#### Check for updates

#### OPEN ACCESS

EDITED BY Jose R. Lopez, Mount Sinai Medical Center, United States

REVIEWED BY Shaobo Zhou, University of Bedfordshire, United Kingdom Peter Ricci Pellegrino, University of Nebraska Medical Center, United States Tomasz Tytus Gabrys, University of West Bohemia, Czechia

\*CORRESPONDENCE Li-Hong Jiang, jainglihongjlh9965@126.com

<sup>†</sup>These authors have contributed equally to this work

SPECIALTY SECTION

This article was submitted to Cardiovascular and Smooth Muscle Pharmacology, a section of the journal Frontiers in Pharmacology

RECEIVED 21 July 2022 ACCEPTED 23 September 2022 PUBLISHED 18 October 2022

#### CITATION

Pang B-Y, Wang Y-H, Ji X-W, Leng Y, Deng H-B and Jiang L-H (2022), Systematic review and meta-analysis of the intervention effect of curcumin on rodent models of myocardial infarction. *Front. Pharmacol.* 13:999386. doi: 10.3389/fphar.2022.999386

#### COPYRIGHT

© 2022 Pang, Wang, Ji, Leng, Deng and Jiang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

# Systematic review and meta-analysis of the intervention effect of curcumin on rodent models of myocardial infarction

Bing-Yao Pang<sup>1†</sup>, Ya-Hong Wang<sup>2†</sup>, Xing-Wang Ji<sup>3</sup>, Yan Leng<sup>2</sup>, Hou-Bo Deng<sup>2</sup> and Li-Hong Jiang<sup>4</sup>\*

<sup>1</sup>College of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China, <sup>2</sup>Department of Hepatology, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China, <sup>3</sup>Department of Emergency, The First Clinical Hospital of Jilin Academy of Traditional Chinese Medicine, Changchun, China, <sup>4</sup>Department of Cardiovascular Medicine, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China

**Objective:** This study aimed to evaluate the intervention effect of curcumin in myocardial infarction rodent models.

**Methods:** A systematic retrieval of relevant studies on curcumin intervention in rats or mice myocardial infarction models was conducted, and the data were extracted. The outcome indicators included biochemical blood indicators, such as creatine kinase (CK), creatine kinase isoenzyme (CK-MB), malondialdehyde (MDA), lactate dehydrogenase (LDH) and superoxide dismutase (SOD), as well as cardiac tissue structure indicators, such as left ventricular weight to body weight ratio (LVW/BW), apoptosis index, left ventricular end-diastolic dimension (LVEDD), left ventricular end-systolic diameter (LVESD), and myocardial infarction area, and hemodynamic indexes, such as systolic blood pressure (SBP), diastolic blood pressure (DBP), left ventricular end-diastolic pressure (LVEDP), left ventricular ejection fraction (LVEF), left ventricular fractional shortening (LVFS), maximum rate of left ventricular pressure decline (–dp/dtmax). These results were then analyzed by meta-analysis. Studies were evaluated for methodological quality using the syrcle's bias risk tool.

**Results:** A total of 24 studies were included in the meta-analysis. The quality assessment of included studies revealed that the evidence was low quality and none of studies was judged as having a low risk of bias across all domains. The results revealed that curcumin could reduce CK-MB, CK, LDH, and MDA levels. They also revealed that it could lower SBP, DBP, LVEDP, LVW/BW, apoptosis index, LVEDD, LVESD, and myocardial infarction area and increase LVEF, LVFS, +dp/dtmax, and-dp/dtmax. However, it had no significant impact on the heart rate and the levels of SOD in the models.

**Conclusion:** Curcumin alleviates myocardial injury and oxidative stress in myocardial infarction rodent models in terms of blood biochemistry indicators, improves the diastolic and systolic capacity of the ventricle in terms of hemodynamic indexes, and reduces the necrosis and apoptosis of

cardiomyocytes in terms of tissue structure. The methodological quality of the studies was low and additional research is warranted.

KEYWORDS

curcumin, myocardial infarction, model, systematic evaluation, meta-analysis

### Introduction

Myocardial infarction refers to the necrosis of any size of myocardial cells caused by myocardial ischemia (Sumitra et al., 2007). Myocardial infarction seriously endangers human health and has a very high incidence and mortality worldwide (Boarescu et al., 2019a). In the report on cardiovascular health and diseases in China 2021: an updated summary, the mortality rate of myocardial infarction in China in 2019 was 60.2/100000 in urban areas and 78.24/100000 in rural areas, about half of the mortality rate of all kinds of tumors. The number of discharges from acute myocardial infarction in China in 2019 was 1,057,600. The epidemiological study on myocardial infarction in Korea points out that the prevalency in adults over 30 years was estimated to range from 0.34% to 0.70% in 2020 (Kim et al., 2022). The mortality was 19.3 per 100000 populations In Denmark, from 1 January 2005, through 4 August 2021, there were 116481 inch acute myocardial informations in approximately 4.5 million Danes aged ≥18 years (Christensen et al., 2022). With the extensive implementation of thrombolysis, cardiac interventional surgery, and the development of drug treatment, the dying myocardium can be effectively saved, and the prognosis of patients with myocardial infarction has greatly improved in recent years. However, many patients do not receive revascularization in time for various reasons, resulting in irreversible death of the myocardium, ventricular remodeling, deterioration of cardiac function, and finally, heart failure, which seriously affects a patient's quality of life (Boarescu et al., 2019b).

Curcumin is a phenolic compound extracted from the roots of plants in the Zingiberaceae family (Duan et al., 2012; Lestari and Indrayanto, 2014). In recent years, it has been shown to have a wide range of pharmacological effects. In terms of cardiovascular disease, it has also been proven to protect against myocardial ischemiareperfusion injury (Li et al., 2020), and there are many studies on its role in animal models. To further clarify the mechanism of curcumin on myocardial infarction, this study carried out a meta-analysis to evaluate the intervention effects of curcumin on rat and mouse myocardial infarction models to provide a reference and evidence for the clinical applications of curcumin.

### Materials and methods

### Literature review

Related studies were retrieved from PubMed, Embase, Cochrane Library, Web of Science, CNKI, VIP, and Wanfang.

The time range was from the establishment of the databases to 9 June 2022. The keywords used for retrieval included three parts: 1) curcumin, 2) myocardial infarction, 3) rats or mice, and the three parts were connected by "and."

The inclusion criteria for the studies were as follows:

- Research subject: a rat or mouse myocardial infarction model; the preparation method of the model had to be recognized.
- 2) Intervention measures: The drugs used had to be curcumin or curcumin preparations. The experimental group could not additionally use other drugs that may affect the heart; the control group did not use any drugs, or only used a placebo.
- 3) Outcome indicators: The indicators for evaluating drug effects had to be in digital form to ensure that the key indicators could be extracted or calculated directly or indirectly, including their mean and standard deviation.

The exclusion criteria were as follows:

- 1) The data for evaluation indicators was incomplete.
- 2) Information regarding meta-analysis, systematic evaluation, and correspondence was incomplete.
- The experimental group or the control group involved the use of other drugs.
- 4) The study involved animals other than a rat or mouse.

Two authors extracted data independently. Any differences were resolved through discussion until a consensus was reached, or a third author was consulted to add a decisive input. The following pieces of information were extracted from qualifying studies: author, year of publication, drugs used, modeling method, number of models, mode of administration, dosage, detection indexes, detection index unit, and detection results (Cheng and Liu, 2005; Wang, 2008; Hong et al., 2009; Gao et al., 2011; Sunagawa et al., 2011; Kim et al., 2012; Kong, 2012; Sunagawa et al., 2012; Chen, 2014; Sunagawa et al., 2014; Chen et al., 2015; Gao et al., 2015; He et al., 2015; Liu et al., 2015; Xu and Yang, 2015; Geng, 2016; Gu et al., 2016; Liu, 2018; Boarescu et al., 2019a; Mehdi et al., 2019; Cui et al., 2020; Guo et al., 2021; HJ W et al., 2021; Shaoxi et al., 2021). Finally, the outcome indicators were summarized. When there were less than three articles on the outcome indicators, the outcome indicators were excluded from the study.



To assess the quality of the included studies, we used the SYstematic Review Center for Laboratory Animal Experimentation bias risk tool (syrcle's bias risk tool) for animal studies (Musillo et al., 2021; Wang et al., 2021). Syrle's bias risk tool is based on the Cochrane bias risk tool and adjusted for bias aspects that play a specific role in animal intervention studies. Two authors extracted data independently. Any differences were resolved through discussion until a consensus was reached, or a third author was consulted to add a decisive input.

### Statistical methods

Meta-analysis was conducted using RevMan 5.1 software. Quantitative data were expressed as mean  $\pm$  standard deviation ( $\pm$ SD). Cochran's Q test and the I<sup>2</sup> test were used to evaluate the existence and severity of heterogeneity were. When both p < 0.1 and I<sup>2</sup> > 50%, it was considered that there was heterogeneity, and the random-effects model was used for meta-analysis; otherwise, the fixed-effects model was used.

