed using this probe, againa significant differ-
ence in the extent of rearrangements was seen (Table I) . 65% (22/34) of the 4 x
x hybridomas retained at least one allele that had not undergone VDJ rearrange-
ments (Fig . 2 C), while only 17% (4 of 23) of the atlm x x hybridomas had this
profile (Fig . 2 D) . These blots were also probed with aJH probe that detects JH se-
quences in both rearranged and germline configurations (data not shown) . Results
using this probe were consistent with the results obtained with the 5' of D and 5'
ofJ probes . Additionally, no further rearrangements could be detected with the JH
probe in hybridomas C6, 14, 23, 25, 27, and 41, which suggests that both endoge-
nous alleles were completely unrearranged in these cells . However, we concluded
that C6 has one H allele in germline configuration and the other allele has under-
gone a productive VDJ rearrangement because despite being unable to detect rear-
ranged sequences in C6, this hybridomaproduced transgenic as well as endogenous
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p protein (as discussed below and shown in Table I) . The presence of rearranged
VDJ sequences was potentially obscured by J. sequences hybridizing to the trans-
gene as well as the genes of the fusion partner. None of the other five hybridomas
with germline H genes had anyendogenous protein (Table I) . Therefore, it appears
that the presence of the transgenic g protein is able to inhibit DNA rearrangements
of the endogenous Ig heavy chain alleles and that the inhibition is mediated solely
by the membrane form of the molecule since there appears to be no inhibition by
the secreted form .
As controls, hybridomas from x only mice were also analyzed (Table I) . The rear-

rangement profiles of endogenous H genes in these cells were found to be very similar
to the ji x x hybridomas, i. e., 14% had retained an unrearranged JH gene, and
48% had retained at least one set of D� genes not rearranged to V. We presume
that all four lines that retain an unrearranged JH gene and in which we can detect
no rearranged H gene (A3, A10, D6, D29) at one time had a functional VDJ rear-
rangement on the other chromosome andproduced p protein. Normally, in hybrid-
omas from mice without Ig transgenes, no unrearranged JH genes are found and
the proportion of cells that retain 5' DH sequences is much lower (10) . It appears,
therefore, that the x transgene has an effect on endogenous H gene rearrangement.
A similar effect had been observed previously with a x transgene encoding the L
chain of the myeloma MOPC 21 (34, 35). 5 of 25 hybridomas in that study retained
one unrearrangedJ,, gene. It can be assumed that in such cells the first H gene rear-
rangement was productive and that in combination with the transgenic x protein
a complete shutoff of the rearrangement process occurred (see Discussion).

Rearrangemni Profile of Endogenous L Chain Genes in Hybridomas .

	

As shown previ-
ously, endogenous x genes were prevented from rearranging in the presence of a
transgenic x molecule associated with an endogenous H chain molecule (6). This
inhibition was not detected in cells that produced the transgenic x protein but failed
to produce a functional H chain, implying that the x gene rearrangements are regu-
lated by the complete Ig protein and not by the x protein alone. By analyzing hy-
bridomas from the g x x mice versus the pAm x x mice we were able to determine
whether the membrane form or the secreted form ofIg, or perhaps both, could cause
inhibition of x gene rearrangements.
The rearrangement status of the hybridomas from the two transgenic combina-

tions was examined by Southern blotting, hybridizing first with a CK probe. After
stripping, the blots were rehybridized with a 5' ofjK probe, X2.1 (23) . The C,, probe
will detect all rearranged or germline x sequences ofendogenous, transgenic, or fusing
line origin, while the X2.1 probe will hybridize only to germline seq*ences or to
those sequences that are remnantfragments retained after an inversional rearrange-
ment (23) . Unrearranged x genes were detected in 59% of p x x cells and 21% of
the p x x cells appear to have both alleles in germline configuration (Fig . 3 B, Table
1) . By contrast, while 52% ofthepAm x x cells retained one germline x gene, there
were no cells of this type that had both x alleles unrearranged . These results indi-
cate that the membrane form of an IgM molecule, but not the secreted form, is
able to cause a cessation of x gene rearrangement. It is significant to note that the
five p x x hybridomas that show no evidence of endogenous heavy chain gene rear-
rangements also show no evidence ofendogenous light chain gene rearrangements .
X rearrangements were also searched for by doing Southern blots. Lines C30 and
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FIGURE 2.