### Results

### Results of the literature review

The literature review flow chart is shown in Figure 1. As shown in Figure 1, a total of 1,710 studies were retrieved from the databases. Of these, 620 were repeated studies that were then excluded, and 1,090 studies remained. Among those that remained, 702 studies were unrelated to the subject, 192 were reviews and meta-analyses, 28 were non-rat or non-mouse studies. There were 29 studies that involved intervention measures other than curcumin, 23 that involved non-digital evaluation indicators, and 10 that had incomplete evaluation indicators. There were 82 studies that involved outcome indicators whose relevant research were less than 3. Therefore, 24 studies were included in the final meta-analysis. The study ID, subjects, mode of administration, and other characteristics are shown in Table 1. In the included literature, if there were three groups in the article, they were sham operation group, model group and curcumin. If there were five groups in the article, it was the sham operation group, the model group and three different doses of Curcumin.

TABLE 1 Research ID, research subject, administration method and other research characteristics of included literatures.

| Study ID                                     | Study subjects<br>(model group/<br>curcumin group) | Modeling<br>method      | Administration<br>method  | Dosage<br>(mg/kg) | Outcome indexes                                                   |
|----------------------------------------------|----------------------------------------------------|-------------------------|---------------------------|-------------------|-------------------------------------------------------------------|
| HJ Wu 2021 (HJ W et al. (2021)               | Rats (10/10)                                       | Ligation LAD            | Intraperitoneal injection | 100               | CK-MB, LDH, MDA, SOD                                              |
| H Guo 2021 Guo et al. (2021)                 | Mice (10/10)                                       | Ligation LAD            | Gavage                    | 500               | CK-MB, LDH                                                        |
| JK Cui 2020 Cui et al. (2020)                | Rats (15/15)                                       | Ligation LAD            | Intraperitoneal injection | 30                | CK-MB, LDH, SOD, MDA, myocardial infarction area                  |
| PM Boarescu 2019 (Boarescu<br>et al. (2019a) | Rats (7/7)                                         | Isoproterenol induction | Gavage                    | 200               | CK, LDH, MDA, SBP, DBP, HR                                        |
| H Cheng 2005 Cheng and<br>Liu, (2005)        | Rats (20/20)                                       | Ligation LAD            | Sublingual vein           | 40                | CK, LDH, myocardial infarction area                               |
| M Rahnavard 2019 Mehdi<br>et al. (2019)      | Rats (6/6)                                         | Isoproterenol induction | Gavage                    | 50                | CK, LDH, SOD, MDA                                                 |
| Y Sunagawa 2012 Sunagawa<br>et al. (2012)    | Rats (3/5)                                         | Ligation LAD            | Gavage                    | 0.5               | SBP, DBP, LVEDD, heart rate, LVFS                                 |
| Y Sunagawa 2011 Sunagawa<br>et al. (2011)    | Rats (8/9)                                         | Ligation LAD            | Gavage                    | 50                | SBP, DBP, myocardial infarction area, heart rate, LV/BW           |
| Y Sunagawa 2014 Sunagawa et al. (2014)       | Rats (11/11)                                       | Ligation LAD            | Gavage                    | 50                | SBP, DBP, myocardial infarction area, heart rate, LVFS, LV/BW     |
| YS Kim 2012 Kim et al.<br>(2012)             | Rats (7/8)                                         | Ligation LAD            | Gavage                    | 300               | SBP, DBP, LVEDD, LVESD, heart rate,<br>LVFS, LVEDP                |
| ZF He 2015 He et al. (2015)                  | Rats (15/15)                                       | Ligation LAD            | Intraperitoneal injection | 150               | LVEDP                                                             |
| LL Chen 2014 Chen, (2014)                    | Mice (5/5)                                         | Ligation LAD            | Intraperitoneal injection | 100               | Apoptosis index, LVEDD, LVESD,<br>LVFE, LVFS                      |
| J Kong 2012 Kong, (2012)                     | Rats (7/7)                                         | Ligation LAD            | Gavage                    | 100               | Apoptosis index                                                   |
| Y Wang 2008 Wang, (2008)                     | Rats (10/10)                                       | Ligation LAD            | Intraperitoneal injection | 200               | Apoptosis index, +dp/dtmax, -dp/<br>dtmax                         |
| JZ Gao 2011 Gao et al. (2011)                | Rats (10/10)                                       | Ligation LAD            | Intraperitoneal injection | 200               | Apoptosis index                                                   |
| SX Yan 2021 (Shaoxi et al.<br>(2021)         | Mice (7/9)                                         | Ligation LAD            | Intraperitoneal injection | 100               | LVEDD, LVESD, heart rate, LVFE,<br>LVFS                           |
| JH Xu 2015 Xu and Yang,<br>(2015)            | Rats (8/8)                                         | Ligation LAD            | Free drink                | -                 | LVEDD, LVESD, LVFE                                                |
| HH Geng 2016 Geng, (2016)                    | Mice (8/8)                                         | Ligation LAD            | Gavage                    | 50                | Myocardial infarction area                                        |
| HP Gu 2016 Gu et al. (2016)                  | Mice (10/10)                                       | Ligation LAD            | Intraperitoneal injection | 100               | Myocardial infarction area                                        |
| CJ Gao 2015 Gao et al.<br>(2015)             | Rats (8/9)                                         | Ligation LAD            | Intraperitoneal injection | 50                | Myocardial infarction area, LVEDP,<br>LV/BW, +dp/dtmax, -dp/dtmax |
| CH Liu 2015 Liu et al. (2015)                | Rats (8/12)                                        | Ligation LAD            | Intraperitoneal injection | 100               | Heart rate, LVFE, LVFS                                            |
| DS Hong 2009 Hong et al.<br>(2009)           | Rats (12/10)                                       | Ligation LAD            | Gavage                    | 75                | LVEDP                                                             |
| LL Chen 2015 (Chen et al. (2015)             | Rats (8/8)                                         | Ligation LAD            | Caudal vein               | 150               | LVEDP, +dp/dtmax, -dp/dtmax                                       |
| HJ Liu 2018 Liu, (2018)                      | Rats (10/10)                                       | Ligation LAD            | Gavage                    | 30                | +dp/dtmax, -dp/dtmax                                              |

We assessed the quality of the included literature through syrcle's bias risk tool, as shown in Table 2. Only 12.5% (n = 3) described the random sequence generation method like completely random design, Simple random sampling method and random block method (Hong et al., 2009; Liu et al., 2015; Gu et al., 2016); 25% (n = 6) reported random outcome assessments (Wang, 2008; Kong, 2012; Chen, 2014; He et al., 2015; Liu et al.,

2015; Mehdi et al., 2019). Additionally, three studies that mentioned blinding only blinded echocardiographic studies, not other included parameters like MI area, HR, SBP, and DBP (Sunagawa et al., 2011; Sunagawa et al., 2012; Sunagawa et al., 2014). None of the studies reported details of baseline characteristics of animals, details of methods for allocation concealment, random housing, and blinding (high risk of

### TABLE 2 SYRCLE's RoB tool for each experimental animal studies.

|                                             | Random<br>sequence<br>generation | Baseline<br>characteristics | Allocation concealment | Random<br>housing | Blinding<br>(study<br>team) | Random<br>outcome<br>assessment | Blinding<br>(outcome<br>assessors) | Incomplete<br>outcome<br>data | Selective<br>outcome<br>reporting |
|---------------------------------------------|----------------------------------|-----------------------------|------------------------|-------------------|-----------------------------|---------------------------------|------------------------------------|-------------------------------|-----------------------------------|
|                                             | Selection Bias                   |                             |                        | Performance I     | Bias                        | Detection Bias                  |                                    | Attrition Bias                | Reporting Bias                    |
| HJ Wu 2021 HJ W et al. (2021)               | -                                | -                           | -                      | -                 | -                           | Ν                               | -                                  | ?                             | ?                                 |
| H Guo 2021 Guo et al. (2021)                | -                                | -                           | -                      | -                 | -                           | Ν                               | -                                  | ?                             | ?                                 |
| JK Cui 2020 Cui et al. (2020)               | -                                | -                           | -                      | -                 | -                           | Ν                               | -                                  | ?                             | ?                                 |
| PM Boarescu 2019 Boarescu et al.<br>(2019a) | -                                | -                           | -                      | -                 | -                           | ?                               | -                                  | Ś                             | ?                                 |
| H Cheng 2005 Cheng and Liu, (2005)          | -                                | -                           | -                      | -                 | -                           | -                               | -                                  | ?                             | ś                                 |
| M Rahnavard 2019 Mehdi et al. (2019)        | -                                | -                           | -                      | -                 | -                           | +                               | -                                  | ?                             | ?                                 |
| Y Sunagawa 2012 Sunagawa et al.<br>(2012)   | -                                | -                           | -                      | -                 | -                           | Ν                               | -                                  | Ś                             | ?                                 |
| Y Sunagawa 2011 Sunagawa et al.<br>(2011)   | -                                | -                           | -                      | -                 | -                           | Ν                               | -                                  | Ś                             | ?                                 |
| Y Sunagawa 2014 Sunagawa et al.<br>(2014)   | -                                | -                           | -                      | -                 | -                           | Ν                               | -                                  | ?                             | ?                                 |
| YS Kim 2012 Kim et al. (2012)               | -                                | -                           | -                      | -                 | -                           | ?                               | -                                  | ?                             | ?                                 |
| ZF He 2015 (He et al. (2015)                | -                                | -                           | -                      | -                 | -                           | +                               | -                                  | ?                             | ?                                 |
| LL Chen 2014 Chen, (2014)                   | -                                | -                           | -                      | -                 | -                           | +                               | -                                  | ?                             | ?                                 |
| J Kong 2012 Kong, (2012)                    | -                                | -                           | -                      | -                 | -                           | +                               | -                                  | ?                             | ?                                 |
| Y Wang 2008 Wang, (2008)                    | -                                | -                           | -                      | -                 | -                           | +                               | -                                  | ?                             | ?                                 |
| JZ Gao 2011 Gao et al. (2011)               | -                                | -                           | -                      | -                 | -                           | ?                               | -                                  | ?                             | ?                                 |
| SX Yan 2021 (Shaoxi et al., 2021)           | -                                | -                           | -                      | -                 | -                           | ?                               | -                                  | ?                             | ?                                 |
| JH Xu 2015 Xu and Yang, (2015)              | -                                | -                           | -                      | -                 | -                           | ?                               | -                                  | ?                             | ?                                 |
| HH Geng 2016 Geng, (2016)                   | -                                | -                           | -                      | -                 | -                           | ?                               | -                                  | ?                             | ?                                 |
| HP Gu 2016 Gu et al. (2016)                 | +                                | -                           | -                      | -                 | -                           | ?                               | -                                  | ?                             | ?                                 |
| CJ Gao 2015 (Gao et al., 2015)              | -                                | -                           | -                      | -                 | -                           | ?                               | -                                  | ?                             | ?                                 |
| CH Liu 2015 Liu et al. (2015)               | +                                | -                           | -                      | -                 | -                           | +                               | -                                  | ?                             | ?                                 |
| DS Hong 2009 Hong et al. (2009)             | +                                | -                           | -                      | -                 | -                           | ?                               | -                                  | ?                             | ?                                 |
| LL Chen 2015 Chen et al. (2015)             | -                                | -                           | -                      | -                 | -                           | ?                               | -                                  | ?                             | ?                                 |
| HJ Liu 2018 Liu, (2018)                     | -                                | -                           | -                      | -                 | -                           | ;                               | -                                  | ?                             | ?                                 |

Note:+: low risk of bias -: high risk of bias ? unclear risk of bias N: not applicable.



bias = 100%), all studies had no incomplete results and selective results. None of the studies had a published pre-specified protocol.

The effects of curcumin on rats or mice centered on three aspects: blood biochemistry, cardiac tissue structure, and hemodynamics. In terms of blood biochemistry, the indicators measured were creatine kinase (CK), creatine kinase isoenzyme (CK-MB), malondialdehyde (MDA), and biochemical blood indicators, such as lactate dehydrogenase (LDH) and superoxide dismutase (SOD). The hemodynamic indexes measured included systolic blood pressure (SBP), diastolic blood pressure (DBP), heart rate (HR), left ventricular end-

| SBPP         Curcumin         Control         Mean Difference         Mean Difference           PbB comence/0110         153         2.08         7         12.05%         4.00         17.7         6.213           Void Someoux/0110         153         2.08         7         12.05%         4.00         17.7         6.213           Void Someoux/0110         153         2.08         7         12.05%         4.00         17.7         6.213           Void Someoux/012         113         3         5         13.04         4.00         19.016.1         9.01           Yong Sook Kim2012         125         2.28         13.08.6.14         7         18.09%         -4.00         19.61.9.09         *           Yong Sook Kim2012         125         2.28         13.08.6.14         7         18.09%         -4.005         19.61.9.09         *           Total (9% C)         20.08         36         10.005K         -0.005         10.00         *         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                              | Subscription         Currcumin         Control         Mean         Difference         Mean         Difference           PM Boursesu2019         09.57         1.81         7         70.43         2.97         72.50%         -0.86 (-3.07, 1.36)         Mean         Difference           PM Boursesu2019         09.57         1.81         7         70.43         2.97         72.55%         -0.01 (-0.46 (-3.54)         -0.01 (-0.46 (-3.54)         -0.01 (-0.46 (-3.54)         -0.01 (-0.46 (-3.54)         -0.01 (-0.46 (-3.54)         -0.01 (-0.46 (-3.54)         -0.01 (-0.46 (-3.54)         -0.01 (-0.46 (-3.54)         -0.01 (-0.46 (-3.54)         -0.01 (-0.46 (-3.54)         -0.01 (-0.46 (-3.54)         -0.01 (-0.46 (-3.54)         -0.01 (-0.46 (-3.54)         -0.01 (-0.46 (-3.54)         -0.01 (-0.46 (-3.54)         -0.01 (-0.46 (-3.54)         -0.01 (-0.46 (-3.54)         -0.01 (-0.46 (-3.54)         -0.01 (-0.46 (-3.54)         -0.01 (-0.46 (-3.54)         -0.01 (-0.46 (-3.54)         -0.01 (-0.46 (-3.54)         -0.01 (-0.46 (-3.54)         -0.01 (-0.46 (-3.54)         -0.01 (-0.46 (-3.54)         -0.01 (-0.46 (-3.54)         -0.01 (-0.46 (-3.54)         -0.01 (-0.46 (-3.54)         -0.01 (-0.46 (-3.54)         -0.01 (-0.46 (-3.54)         -0.01 (-0.46 (-3.54)         -0.01 (-0.46 (-3.54)         -0.01 (-0.46 (-3.54)         -0.01 (-0.46 (-3.54)         -0.01 (-0.46 (-3.54)         -0.01 (-0.46 (-3.54)         -0.01 (-0.46 (-3 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LVFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Curcumin         Control         Mean         Difference         Mean         Difference         Mean         Difference         N. Random. 55% CI           CH Lu2015         40.98 fr. 06         12 43.31 fc. 20.05         8         14.5%         -22.01 4.36.6         -14.71           PM Bourseou2019         274         3.18         7         339         9.12         7         14.9%         -65.01 /r.2.15, -57.85         -           SX van2014         472         15         9         468         12         7         14.9%         -65.00 /r.2.15, -57.85         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                        | Curcumin         Control         Mean         Difference         No         Readown 59% Cl         V. Random, 59% Cl                                                        |
| Curcumin Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LVEDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| LVCFS         Curcumin         Control         Mean Difference         Me | Curcumin         Control         Mean Difference         Mean Difference           Study or Subgroup         Mean         8D         Total Meian         SD         Total Meian         SS         Total Meian         SS         Total Meian         SS         SS         No         No <t< td=""></t<>                                                                                                                                                                                                                                                                                         |
| +dp/dtmax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -dp/dtmax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Curcumin         Control         Mean Difference         Mean Difference         Mean Difference           Study of Subgroup         Mean         SD. Total         Monion         Monion         Monion         Monion         Monion         Monion         SD. Total         Monion                                                                                                                                                                     | Curroumin         Control         Data         Wish no Difference         Man Difference           Study cor Subportuo         Mass         Dotal         Mass         Difference         VL Random 39% CI           CL daa2015         3/01289         696.44         9         2.081.7         272.69         6         2.29%         1531.19 (916.44, 214.584)           H Luc2015         3/412.85         566.77         10         662.95%         12.29%         1532.11.99 (916.44, 214.584)           VMang2006         3/412.87         10         662.95%         12.29%         152.71.16 (917.64, 214.584)           VMang2006         3/412.87         10         66.29%         12.77.78%         152.858 (100.28, 35.98.91)           LL Chenz015         3/412.68         12.92.55         27.55         82.77%         155.83 (100.63, 2111.57)           VMang2006         164.92.78.58         1106.0%         1184.05 (496.28, 1671.82)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| FIGURE 3<br>Forest plot of hemodynamic related indicators: SBP, DBP, HR, LVEF, LV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FS, LVEDP, +dp/dtmax, - dp/dtmax.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

diastolic pressure (LVEDP), left ventricular ejection fraction (LVEF), left ventricular fractional shortening (LVFS), maximum rate of left ventricular pressure rise (+dp/dtmax), and maximum rate of left ventricular pressure decline (-dp/dtmax). The cardiac tissue structure examined included the left ventricular weight to body weight ratio (LVW/BW), apoptosis index (number of apoptotic nuclei/[number of apoptotic nuclei + number of normal nuclei] × 100%), left ventricular end-diastolic dimension (LVEDD), left ventricular end-systolic diameter (LVESD), and myocardial infarction area.

### The effect of curcumin on blood biochemistry in rats or mice with myocardial infarction

The present study sorted and merged related studies on the effects of curcumin on CK, CK-MB, MDA, and LDH levels in rats or mouse models of myocardial infarction. The results showed that curcumin could reduce CK, CK-MB, MDA, and LDH levels in myocardial infarction models but had no significant impact on SOD levels in myocardial infarction models.

The results also found that the use of curcumin can reduce the levels of CK-MB by 1,831.77 U/L (p = 0.04), CK by 116.31 U/L (p = 0.004), LDH by 601.77 U/L (p < 0.00001), and MDA by

4.93 nmol/L (p = 0.008) in rats or mice with myocardial infarction. The forest map is presented in Figure 2.

# The effect of curcumin on hemodynamic indexes in rats or mice with myocardial infarction

In rat or mouse myocardial infarction models, curcumin was found to reduce SBP by 10.05 mmHg (p < 0.00001) and DBP by 5.4 mmHg (p = 0.008). It was also found to increase LVEF by 13.56% (p < 0.00001), LVFS by 7.66% (p = 0.0006), LVEDP by 6.99 mmHg (p < 0.00001), +dp/dtmax by 1551.38 mmHg/s (p =0.0008), and-dp/dtmax by 1184.05 mmHg/s (p = 0.0007). It had no significant impact on the heart rate in rats or mice models of myocardial infarction. The forest map is presented in Figure 3.