	

Southern blot analysis of DNArearrangements ofthe endogenous Ig Hchain alleles .
(A) Diagram of the endogenous Hgene. The 5' ofD� probe (pDFL-2.7) will detect only H chain
alleles that have not undergone V� to D� rearrangement . The 5' ofJH probe will detect only H
chain alleles that are in germline configuration. Blots described in C and D were also probed
with the JH34 probe, but data are not shown. B, Barn HI ; Bg, Bgl II; E, Eco RI ; X, Xba I.
(B) DNA from transgenic hybridomas was digested with Barn HI, electrophoresed, blotted, and
hybridized with the 5' ofj� probe. Hybridoma DNA samples from mouse 2-5 (p x x) are desig-
nated C, and samples from mice 12-5 and 13-3 (gAm x x) are designated E and F. Southern
blot of Bam HI-digested hybridoma DNA from mouse 2-5 (p x x) hybridized with the 5' of
D� probe. The 5' D� probe crosshybridizes with the 5' region of multiple D genes, which results
in five hybridization bands. The band seen at -8 .1 kb with kidney DNA is due to incomplete
digestion. Hybridoma DNA samples from mice 12-9 and 13-3 (pAm x x) were treated as in C.

C48 appear to have VX1 to CX1 rearrangements and F7 has a VX1 to CX3 rear-
rangement. These lines also had endogenous x gene rearrangements and may be
members of the postulated x/X lineage (29, 36).

Examples of cells without anyendogenous x gene rearrangement were also found
among the hybridomas from x only transgenic mice (Table I) . 3 of 29 (10%) had



MANZ ET AL.

	

1369



1370

	

INHIBITION OF Ig GENE REARRANGEMENT

Wa

H ci
a
z
A

sL
QI

a w w w w w w w w w w

	

w I
F F F ~ F I ~ H F I

	

F F

r I r :. =L r I r I i

04ly. R41:4 04040490404

	

P4 C7

I
I

	

I

	

I

	

I

	

I

	

I

	

I

	

~

	

~

	

A ~ ~

	

I

	

~

	

,a

	

I

	

I

	

I

	

'~

	

~

	

,D

	

A

	

I
I

	

IIt id id m

	

td td td m id N tC N I of id

U
C7 C7 C7 C7 C7 C7 C7 C7 C7 a' C7 C7 a aS C5 C~

X x
z A + + + + + + t + t + t + t t

A

x
+ t t + I I I I I I I I I I

OT1 M 'D M M
-CV N M ^' . .,

< Q A A < Q d d d < = A A A
x

wwww wwa F F. F. I E, I

a

0L

A L A A .0 A

Y
U 1:4 94 c4

X
a c4 t7 c7 C7 a

U

a4

R4
t7

cC Id ca cd t3

C~ C7 C5 U' C7
C7 C7 t7 t7 C7

R! P4 A4 dr d. I ~, [~ 04 ~ G4 ~ Ri I I dr
C7 C7 w CS C~ 04 C~ C7 a4 C7 04 C7 a a I C7

td

~ I

04 c4

a x
z A + + + + + + + + t + t + t + t + t + t + + + I I

A

x + t + t + + I I I I I I I I I I I I I I I I I I

D

d' M Lt7 ~ a .-~ N M OO 01 tD O N N d' tD n O

x
tD .~ N N N d~
U U U U U U

N o0 d'
U U U U U U U U U U U U U U U U

d' un
U U

x
ti I I I I I I

D
7C M l~ N N M d'

w w w w w w

x

w I I w I w w A I w I A W w w w w W w w wa
H E. H E- H E- F F H z H E+ H z 1 E-F H - F E-F F E, F



W W I W W 1 W W I I w W W
H H H H H H H H H H H 1 I

00 01 N N 04 N CC14 N d' ^~
h

	

CC%f
¢ d d d d ¢ d d A A A A A

wwwwwwwwlHwwwwwww
HH 1 E-HE+FE-H HHFE-HHE.E-+

M
N

w

	

w ~ :

	

OI

	

Y

	

"

	

Y 4

C7

	

r~

	

04

	

C7

	

rx

	

C~

	

C7

	

C~

	

P4

	

C7

O c° O

	

M d~

	

M
O1 ~ ~ N

C4
N M M M

U U U U U U U U U U

MANZ ET AL .