### The effect of curcumin on cardiac tissue and structure in rats or mice with myocardial infarction

Curcumin was found to reduce the LVW/BW by 0.2 (p = 0.003), the apoptosis index by 18.35% (p = 0.03), LVEDD by 0.65 mm (p = 0.0002), LVESD by 1.04 mm (p < 0.00001), and

## LVW/BW

|                                                                    | Cu                    | rcumi             | n              | C        | ontrol |          |        | Mean Difference      | Mean Difference                   |   |
|--------------------------------------------------------------------|-----------------------|-------------------|----------------|----------|--------|----------|--------|----------------------|-----------------------------------|---|
| Study or Subgroup                                                  | Mean                  | SD                | Total          | Mean     | SD     | Total    | Weight | IV, Random, 95% Cl   | I IV, Random, 95% CI              |   |
| CJ Gao2015                                                         | 2.01                  | 0.14              | 9              | 2.46     | 0.09   | 8        | 28.9%  | -0.45 [-0.56, -0.34] |                                   |   |
| Yoichi Sunagawa2011                                                | 1.8                   | 0.05              | 9              | 1.85     | 0.04   | 8        | 35.1%  | -0.05 [-0.09, -0.01] | =                                 |   |
| Yoichi Sunagawa2014                                                | 1.68                  | 0.03              | 11             | 1.82     | 0.03   | 11       | 36.0%  | -0.14 [-0.17, -0.11] | •                                 |   |
| Total (95% CI)                                                     |                       |                   | 29             |          |        | 27       | 100.0% | -0.20 [-0.33, -0.07] | •                                 |   |
| Heterogeneity: Tau <sup>2</sup> = 0.<br>Test for overall effect: Z | 01; Chi²<br>= 2.97 (I | = 46.1<br>> = 0.0 | 0, df =<br>03) | 2 (P < 0 | 0.000  | 1); I² = | 96%    |                      | -1 -0.5 0 0.5<br>Curcumin Control | 1 |

# Apoptosis index

|                                   | Cu        | rcumin       |          | Co       | ontrol |          |        | Mean Difference         |      | Mean    | ı Diff | ference   |     |
|-----------------------------------|-----------|--------------|----------|----------|--------|----------|--------|-------------------------|------|---------|--------|-----------|-----|
| Study or Subgroup                 | Mean      | SD           | Total    | Mean     | SD     | Total    | Weight | IV, Random, 95% Cl      |      | IV, Rai | ndor   | n, 95% Cl |     |
| J Kong2012                        | 11.153    | 1.198        | 7        | 38.383   | 3.88   | 7        | 25.0%  | -27.23 [-30.24, -24.22] |      |         |        |           |     |
| JZ Gao2011                        | 8.6       | 0.8          | 10       | 46.3     | 6.7    | 10       | 24.8%  | -37.70 [-41.88, -33.52] |      |         |        |           |     |
| LL Chen2014                       | 1.64      | 0.13         | 5        | 2.34     | 0.08   | 5        | 25.2%  | -0.70 [-0.83, -0.57]    |      |         | •      |           |     |
| Y Wang2008                        | 5.47      | 2.46         | 10       | 13.56    | 3.88   | 10       | 25.0%  | -8.09 [-10.94, -5.24]   |      |         | •      |           |     |
| Total (95% CI)                    |           |              | 32       |          |        | 32       | 100.0% | -18.35 [-34.77, -1.94]  |      | _ ◄     |        |           |     |
| Heterogeneity: Tau <sup>2</sup> = | 278.24; 0 | $Chi^2 = 62$ | 22.91, 0 | f = 3 (P | < 0.00 | 001); l² | = 100% |                         | -100 | -50     | 0      | 50        | 100 |
| Test for overall effect:          | Z = 2.19  | (P = 0.0     | 3)       |          |        |          |        |                         |      | Curcum  | in i   | Control   |     |

# LVEDD

|                                      | Cu        | rcumi   | n        | С        | ontrol |          |        | Mean Difference      | Mean D   | ifference  |   |
|--------------------------------------|-----------|---------|----------|----------|--------|----------|--------|----------------------|----------|------------|---|
| Study or Subgroup                    | Mean      | SD      | Total    | Mean     | SD     | Total    | Weight | IV, Random, 95% CI   | IV, Rand | om, 95% Cl |   |
| JH Xu2015                            | 6.25      | 0.4     | 8        | 7.12     | 0.64   | 8        | 15.6%  | -0.87 [-1.39, -0.35] |          |            |   |
| LL Chen2014                          | 3.54      | 0.02    | 10       | 4.34     | 0.1    | 8        | 24.1%  | -0.80 [-0.87, -0.73] |          |            |   |
| SX Yan2021                           | 5.36      | 0.11    | 9        | 5.62     | 0.13   | 7        | 23.6%  | -0.26 [-0.38, -0.14] |          | 4          |   |
| Yoichi Sunagawa2012                  | 9.9       | 0.4     | 5        | 10.2     | 0.1    | 3        | 19.1%  | -0.30 [-0.67, 0.07]  | -        | 1          |   |
| Yong Sook Kim2012                    | 8.94      | 0.04    | 3        | 10.11    | 0.44   | 4        | 17.6%  | -1.17 [-1.60, -0.74] |          |            |   |
| Total (95% CI)                       |           |         | 35       |          |        | 30       | 100.0% | -0.65 [-1.00, -0.31] | •        |            |   |
| Heterogeneity: Tau <sup>2</sup> = 0. | 13; Chi²  | = 67.3  | 84, df = | 4 (P < 0 | 0.0000 | 1); l² = | 94%    |                      |          |            |   |
| Test for overall effect: Z           | = 3.70 (I | P = 0.0 | 0002)    |          |        |          |        |                      | Curcumin | Control    | 4 |
| INCOD                                |           |         |          |          |        |          |        |                      |          |            |   |

# LVESD

|   |                                     | Cu       | rcumi    | n        | C        | ontrol  |          |        | Mean Difference      |    | Mean    | Differ | ence   |   |  |
|---|-------------------------------------|----------|----------|----------|----------|---------|----------|--------|----------------------|----|---------|--------|--------|---|--|
| 1 | Study or Subgroup                   | Mean     | SD       | Total    | Mean     | SD      | Total    | Weight | IV, Random, 95% CI   |    | IV, Rai | ndom,  | 95% CI |   |  |
|   | JH Xu2015                           | 5.34     | 0.21     | 8        | 6.33     | 0.54    | 8        | 22.1%  | -0.99 [-1.39, -0.59] |    | -       | -      |        |   |  |
|   | LL Chen2014                         | 2.27     | 0.08     | 10       | 3.42     | 0.02    | 8        | 32.7%  | -1.15 [-1.20, -1.10] |    |         |        |        |   |  |
|   | SX Yan2021                          | 4.93     | 0.18     | 9        | 5.62     | 0.15    | 7        | 30.5%  | -0.69 [-0.85, -0.53] |    |         | •      |        |   |  |
|   | Yong Sook Kim2012                   | 7.4      | 0.16     | 3        | 8.99     | 0.62    | 4        | 14.8%  | -1.59 [-2.22, -0.96] |    | _       |        |        |   |  |
|   | Total (95% CI)                      |          |          | 30       |          |         | 27       | 100.0% | -1.04 [-1.37, -0.71] |    | •       |        |        |   |  |
|   | Heterogeneity: Tau <sup>2</sup> = 0 | 0.08; Ch | ni² = 30 | ).75, df | = 3 (P < | < 0.000 | 001); l² | = 90%  |                      |    |         |        |        |   |  |
|   | Test for overall effect: 2          | Z = 6.21 | (P < 0)  | 0.00001  | )        |         |          |        |                      | -4 | -2      |        | 2      | 4 |  |

Curcumin Control

# MI area

| CurcuminMeanSDMeanSDTotalMeanMean DifferenceStudy or SubgroupMeanSDTotalMeanSDTotalWeightIV. Random, 95% ClIV. Random, 95% ClCJ Gao201538.298.199940.279.15813.1%-1.98 [-10.28, 6.32]H Cheng200513.214.131023.375.231014.2%-0.16 [-14.29, -6.03]HH Geng201615.42.1838.94.2814.4%-23.50 [-26.75, -20.25]JK Cui202021.322.281551.463.591514.5%-30.14 [-32.29, -27.99]Yoichi Sunagawa201117.53.1916.72.1814.5%0.80 [-1.69, 3.29]Yoichi Sunagawa201410.21.63118.950.911114.6%1.25 [0.15, 2.35]Total (95% Cl)7270100.0%-11.05 [-20.08, -2.01]Heterogeneity: Tau <sup>2</sup> = 144.77; Chi <sup>2</sup> = 892.78, df = 6 (P < 0.00001); l <sup>2</sup> = 99%-50-2502550CurcuminControl5022.40P = 0.02)-50-2502550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                      |           |         |        |           |        |        |          |                         |                                  |    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------|---------|--------|-----------|--------|--------|----------|-------------------------|----------------------------------|----|
| Study or SubgroupMeanSDTotalMeanSDTotalWeightIV. Random. 95% CIIV. Random. 95% CICJ Gao201538.298.19940.279.15813.1%-1.98 [-10.28, 6.32]H Cheng200513.214.131023.375.231014.2%-10.16 [-14.29, -6.03]HH Geng201615.42.1838.94.2814.4%-23.50 [-26.75, -20.25]JK Cui202021.322.281551.463.591514.5%-30.14 [-32.29, -27.99]Yoichi Sunagawa201117.53.1916.72.1814.5%0.80 [-1.69, 3.29]Yoichi Sunagawa201410.21.63118.950.911114.6%1.25 [0.15, 2.35]Total (95% CI)7270100.0%-11.05 [-20.08, -2.01]Heterogeneity: Tau <sup>2</sup> = 144.77; Chi <sup>2</sup> = 892.78, df = 6 (P < 0.00001); l <sup>2</sup> = 99%-50-2502550CurcuminControl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | Cu        | rcumi   | n      | С         | ontrol |        |          | Mean Difference         | Mean Difference                  |    |
| CJ Gao2015 38.29 8.19 9 40.27 9.15 8 13.1% -1.98 [-10.28, 6.32]<br>H Cheng2005 13.21 4.13 10 23.37 5.23 10 14.2% -10.16 [-14.29, -6.03]<br>HH Geng2016 15.4 2.1 8 38.9 4.2 8 14.4% -23.50 [-26.75, -20.25]<br>HP Gu2016 9.7 0.94 10 22.5 1.37 10 14.6% -12.80 [-13.83, -11.77]<br>JK Cui2020 21.32 2.28 15 51.46 3.59 15 14.6% -30.14 [-32.29, -27.99]<br>Yoichi Sunagawa2011 17.5 3.1 9 16.7 2.1 8 14.5% 0.80 [-1.69, 3.29]<br>Yoichi Sunagawa2014 10.2 1.63 11 8.95 0.91 11 14.6% 1.25 [0.15, 2.35]<br>Total (95% Cl) 72 70 100.0% -11.05 [-20.08, -2.01]<br>Heterogeneity: Tau <sup>2</sup> = 144.77; Chi <sup>2</sup> = 892.78, df = 6 (P < 0.00001); I <sup>2</sup> = 99%<br>Test for overall effect: Z = 2.40 (P = 0.02)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Study or Subgroup                    | Mean      | SD      | Total  | Mean      | SD     | Total  | Weight   | IV, Random, 95% C       | IV. Random, 95% CI               |    |
| H Cheng200513.214.131023.375.231014.2%-10.16[-14.29, -6.03]HH Geng201615.42.1838.94.2814.4%-23.50[-26.75, -20.25]HP Gu20169.70.941022.51.371014.6%-12.80[-13.83, -11.77]JK Cui202021.322.281551.463.591514.5%-30.14[-32.29, -27.99]Yoichi Sunagawa201117.53.1916.72.1814.5%0.80[-1.69, 3.29]Yoichi Sunagawa201410.21.63118.950.911114.6%1.25[0.15, 2.35]Total (95% CI)7270100.0%-11.05[-20.08, -2.01]Heterogeneity: Tau² = 144.77; Chi² = 892.78, df = 6 (P < 0.00001); l² = 99%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CJ Gao2015                           | 38.29     | 8.19    | 9      | 40.27     | 9.15   | 8      | 13.1%    | -1.98 [-10.28, 6.32]    | <b>-</b> ₽                       |    |
| HH Geng2016       15.4       2.1       8 $38.9$ $4.2$ 8 $14.4\%$ $-23.50$ $[-26.75, -20.25]$ HP Gu2016       9.7 $0.94$ 10 $22.5$ $1.37$ 10 $14.6\%$ $-12.80$ $[-13.83, -11.77]$ JK Cui2020 $21.32$ $2.28$ 15 $51.46$ $3.59$ 15 $14.5\%$ $-30.14$ $[-32.29, -27.99]$ Yoichi Sunagawa2011 $17.5$ $3.1$ 9 $16.7$ $2.1$ 8 $14.5\%$ $0.80$ $(-1.69, 3.29]$ Yoichi Sunagawa2014 $10.2$ $1.63$ $11$ $8.95$ $0.91$ $11$ $14.6\%$ $1.25$ $[0.15, 2.35]$ Total (95% Cl)       72       70 $100.0\%$ $-11.05$ $[-20.08, -2.01]$ $-50$ $-25$ $0$ $25$ $50$ Heterogeneity: Tau <sup>2</sup> = 144.77; Chi <sup>2</sup> = 892.78, df = 6 (P < 0.00001); l <sup>2</sup> = 99\% $-50$ $-25$ $0$ $25$ $50$ Curcumin       Control       Control       Control       Curcumin       Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H Cheng2005                          | 13.21     | 4.13    | 10     | 23.37     | 5.23   | 10     | 14.2%    | -10.16 [-14.29, -6.03]  |                                  |    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HH Geng2016                          | 15.4      | 2.1     | 8      | 38.9      | 4.2    | 8      | 14.4%    | -23.50 [-26.75, -20.25] | -                                |    |
| JK Cui2020       21.32       2.28       15       51.46       3.59       15       14.5%       -30.14 [-32.29, -27.99]         Yoichi Sunagawa2011       17.5       3.1       9       16.7       2.1       8       14.5%       0.80 [-1.69, 3.29]         Yoichi Sunagawa2014       10.2       1.63       11       8.95       0.91       11       14.6%       1.25 [0.15, 2.35]         Total (95% Cl)       72       70       100.0%       -11.05 [-20.08, -2.01]       -50       -25       0       25       50         Heterogeneity: Tau <sup>2</sup> = 144.77; Chi <sup>2</sup> = 892.78, df = 6 (P < 0.00001); l <sup>2</sup> = 99%       -50       -25       0       25       50         Test for overall effect: Z = 2.40 (P = 0.02)       -50       -25       0       25       50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HP Gu2016                            | 9.7       | 0.94    | 10     | 22.5      | 1.37   | 10     | 14.6%    | -12.80 [-13.83, -11.77] | •                                |    |
| Yoichi Sunagawa2011       17.5       3.1       9       16.7       2.1       8       14.5%       0.80       [-1.69, 3.29]         Yoichi Sunagawa2014       10.2       1.63       11       8.95       0.91       11       14.6%       1.25       [0.15, 2.35]         Total (95% Cl)       72       70       100.0%       -11.05       [-20.08, -2.01]         Heterogeneity:       Tau <sup>2</sup> = 144.77; Chi <sup>2</sup> = 892.78, df = 6 (P < 0.00001); l <sup>2</sup> = 99%       -50       -25       0       25       50         Test for overall effect:       Z = 2.40 (P = 0.02)       Curcumin       Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | JK Cui2020                           | 21.32     | 2.28    | 15     | 51.46     | 3.59   | 15     | 14.5%    | -30.14 [-32.29, -27.99] |                                  |    |
| Yoichi Sunagawa2014       10.2       1.63       11       8.95       0.91       11       14.6%       1.25       [0.15, 2.35]         Total (95% Cl)       72       70       100.0%       -11.05       [-20.08, -2.01]         Heterogeneity:       Tau <sup>2</sup> = 144.77; Chi <sup>2</sup> = 892.78, df = 6 (P < 0.00001); l <sup>2</sup> = 99%       -50       -25       0       25       50         Test for overall effect:       Z = 2.40 (P = 0.02)       Curcumin       Control       Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Yoichi Sunagawa2011                  | 17.5      | 3.1     | 9      | 16.7      | 2.1    | 8      | 14.5%    | 0.80 [-1.69, 3.29]      | 1 🕈                              |    |
| Total (95% CI)       72       70       100.0%       -11.05 [-20.08, -2.01]         Heterogeneity: Tau <sup>2</sup> = 144.77; Chi <sup>2</sup> = 892.78, df = 6 (P < 0.00001); I <sup>2</sup> = 99%       -11.05 [-20.08, -2.01]       -50       -25       0       25       50         Test for overall effect: Z = 2.40 (P = 0.02)       Curcumin       Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Yoichi Sunagawa2014                  | 10.2      | 1.63    | 11     | 8.95      | 0.91   | 11     | 14.6%    | 1.25 [0.15, 2.35]       | •                                |    |
| Heterogeneity: Tau <sup>2</sup> = 144.77; Chi <sup>2</sup> = 892.78, df = 6 (P < 0.00001); l <sup>2</sup> = 99%       Image: the second sec | Total (95% CI)                       |           |         | 72     |           |        | 70     | 100.0%   | -11.05 [-20.08, -2.01]  | •                                |    |
| Test for overall effect: Z = 2.40 (P = 0.02)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Heterogeneity: Tau <sup>2</sup> = 14 | 4.77; C   | hi² = 8 | 92.78, | df = 6 (F | < 0.0  | 0001); | l² = 99% |                         |                                  |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Test for overall effect: Z =         | = 2.40 (F | P = 0.0 | 02)    |           |        |        |          |                         | -50 -25 0 25<br>Curcumin Control | 50 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      |           |         |        |           |        |        |          |                         |                                  |    |

### FIGURE 4

Forest plot of cardiac tissue structure related indicators: LVW/BW, Apoptosis index, LVEDD, LVESD, MI area.