	

1371

N
h d~
O N_

CC''I
r~

,f~ L

	

,A L ~ I

	

I pA I

	

I ~ I

	

I

	

I

	

I

	

~pro ro I ro ro ro ro ro ro ro ro ro ro ro ro ro ro

P4 Ci P: C; P! 0.i 0.i G1i 1 Ri Per I Ci PG I ai PC

M
N
N

II

A
m

II
x
a

H

O

C

	

N !: O

xVti Ir

c c$~

., b0 tf

	

C. q C u
O t

	

O ° ~. by

"E

	

4

	

w O . ui p

w cE'~ q

	

ti qc0 v

V

C3 .E a Y E,

	

-° o F
o x

	

> U < a
>

	

u g

	

x
1 d m m

	

eo¢

w

	

q

	

Y

	

Y

	

~G+'

	

~?

	

y

x .
gaoT'o

.C
O .Y

	

YoO

	

u

a~

	

O of

a

y

3

m

0

W y^ 1G

Fp° aE" .t11o

	

u

c~~xc~xc~c~94 04 04 u04 0xx00 Nh ^E F

A
1 I I I 1 I I I I I 1 I I I I I I y

O

I I I I 1 I I 1 I I 1 I I 1 I I I
II

C
N

~ ,Cr. ~y ~ iy
V

m 3

o ~ o
ea w

~
a'y ~

a ti
ro u
.-6ueom

-° a

a~t5
Y .~~

~
c
~v

N W Lo co O N M .~ N ~

wwwwwwwwwwwiwwwww
bo" O V EO

f~
ro y

0 y Y ro '�1! x w m
H a bO

W w w w w w I w w w O ~ O 'C!
°
A
o

dU
Obo [ O

HHE-E- 1 HE- 1 HH U U

I I p ~ I ~ I ~ ~ A
h

II _
ro ~-- e bb

E
v O o V

~ 0'C°'v v
ro ro ro ro ro ro ro ro ro ro Y Nu v ro~ ~

x
m .

Y Y ?- T ?- Y 1 I Y 3 Y Y 1 M O
II V

c7
w

oa
w

Fi fx I fYr LYr I I RS
C7 t7 C7 C7 n'. 0 o4 0 1

1 L1i
1 0 9r9

N n

II
a~ V

I I I I I I I I I I I I I
A

ti C .o ~. -°-

N

I I 1 I I I I I I I I I I II ro U



1372

	

INHIBITION OF Ig GENE REARRANGEMENT

FIGURE 3 .

	

Southern blot analysis of DNA rearrangements ofthe endogenous Ig is chain alleles .
(A) Structure of the endogenous is alleles. A polymorphism at the K locus between C57/BL6 and
SJL results in 12 .5-kb and 8.0-kb Bam HI fragments, respectively. The CK probe will hybridize
to both rearranged and germline is genes, while the X2 .1 probe will hybridize only to germline
alleles or remnant fragments of rearrangement by inversion . Bam HI (B), Xba I (X). B9 indi-
cates a Barn HI restriction site present in SJL but not in C56BL/6 is genes. (B) DNA from trans-
genic hybridomas was digested with Bam HI, and processed as in Fig. 2 . Blots were first probed
with the CK probe (top panels) and then with 5' ofJK (bottom panels). The position of the endoge-
nous germline CK and X2.1 bands are marked (E). Mouse 2-5 contains only the SJL alleles for
both endogenous K genes (Es), while mice 12-9 and 13-3 each contain one C57/BL6 (Ec) and
one SJL (E') K allele . Fusing line bands and transgenic bands are designated F and T, respec-
tively. (') A rearranged endogenous K gene; <, an aberrantly rearranged K transgene .

both endogenous genes in germline context. All the x mice had two distinguishable
endogenous x genes because of a Barn HI polymorphism between SJL andC57/BL .
Therefore it was determined that four additional hybridomas (A3, A10, A20, and
A25) retained only one homologue of germline x genes. These four cells showed
no evidence for rearrangement of the second is allele, using CK or 5' ofJ K as probes,
and have presumably lost the chromosome carrying the other x gene. This allele
could have been in the germline state in some or all of the cells, which would in-
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crease the proportion of cells with unrearranged x genes to as high as 24%, the same
proportion as in the p x x hybridomas (Table I) . Thus, at the level of x genes as
well, the x hybridomas behave similarly to the p x x and unlike the pAm x x cells .
This further supports the idea that ps is incapable of feedback inhibition and also
raises the possibility that it may actually prevent the feedback (see Discussion).
As an aside, a surprisingly large number of hybridomas retained a sequence up-

stream ofJK in a rearranged context, indicative of gene inversion (37, 38). Of 86
rearranged x genes in the 3 types of hybridomas, 55 (64%) apparently involved an
inverted VK gene .

Characterization of Transgenic and Endogenous Igproteins in Hybridomas.

	

Secreted and
cytoplasmic Ig were analyzed by immunoblotting (Fig . 4) . Endogenous L chains
were easily distinguished from the transgenic L chains on a gradient polyacrylamide
gel since the K 167 molecule migrates more slowly than the majority ofother x mol-
ecules . The results from these gels (as well as from IEF immunoblots; data not shown)
confirm the rearrangement status of the endogenous K genes in the three types of
hybridomas (summarized in Table I) . That is, cells that retain only germline K, genes
produce only the transgenic x protein and many cells that have rearranged their
endogenous x genes produce both transgenic and endogenous x proteins .

Endogenous Hchain production was analyzed by immunoblots as well as by ELISA.
We were able to distinguish endogenous and transgenic g proteins in an ELISA by
using allele-specific mAbs since the transgene is of the a allotype and the endoge-
nous genes are of the b allotype (Table I) . As expected, the five hybridomas, C14,
C23, C25, C27, and C41, which show no evidence of either endogenous H or L
chain gene rearrangements, only make the transgenic p protein (lea) in association
with the transgenic x protein. These cells appear to have been completely inhibited
from rearranging their endogenous H, x, and I genes. Of 34 p x x hybridomas

FIGURE 4.

	

Immunoblot analysis oftransgenic hybridoma Ig proteins . Hybridoma supernatants
(S) and cytoplasmic proteins (C) were run on reducing SDS-polyacrylamide gels, electroblotted
to nitrocellulose, and probed with antisera as described in Materials and Methods. Hybridoma
designations are as in Figs . 3 and 4.
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tested, 16 (47%) do not make an endogenous H chain. 9 gAm x x hybridomas of
23 tested (39%) do not make endogenous H chains . These numbers include four
hybridomas, three u x x and one pAm x x, that do not appear to produce the trans-
genic protein or endogenous H chains . In these cases, the u transgene is no longer
present, presumably due to chromosome loss from the hybridoma. We are assuming,
however, that the transgene was lost after fusion and that it was expressed in the
B cell . The A x x and pAm x x hybridomas used in these analyses were stimulated
with LPS but only those clones that secreted antibody capable ofbinding phosphoryl-
choline were chosen to be examined in detail . This was done in order to assure that
each cell produced the transgenic H and L chains to permit a comparison between
the effects of Am and As on the protein level.
AMuLVPre-B Cell Lines.

	

To further assess the feedback potential of As in the ab-
sence ofcell selection we analyzed the pre-B cell lines produced from gAm + is trans-
genic mice (Table II). All of the cell lines had rearranged their endogenous H genes
and several had also rearranged endogenous L genes. As in the pre-B cells from
normal littermates, N50% of the transgenic cells had one H allele in the immature
DJ state, i . e., 8/30 alleles (27%) were not completely rearranged . This is the same
as has been found previously in bone marrow pre-B cells where 23% (25) or 30%
(39) ofthe alleles were DJ rearrangements . In pre-B cells from transgenic mice that
carry a complete A gene, however, 40o7o of the cells had retained a germline JH al-
lele (8) that is normally not found in AMuLVtransformed bone marrow cells, thus
demonstrating an inhibitory effect of A . It is clear that As does not have such afeed-
back effect on either H or x gene rearrangement. All the transgenic cell lines tested
produced cytoplasmic Et and x, but no Ig secretion was observed, presumably be-
cause the cells lack J chains and an effective secretory apparatus .