| LDH                                   |            |             |         |            |         |                      |        |                            |      |                              |     |
|---------------------------------------|------------|-------------|---------|------------|---------|----------------------|--------|----------------------------|------|------------------------------|-----|
|                                       | Cu         | rcumin      |         | C          | ontrol  |                      |        | Mean Difference            |      | Mean Difference              |     |
| Study or Subgroup                     | Mean       | SD          | Total   | Mean       | SD      | Total                | Weight | IV, Fixed, 95%             | CI   | IV, Fixed, 95% Cl            |     |
| H Cheng2005                           | 3,384      | 478         | 20      | 4,388      | 419     | 20                   | 0.8%   | -1004.00 [-1282.58, -725.4 | [2]  |                              |     |
| HJ Wu2021                             | 875.42     | 79.31       | 10      | 1,988.73   | 267.19  | 10                   | 2.2%   | -1113.31 [-1286.05, -940.5 | 57]  | -                            |     |
| JK Cui2020                            | 908.69     | 144.87      | 15      | 1,953.41   | 310.38  | 15                   | 2.2%   | -1044.72 [-1218.06, -871.3 | 38]  |                              |     |
| Mehdi Rahnavard2019                   | 277.33     | 36.1        | 6       | 409.83     | 16.4    | 6                    | 64.9%  | -132.50 [-164.23, -100.7   | 7]   | _                            |     |
| PM Boarescu2019                       | 222.86     | 13.02       | 7       | 383.43     | 61.77   | 7                    | 29.9%  | -160.57 [-207.33, -113.8   | 31]  | •                            |     |
| Total (95% CI)                        |            |             | 58      |            |         | 58                   | 100.0% | -189.54 [-215.10, -163.9   | 8]   | 1                            |     |
| Heterogeneity: Chi <sup>2</sup> = 250 | 0.08, df = | 4 (P < 0.   | .00001) | ; l² = 98% |         |                      |        |                            |      |                              |     |
| Test for overall effect: Z =          | = 14.53 (P | < 0.000     | 01)     |            |         |                      |        |                            |      | Curcumin Control             |     |
| Amontori                              |            |             |         |            |         |                      |        |                            |      |                              |     |
| Apoptos                               |            | lue         | X       |            |         |                      |        | N. D'                      |      | N. D.W.                      |     |
|                                       |            | Ircumir     | י<br>די |            | ontrol  |                      |        | Mean Difference            |      | Mean Difference              |     |
| Study or Subgroup                     | Mean       | SD          | Tota    | I Mean     | SD      | Total                | Weight | IV, Random, 95% C          |      | IV, Random, 95% CI           |     |
| J Kong2012                            | 11.153     | 1.198       | 7       | 38.383     | 3.88    | 7                    | 33.4%  | -27.23 [-30.24, -24.22]    |      |                              |     |
| JZ Gao2011                            | 8.6        | 0.8         | 10      | ) 46.3     | 6.7     | 10                   | 33.1%  | -37.70 [-41.88, -33.52]    |      |                              |     |
| Y Wang2008                            | 5.47       | 2.46        | 10      | 13.56      | 3.88    | 10                   | 33.5%  | -8.09 [-10.94, -5.24]      |      | •                            |     |
| Total (95% CI)                        |            |             | 27      |            |         | 27                   | 100.0% | -24.29 [-41.07, -7.51]     |      | •                            |     |
| Heterogeneity: Tau <sup>2</sup> =     | 216.98;    | Chi² = 1    | 56.66,  | df = 2 (P  | < 0.000 | 001); l <sup>2</sup> | = 99%  |                            | H    |                              |     |
| Test for overall effect:              | Z = 2.84   | (P = 0.0    | 005)    | ,          |         | ,,                   |        |                            | -100 | -50 0 50<br>Curcumin Control | 100 |
|                                       |            |             |         |            |         |                      |        |                            |      | Curcumin Control             |     |
| HR                                    |            |             |         |            |         |                      |        |                            |      |                              |     |
|                                       | С          | urcumi      | n       | С          | ontrol  |                      |        | Mean Difference            |      | Mean Difference              |     |
| Study or Subgroup                     | Mea        | n SD        | Tota    | Mean       | SD      | Total                | Weight | IV, Random, 95% Cl         |      | IV, Random, 95% Cl           |     |
| CH Liu2015                            | 403.9      | 6 7.08      | 12      | 433.16     | 20.05   | 8                    | 17.0%  | -29.20 [-43.66, -14.74]    |      |                              |     |
| PM Boarescu2019                       | 27         | 4 3.18      | 7       | 339        | 9.12    | 7                    | 17.4%  | -65.00 [-72.15, -57.85]    | -    | -                            |     |
| Yoichi Sunagawa2011                   | 38         | 0 18        | 9       | 352        | 14      | 8                    | 16.9%  | 28.00 [12.76, 43.24]       |      |                              |     |
| Yoichi Sunagawa2012                   | 31         | 6 44        | 5       | 301        | 13      | 3                    | 14.0%  | 15.00 [-26.28, 56.28]      |      |                              |     |
| Yoichi Sunagawa2014                   | 38         | 6 8         | 11      | 370        | 13      | 11                   | 17.3%  | 16.00 [6.98, 25.02]        |      |                              |     |
| Yong Sook Kim2012                     | 330.       | 6 6.15      | 8       | 323.25     | 8.89    | 7                    | 17.4%  | 7.35 [-0.49, 15.19]        |      | -                            |     |
| -                                     |            |             |         |            |         |                      |        |                            |      |                              |     |
| Total (95% CI)                        |            |             | 52      |            |         | 44                   | 100.0% | -5.37 [-39.93, 29.19]      | L    |                              |     |
| Heterogeneity: Tau <sup>2</sup> = 7   | 1775.32;   | $Chi^2 = 2$ | 299.81, | df = 5 (P  | < 0.000 | 001); l²             | = 98%  |                            | -100 | -50 0 50                     | 100 |
| Test for overall effect: 2            | Z = 0.30 ( | P = 0.7     | 6)      |            |         |                      |        |                            | 100  | Curcumin Control             |     |
| FIGURE 5                              |            |             |         |            |         |                      |        |                            |      |                              |     |

Forest plot of LDH, heart rate and apoptosis index of rats.

myocardial infarction area by 11.05% (p = 0.02). The forest map is presented in Figure 4.

### Sub study of rats and mice

In order to study the effects of different animal species on the effects of curcumin on myocardial infarction, we classified the included literatures according to rats and mice.

Among the included research literatures on LDH, one is about the mouse myocardial infarction model, and the heart rate and apoptosis index are the same. We removed this study to observe the impact on the research results, as shown in Figure 5. The results found that the use of curcumin can reduce the levels of LDH by -189.54U/L (p < 0.00001), the apoptosis index by 24.29% (p = 0.005) in rats or mice with myocardial infarction. It had no significant impact on the heart rate in rats' models of myocardial infarction. These results are not very different from those before the removal of mice.

In our relevant research literature, rats and mice were included in the literature of LVEDD, LVEF and LVFS. We classified the rats and mice, as shown in Figure 6. The results found that the use of curcumin can reduce LVEDD by 0.77 mm (p = 0.006) in rats with myocardial infarction, LVEDD by 0.53 mm (p = 0.05) in mice with myocardial infarction. Curcumin was found to increase LVEF by 16.06% (p < 0.00001) in rats with myocardial infarction, LVEF by 11.37% (p = 0.004) in mice with myocardial infarction. Curcumin was found to increase LVFS by 6.80% (p = 0.02) in rats with myocardial infarction, LVFS by 7.66% (p = 0.0006) in mice with myocardial infarction.