Discussion

Feedback inhibition of Ig gene rearrangment has been observed previously with
transgenic mice harboring A, 8, or x genes (6-10) . There remained, however, some
concern about the possible effects of the transgenes competing for limiting quanti-
ties of enzymes or factors required for recombination. The two types of A hybrid-
omas examined here were made from mice whose two sets of transgenes were iden-
tical except for the 3' end (containing the membrane exons) of theA genes. Therefore,
those sequences that are known to bind regulatory factors should be shared by the
two types of A transgenes . Thus, the lack of feedback by the As transgene largely
alleviates concerns about factor competition.
We wish to consider the following conclusions derived from the data presented

here: (a) the production of 4 together with x can terminate Ig gene rearrangement;
(b) As with x does not have this feedback effect ; (c) As interferes with the effect of
membrane A and x; and (d) the feedback shown here probably represents shutoff
of the recombinase by Am + x, but the data do not address the question of A alone
affecting the accessibility of H genes for rearrangement.
While the feedback shown in the present study is incomplete (see below) an effect

on endogenous Ig gene rearrangement can be seen with the complete 4 transgene
in combination with x . No such effect is observed on H gene rearrangement in pre
B cells, or on H or x gene rearrangement in hybridomas from gAm + x transgenic
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mice. Since the complete A gene encodes both Am and As and since As is incapable
of feedback inhibition, by inference the Am molecule creates a feedback signal .

It could be argued that the results with the hybridomas from POm x x mice may
be skewed because B cells with secreted A only would not exist in the spleen and
that, therefore, cells could be selected only ifthey expressed endogenous membrane
Ig. However, while almost all the hybridomas from the pAm x x mice secreted anti
PC antibodies, 9 of 23 (39%) produced no endogenous H chains; of these, 7 showed
two endogenous H gene rearrangements, i. e., had apparently retained both homo-
logues of chromosome 12 (Table I). Thus, at least 7/23 (30%) of the gAm x x cells
were not selected on the basis that they had evaded feedback of Ig gene rearrange-
ment . Furthermore, at the level of AMuLUtransformed pre-B cells from the gAm
+ x mice, no feedback on H gene rearrangement was seen as well . Thus, even in
the absence of selection, As does not prevent Ig gene rearrangement. The question
of maturation of some B cells in the absence of membrane Ig is intriguing and will
need to be further investigated .
The ability of Am to inhibit rearrangement of endogenous H chain genes has also

been seen using a rearranged human A gene that could only encode Am (9); how-
ever, human As has not been tested . Transgenic S was also effective in inhibiting
H chain gene rearrangement to a degree similar to that seen in our experiments
with tt (10) . Presumably, it is also themembrane form of this protein which is respon-
sible for the effect (Kohler, G., personal communication) . In contrast to these results,
we have found that acomplete y2b transgene that encodes both secreted and mem-
brane protein (40) does not inhibit endogenous H chain gene rearrangement in pre-
B cells or B cells (Denis, K., K. Gollahon, J. Hackett, L. Doglio, R. Brinster, and
U. Storb, unpublished observations) which indicates that the regulatory potential
may not be a property of all membrane bound Ig molecules.
Reth et al . (3) observed a similar difference in the regulatory potential of Am and

us to turn on x gene rearrangement. These authors speculated that the transmem-
brane and intracytoplasmic portion ofthe Am chain may be involved in a signaling
process that would eventually generate an intranuclear signal . Thus, it appears that
the membrane domain is the integral part of the A molecule that is required for
regulating both the activation of x gene rearrangement, as well as the cessation of
H and x gene rearrangement. Further experiments will be required to elucidate the
details ofthe role of Am and of other molecular components in the creation oftrans-
duction of the feedback signal .
There is a striking difference in the status ofendogenous H and is genes between

the hybridomas from pAm x x and x only transgenic mice . The former contain
no cells without H gene rearrangement on both chromosomesand is gene rearrange-
ment on at least one chromosome, whereas in the transgenic x hybridomas, 14%
retain a germline JH gene and 10-24% retain two germline x genes. In fact, the Ig
gene status of the x hybridomas is similar to that of the A x x hybridomas . From
these observations we propose that the effects observed in this study are the result
of feedback inhibition by acombined um-x molecule leading to termination of rear-
rangement in both the H and x loci due to cessation of the activity of the specific
Ig gene recombinase. Absence of recombinase function has been observed previ-
ously in p + x+ B cells, whereas pre-B cells with rearranged H genes and unrear-
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ranged x genes possess the recombinase (41-44). It has been proposed that further
H-gene rearrangement is inhibited in such pre-B cells by a conformational change
in VH genes and concomitant stop in VH gene transcription (45) . Our data presum-
ably do not permit addressing the question of a direct feedback by H genes alone
on H gene recombination, since in the mice studied here a functional x gene was
present throughout B cell development. The x transgene is apparently expressed
sufficiently in pre-B cells to permit detection of the x protein (Table II). Since pre
B cells normally lack the transactivating factor NFKB required for enhanced x gene
transcription, presumably, in these transgenic pre-B cells the elevated level of x is
due to the additive effect of low level transcripts from multiple (8-41) K transgenes .
Evidence for transcription of all x transgene copies has been obtained in a three-
copy x transgenic mouse (16) .

Before further discussion of the difference in feedback between the his + x and
the dim + x or x mice one has to consider the imcompleteness of the inhibition
by pm +/or is observed in this study as well as in studies by others (7-9). The leaki
ness of feedback by the g gene may possibly relate to a delay between activation
of the recombinase and transcription of the transgene. However, with respect to x
gene rearrangement the feedback was complete with the MOPC-21 x transgene when
it was expressed together with endogenous H chains (6). In the data presented here
with the MOPC-167 x transgene the feedback is incomplete . One possible explana-

TABLE II

AMuLV Pre-B Lines from pdm + x Transgenic Mice

The transgenic mice were from line 217-4 (11) . R, rearranged ; G, germline .
' Each number represents a separate pre-B line . The prefix indicates the mouse from which
the cell lines were derived . 0, 1, 2, 4, and 6 were transgenic, and 3 and 7 were normal lit-
termates .

Pre-B line'
Ig protein

Cytoplasmic Secreted
Endogenous

H
Ig genes

K

Transgenic Mice
0.10 ND ND R ( DJ/VDJ) G G
1 .5 u K - R (VDJNDJ) G G
1 .9 R K - R ( DJ/VDJ) G G
1.10 R K - R (VDJ/VDJ) G ND
2 .13 R K - R ( DJNDJ) R G
4.2 R K - R (VDJ/VDJ) G G
4.4 R K - R (VDJ/VDJ) G G
4.5 R K - R ( DJ/VDJ) G G
6 .2 ND ND R (VDJ/VDJ) G G
6 .3 R K - R ( DJ/VDJ) G G
6.4 R K - R ( DJ/VDJ) G G
6.5 R K - R ( DJ/VDJ) G G
6.6 R K - R (VDJ/VDJ) G G
6.9 R K - R (VDJ/VDJ) G G
6.10 R K - R ( DJ/VDJ) R G

Normal littermates
3 .8 ND ND R (VDJNDJ) G G
3.13 - - - R ( DJNDJ) G G
7 .1 - - - R ( DJ/VDJ) G G
7 .3 R - - R (VDJ/VDJ) G G
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tion for this discrepancymaylie in the relative amounts of transgenic x protein pro-
duced. Although no attempt was made to determine the precise amount of x pro-
tein produced by the two genes, analysis of protein gels suggests that any differences
appear to be minor. Interestingly, however, several hybridomas that produced equiva-
lent amounts of x proteins (MOPC 167 and endogenous) intracellularly, secreted
a visibly higher amount ofendogenous x than transgenic x, suggesting aqualitative
difference between the x 167 and endogenous x molecules (Fig . 4) . This difference
was also seen in preliminary experiments with transfectants containing the MOPC
167 A gene, MOPC 167 x gene, and the MOPC 21 is gene ; the MOPC 21 x chain
appears to be preferentially secreted with the MOPC 167 H chain (Manz, J ., and
U. Storb, unpublished observations). Thus, if feedback inhibition of x gene rear-
rangement requires a high affinity combination ofH and x, the MOPC 167 x chain
may not be very efficient. The argument can be made, however, that in combination
with the autologous MOPC 167 H chain this x chain should cause feedback . How-
ever, since both the H and x V regions from MOPC 167 are extensively mutated
from the germline (46, 47), during the pre-B cell stage of the MOPC 167 myeloma
precursor the affinity of the unmutated H and L chains for each other was most
likely different and possibly higher than that ofthe transgenic proteins . These ideas
may be checked in transgenic mice with different combinations of A and x Vregions.
We can now consider the possible scenarios of Ig gene rearrangement in trans-