| Study or Subgroup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cu<br>Mean                                                                                                                                                                                              | rcumin<br>SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C<br>Mean                                                                                                                                             | ontro<br>SD                                                                                                              | Total                                                                                                                                                                                                                                                | Weight                                                                                                                                                                                                              | Mean Difference<br>IV, Random, 95% C                                                                                                                                                                                                                                                                                                                       | I         | Mean D<br>IV, Rand                                                     | Difference<br>Iom, 95% CI                                        |          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------------------------------------------------|------------------------------------------------------------------|----------|
| 1.1.2 Rats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                       |                                                                                                                          |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                            |           |                                                                        |                                                                  |          |
| JH Xu2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.25                                                                                                                                                                                                    | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.12                                                                                                                                                  | 0.64                                                                                                                     | 8                                                                                                                                                                                                                                                    | 15.6%                                                                                                                                                                                                               | -0.87 [-1.39, -0.35]                                                                                                                                                                                                                                                                                                                                       |           | -                                                                      |                                                                  |          |
| Yoichi Sunagawa2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.9                                                                                                                                                                                                     | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.2                                                                                                                                                  | 0.1                                                                                                                      | 3                                                                                                                                                                                                                                                    | 19.1%                                                                                                                                                                                                               | -0.30 [-0.67, 0.07]                                                                                                                                                                                                                                                                                                                                        |           | -                                                                      | -                                                                |          |
| Yong Sook Kim2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.94                                                                                                                                                                                                    | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.11                                                                                                                                                 | 0.44                                                                                                                     | 4                                                                                                                                                                                                                                                    | 17.6%                                                                                                                                                                                                               | -1.17 [-1.60, -0.74]                                                                                                                                                                                                                                                                                                                                       |           | -                                                                      |                                                                  |          |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                       |                                                                                                                          | 15                                                                                                                                                                                                                                                   | 52.3%                                                                                                                                                                                                               | -0.77 [-1.32, -0.22]                                                                                                                                                                                                                                                                                                                                       |           | •                                                                      | •                                                                |          |
| Heterogeneity: Tau <sup>2</sup> = 0<br>Test for overall effect: Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.18; Chi²<br>Z = 2.74 (                                                                                                                                                                                | = 9.44,<br>P = 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | df = 2<br>06)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ? (P = 0                                                                                                                                              | .009);                                                                                                                   | l² = 79'                                                                                                                                                                                                                                             | %                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                            |           |                                                                        |                                                                  |          |
| 1.1.3 Mice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                       |                                                                                                                          |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                            |           |                                                                        |                                                                  |          |
| LL Chen2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.54                                                                                                                                                                                                    | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.34                                                                                                                                                  | 0.1                                                                                                                      | 8                                                                                                                                                                                                                                                    | 24.1%                                                                                                                                                                                                               | -0.80 [-0.87, -0.73]                                                                                                                                                                                                                                                                                                                                       |           |                                                                        |                                                                  |          |
| SX Yan2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.36                                                                                                                                                                                                    | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.62                                                                                                                                                  | 0.13                                                                                                                     | 7                                                                                                                                                                                                                                                    | 23.6%                                                                                                                                                                                                               | -0.26 [-0.38, -0.14]                                                                                                                                                                                                                                                                                                                                       |           |                                                                        | -                                                                |          |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                       |                                                                                                                          | 15                                                                                                                                                                                                                                                   | 47.7%                                                                                                                                                                                                               | -0.53 [-1.06, -0.00]                                                                                                                                                                                                                                                                                                                                       |           | - 4                                                                    |                                                                  |          |
| Heterogeneity: Tau <sup>2</sup> = 0<br>Test for overall effect: Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ).14; Chi²<br>Z = 1.97 (                                                                                                                                                                                | = 57.76<br>P = 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6, df =<br>5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 (P <                                                                                                                                                | 0.000                                                                                                                    | )1); l² =                                                                                                                                                                                                                                            | 98%                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                            |           |                                                                        |                                                                  |          |
| Total (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                       |                                                                                                                          | 30                                                                                                                                                                                                                                                   | 100.0%                                                                                                                                                                                                              | -0.65 [-1.00, -0.31]                                                                                                                                                                                                                                                                                                                                       |           | •                                                                      |                                                                  |          |
| Heterogeneity: Tau <sup>2</sup> = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.13; Chi <sup>2</sup>                                                                                                                                                                                  | = 67.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4, df =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4 (P <                                                                                                                                                | 0.0000                                                                                                                   | )1);   <sup>2</sup> =                                                                                                                                                                                                                                | 94%                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                            | <u> </u>  |                                                                        | + +                                                              | <u> </u> |
| Test for overall effect: Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 = 3.70 (                                                                                                                                                                                              | P = 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 002)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                       |                                                                                                                          |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                            | -4        | -2                                                                     | 0 2                                                              | 4        |
| Test for subaroup differ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ences: C                                                                                                                                                                                                | hi² = 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 36. df :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | = 1 (P =                                                                                                                                              | 0.55)                                                                                                                    | .  ² = 0º                                                                                                                                                                                                                                            | %                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                            |           | Curcumin                                                               | Control                                                          |          |
| LVEF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cur                                                                                                                                                                                                     | cumin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cr                                                                                                                                                    | ontrol                                                                                                                   |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                     | Mean Difference                                                                                                                                                                                                                                                                                                                                            |           | Mean D                                                                 | )ifference                                                       |          |
| Study or Subgroup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mean                                                                                                                                                                                                    | SD 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mean                                                                                                                                                  | SD                                                                                                                       | Total                                                                                                                                                                                                                                                | Weight                                                                                                                                                                                                              | IV, Random, 95% CI                                                                                                                                                                                                                                                                                                                                         |           | IV, Rand                                                               | lom, 95% Cl                                                      |          |
| 1.1.2 Rats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F0 = 5                                                                                                                                                                                                  | 0.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.55                                                                                                                                                 |                                                                                                                          | -                                                                                                                                                                                                                                                    | 00.001                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                            |           |                                                                        | -                                                                |          |
| CH Llu2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 56.76                                                                                                                                                                                                   | 2.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 42.08                                                                                                                                                 | 5.5                                                                                                                      | 8                                                                                                                                                                                                                                                    | 23.3%                                                                                                                                                                                                               | 14.68 [10.62, 18.74]                                                                                                                                                                                                                                                                                                                                       |           |                                                                        |                                                                  |          |
| JH Xu2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 58.9                                                                                                                                                                                                    | 4.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 41.5                                                                                                                                                  | 3.2                                                                                                                      | 8                                                                                                                                                                                                                                                    | 23.4%                                                                                                                                                                                                               | 17.40 [13.40, 21.40]                                                                                                                                                                                                                                                                                                                                       |           |                                                                        | 1.7                                                              |          |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                       |                                                                                                                          | 16                                                                                                                                                                                                                                                   | 46.8%                                                                                                                                                                                                               | 16.06 [13.21, 18.91]                                                                                                                                                                                                                                                                                                                                       |           |                                                                        |                                                                  |          |