genic and nontransgenic pre-B cells . In hybridomas from nontransgenic mice no
unrearranged H genes have been observed (8, 10). Why is there an apparent feed-
back on DJ and VD rearrangement in x transgenic pre-B cells? It can be assumed
that in these cells, when endogenous H chains are being produced after a correct
rearrangement, they have a stronger feedback effect than normally, because in the
presence of transgenic x, at least in some cells where a sufficiently good combina-
tion of A and x exists, the recombinase is shut off altogether, compared with the
mere inactivation of V,, gene targets by H alone (see above) . Similarly, in the
MOPC-21 x transgenic hybridomas several had one unrearranged JH allele indi-
cating total cessation of rearrangement (34, 35). Presumably, this effect is not seen
with the 9Am + x cells, because of the excess of 9s protein. Normally, pre-B cells
produce extremely low levels of 9s compared with 9m, because A transcripts are
mainly processed to the 9m form (48) . Thus, transgenic mice with a complete 4
gene (8) have a similar feedback as mice with a 9m gene (9). However, a 9Am trans-
gene results in high levels of 9s in pre-B cells (Table II). Perhaps a sufficient level
of 9m + x cannot be achieved in these cells so that most 92x2 tetramers would have
at least one 9s chain. Possibly, the feedback signal requires a homogeneous 9m2x2
tetramer. Thus, without it, recombinase activity would be continuously present and
both endogenous H and x genes would rearrange.

This scenario attributes aconsiderable influence on the relative levels of 9m versus
9s . The control of these levels by the regulation of RNA splicase and endase activi-
ties are currently being investigated (49, 50, and many others). The remote possi-
bility exists that X gene expression may be influenced by the relative levels of 9m
and 9s . Apparently, rearrangement is not inhibited in X,-producing pre-B cells (29,
36, 51); X production may be a property of Ly-1 B cells, which are notorious for
very high levels of 9s (52) .

In summary, the control of Ig gene rearrangement appears to be increasingly com-
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plex. The competing effects of pm and ps in feedback control may help unravel the
molecular basis of the feedback signal .

Summary
Previous work (6-10) has shown that allelic exclusion of Ig gene expression is con-

trolled by functionally rearranged g and x genes . This report deals with the com-
parison of membrane g (pm) and secreted p (ps) in promoting such feedback inhi-
bition . Splenic B cell hybridomas were analyzed from transgenic mice harboring
a rearranged x gene alone or in combination with either an intact rearranged p gene
or a truncated version of the g gene . The intact g gene is capable of producing both
membrane and secreted forms of the protein, while the truncated version can only
encode the secreted form . The role ofthe gs was also tested in pre-B cell lines . Anal-
ysis ofthe extent ofendogenous Ig gene rearrangement revealed that (a) the produc-
tion of gin together with x can terminate Ig gene rearrangement ; (b) ps with x does
not have this feedback effect ; (c) ps may interfere with the effect of pm and x ; and
(d) the feedback shown here probably represents a complete shutoff of the specific
recombinase by gin + x; the data do not address the question of g alone affecting
the accessibility of H genes for rearrangement .

We are grateful to Drs. A . M. Stall, L . A . Herzenberg, and D . Sieckman for antibodies and
to Drs . F. Alt, D. Baltimore, and D. Weaver for DNA probes . We thank William Brady and
Deanna Haasch for excellent technical assistance, and Peter Engler and John Hackett for
critical reading of the manuscript .
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