| Test for overall effect:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Z = 11.05                                                                                                                                                                                               | 5 (P < 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 (P =<br>1)                                                                                                                                          | 0.35);                                                                                                                   | 1- = 0%                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                            |           |                                                                        |                                                                  |          |
| 1.1.3 Mice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FF 7                                                                                                                                                                                                    | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40.4                                                                                                                                                  | 4.5                                                                                                                      | 0                                                                                                                                                                                                                                                    | 00.00/                                                                                                                                                                                                              | 45 00 140 40 47 441                                                                                                                                                                                                                                                                                                                                        |           |                                                                        | L                                                                |          |
| LL Chen2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 55.7                                                                                                                                                                                                    | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40.4                                                                                                                                                  | 1.5                                                                                                                      | 8                                                                                                                                                                                                                                                    | 20.0%                                                                                                                                                                                                               | 15.30 113.49. 17.111                                                                                                                                                                                                                                                                                                                                       |           |                                                                        |                                                                  |          |
| 01/1/0004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 04 00                                                                                                                                                                                                   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.0                                                                                                                                                  | 4 5                                                                                                                      | -                                                                                                                                                                                                                                                    | 00 00/                                                                                                                                                                                                              | 7 40 15 50 0 001                                                                                                                                                                                                                                                                                                                                           |           |                                                                        |                                                                  |          |
| SX Yan2021<br>Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21.23                                                                                                                                                                                                   | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13.8                                                                                                                                                  | 1.5                                                                                                                      | 7                                                                                                                                                                                                                                                    | 26.6%                                                                                                                                                                                                               | 7.43 [5.56, 9.30]                                                                                                                                                                                                                                                                                                                                          |           |                                                                        |                                                                  |          |
| SX Yan2021<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21.23<br>30.09; C<br>Z = 2.89                                                                                                                                                                           | 2.3<br>hi² = 35<br>(P = 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9<br><b>19</b><br>.06, d<br>004)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13.8<br>f = 1 (P                                                                                                                                      | 1.5<br>< 0.0                                                                                                             | 7<br><b>15</b><br>0001);                                                                                                                                                                                                                             | 26.6%<br>53.2%<br>  <sup>2</sup> = 97%                                                                                                                                                                              | 7.43 [5.56, 9.30]<br>11.37 [3.66, 19.08]                                                                                                                                                                                                                                                                                                                   |           |                                                                        | •                                                                |          |
| SX Yan2021<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21.23<br>30.09; C<br>Z = 2.89                                                                                                                                                                           | 2.3<br>hi² = 35<br>(P = 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9<br><b>19</b><br>5.06, d<br>004)<br><b>39</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13.8<br>f = 1 (P                                                                                                                                      | 1.5<br>< 0.0                                                                                                             | 7<br>15<br>0001);<br>31                                                                                                                                                                                                                              | 26.6%<br>53.2%<br>  <sup>2</sup> = 97%                                                                                                                                                                              | 7.43 [5.56, 9.30]<br>11.37 [3.66, 19.08]                                                                                                                                                                                                                                                                                                                   |           |                                                                        | •                                                                |          |
| SX Yan2021<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: :<br>Total (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21.23<br>30.09; C<br>Z = 2.89                                                                                                                                                                           | 2.3<br>hi <sup>2</sup> = 35<br>(P = 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9<br>19<br>.06, d<br>004)<br><b>39</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13.8<br>f = 1 (P                                                                                                                                      | 1.5<br>< 0.0                                                                                                             | 7<br>15<br>0001);<br>31                                                                                                                                                                                                                              | 26.6%<br>53.2%<br>  <sup>2</sup> = 97%                                                                                                                                                                              | 7.43 [5.56, 9.30]<br>11.37 [3.66, 19.08]<br>13.56 [8.58, 18.54]                                                                                                                                                                                                                                                                                            | <b></b>   | -1                                                                     | •                                                                |          |
| SX Yan2021<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: :<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: :<br>Test for subaroun diffe                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21.23<br>30.09; C<br>Z = 2.89<br>23.38; C<br>Z = 5.33<br>prences: 0                                                                                                                                     | 2.3<br>hi <sup>2</sup> = 35<br>(P = 0.0<br>hi <sup>2</sup> = 44<br>(P < 0.0<br>Chi <sup>2</sup> = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9<br>19<br>5.06, d<br>004)<br><b>39</b><br>5.15, d<br>00001<br>.25, d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13.8<br>f = 1 (P<br>f = 3 (P<br>)<br>f = 1 (P                                                                                                         | 1.5<br>< 0.0<br>< 0.0<br>= 0.2                                                                                           | 7<br>15<br>0001);<br>31<br>0001);<br>6). I <sup>2</sup> =                                                                                                                                                                                            | 26.6%<br>53.2%<br>  <sup>2</sup> = 97%<br><b>100.0%</b><br>  <sup>2</sup> = 93%<br>20.1%                                                                                                                            | 7.43 [5.56, 9.30]<br>11.37 [3.66, 19.08]<br>13.56 [8.58, 18.54]                                                                                                                                                                                                                                                                                            | ⊢<br>-100 | -50<br>Curcumin                                                        | ♦<br>0 50<br>Control                                             | 100      |
| SX Yan2021<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: :<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: :<br>Test for subaroup diffe                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21.23<br>30.09; C<br>Z = 2.89<br>23.38; C<br>Z = 5.33<br>rences: (                                                                                                                                      | 2.3<br>hi <sup>2</sup> = 35<br>(P = 0.0<br>hi <sup>2</sup> = 44<br>(P < 0.0<br>Chi <sup>2</sup> = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9<br>19<br>0.06, d<br>004)<br>39<br>0.15, d<br>00001<br>.25. d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13.8<br>f = 1 (P<br>f = 3 (P<br>)<br>f = 1 (P                                                                                                         | 1.5<br>< 0.0<br>< 0.0<br>= 0.2                                                                                           | 7<br>15<br>0001);<br>31<br>0001);<br>6). I <sup>2</sup> =                                                                                                                                                                                            | 26.6%<br>53.2%<br>  <sup>2</sup> = 97%<br><b>100.0%</b><br>  <sup>2</sup> = 93%<br>20.1%                                                                                                                            | 7.43 [5.56, 9.30]<br>11.37 [3.66, 19.08]<br>13.56 [8.58, 18.54]                                                                                                                                                                                                                                                                                            | -100      | l<br>-50<br>Curcumin                                                   | 0 50<br>Control                                                  | 100      |
| SX Yan2021<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: :<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: :<br>Test for subaroup diffe<br>LVFS                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21.23<br>30.09; C<br>Z = 2.89<br>23.38; C<br>Z = 5.33<br>rences: (<br>Cu                                                                                                                                | 2.3<br>$hi^2 = 35$<br>(P = 0.0)<br>$hi^2 = 44$<br>(P < 0.0)<br>$Chi^2 = 1$<br>rcumin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9<br>19<br>0.06, d<br>004)<br>39<br>0.15, d<br>00001<br>.25, d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13.8<br>f = 1 (P<br>f = 3 (P<br>)<br>f = 1 (P<br>C                                                                                                    | 1.5<br>< 0.0<br>< 0.0<br>= 0.2                                                                                           | 7<br>15<br>0001);<br>31<br>0001);<br>6). I <sup>2</sup> =                                                                                                                                                                                            | 26.6%<br>53.2%<br>  <sup>2</sup> = 97%<br>100.0%<br>  <sup>2</sup> = 93%<br>20.1%                                                                                                                                   | 7.43 [5.56, 9.30]<br>11.37 [3.66, 19.08]<br>13.56 [8.58, 18.54]<br>Mean Difference                                                                                                                                                                                                                                                                         | ⊢<br>-100 | -50<br>Curcumin<br>Mean D                                              | 0 50<br>Control                                                  | 100      |
| SX Yan2021<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: :<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: :<br>Test for subaroup diffe<br>LVFS<br>Study or Subgroup                                                                                                                                                                                                                                                                                                                                                                                                             | 21.23<br>30.09; C<br>Z = 2.89<br>23.38; C<br>Z = 5.33<br>rences: (<br>Cu<br><u>Mean</u>                                                                                                                 | 2.3<br>$hi^2 = 35$<br>(P = 0.0)<br>$hi^2 = 44$<br>(P < 0.0)<br>$Chi^2 = 1$<br>rcumin<br>SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9<br>19<br>.06, d<br>004)<br>.15, d<br>00001<br>.25. d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13.8<br>f = 1 (P<br>f = 3 (P<br>)<br>f = 1 (P<br><u>C</u><br><u>Mean</u>                                                                              | 1.5<br>< 0.0<br>< 0.0<br>= 0.2<br>ontrol                                                                                 | 7<br>15<br>0001);<br>31<br>0001);<br>6). I <sup>2</sup> =<br>                                                                                                                                                                                        | 26.6%<br>53.2%<br>  <sup>2</sup> = 97%<br>100.0%<br>  <sup>2</sup> = 93%<br>20.1%<br>Weight                                                                                                                         | 7.43 [5.56, 9.30]<br>11.37 [3.66, 19.08]<br>13.56 [8.58, 18.54]<br>Mean Difference<br>IV, Random, 95% Cl                                                                                                                                                                                                                                                   | -100      | -50<br>Curcumin<br>Mean D<br>IV, Rand                                  | 0 50<br>Control                                                  | 100      |
| SX Yan2021<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: :<br>Total (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: :<br>Test for subaroup diffe<br>LVFS<br>Study or Subgroup<br>1.1.2 Rats<br>CH Liu2015                                                                                                                                                                                                                                                                                                                                                                                 | 21.23<br>30.09; C<br>Z = 2.89<br>23.38; C<br>Z = 5.33<br>rences: (<br>Cu<br><u>Mean</u><br>26.7                                                                                                         | 2.3<br>$hi^2 = 35$<br>(P = 0.0)<br>$hi^2 = 44$<br>(P < 0.0)<br>Chi <sup>2</sup> = 1<br>rcumin<br><u>SD</u><br>1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9<br>19<br>.06, d<br>004)<br>.15, d<br>00001<br>.25. d<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13.8<br>f = 1 (P<br>f = 3 (P<br>)<br>f = 1 (P<br><u>C</u><br><u>Mean</u><br>17.23                                                                     | 1.5<br>< 0.0<br>< 0.0<br>= 0.2<br>ontrol<br>SD<br>1.97                                                                   | 7<br>15<br>0001);<br>31<br>0001);<br>6). l <sup>2</sup> =<br><u>Total</u>                                                                                                                                                                            | 26.6%<br>53.2%<br> ² = 97%<br>100.0%<br> ² = 93%<br>20.1%<br>Weight<br>16.8%                                                                                                                                        | 7.43 [5.56, 9.30]<br>11.37 [3.66, 19.08]<br>13.56 [8.58, 18.54]<br>Mean Difference<br>IV, Random, 95% Cl<br>9.47 [7.96, 10.98]                                                                                                                                                                                                                             | -100      | +<br>-50<br>Curcumin<br>Mean D<br>IV, Rand                             | 0 50<br>Control                                                  | 100      |
| SX Yan2021<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: :<br>Total (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: :<br>Test for subaroup diffe<br>LVFS<br><u>Study or Subgroup</u><br>1.1.2 Rats<br>CH Liu2015<br>Yoichi Sunagawa2012                                                                                                                                                                                                                                                                                                                                                   | 21.23<br>30.09; C<br>Z = 2.89<br>23.38; C<br>Z = 5.33<br>rences: (<br><u>Cu</u><br><u>Mean</u><br>26.7<br>14.1                                                                                          | 2.3<br>$hi^2 = 35$<br>(P = 0.0)<br>$hi^2 = 44$<br>(P < 0.0)<br>Chi <sup>2</sup> = 1<br>rcumin<br><u>SD</u><br>1.15<br>0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9<br>19<br>.06, d<br>004)<br>.15, d<br>00001<br>.25. d<br>Total<br>12<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13.8<br>f = 1 (P<br>f = 3 (P<br>)<br>f = 1 (P<br><u>C</u><br><u>Mean</u><br>17.23<br>13.6                                                             | 1.5<br>< 0.0<br>< 0.0<br>= 0.2<br>ontrol<br>SD<br>1.97<br>0.4                                                            | 7<br>15<br>0001);<br>31<br>0001);<br>6). I <sup>2</sup> =<br><u>Total</u><br>8<br>3                                                                                                                                                                  | 26.6%<br>53.2%<br> ² = 97%<br>100.0%<br> ² = 93%<br>20.1%<br>Weight<br>16.8%<br>17.0%                                                                                                                               | 7.43 [5.56, 9.30]<br>11.37 [3.66, 19.08]<br>13.56 [8.58, 18.54]<br>Mean Difference<br>IV, Random, 95% Cl<br>9.47 [7.96, 10.98]<br>0.50 [-0.41, 1.41]                                                                                                                                                                                                       | -100      | l<br>-50<br>Curcumin<br>Mean D<br>IV, Rand                             | 0 50<br>Control                                                  | 100      |
| SX Yan2021<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: :<br>Total (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: :<br>Test for suboroup diffe<br>LVFS<br><u>Study or Subgroup</u><br>1.1.2 Rats<br>CH Liu2015<br>Yoichi Sunagawa2012                                                                                                                                                                                                                                                                                                                                                   | 21.23<br>30.09; C<br>Z = 2.89<br>23.38; C<br>Z = 5.33<br>rences: (<br><u>Cu</u><br><u>Mean</u><br>26.7<br>14.1<br>25.2                                                                                  | 2.3<br>$hi^2 = 35$<br>(P = 0.0)<br>$hi^2 = 44$<br>(P < 0.0)<br>$Chi^2 = 1$<br><b>rcumin</b><br><b>SD</b><br>1.15<br>0.9<br>1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9<br>19<br>5.06, d<br>004)<br>39<br>5.15, d<br>00001<br>.25. d<br>Total<br>12<br>5<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13.8<br>f = 1 (P<br>f = 3 (P<br>)<br>f = 1 (P<br>C<br>Mean<br>17.23<br>13.6<br>15.5                                                                   | 1.5<br>< 0.0<br>< 0.0<br>= 0.2<br>ontrol<br>SD<br>1.97<br>0.4<br>0.7                                                     | 7<br>15<br>0001);<br>31<br>0001);<br>6). l <sup>2</sup> =<br><u>Total</u><br>8<br>3<br>11                                                                                                                                                            | 26.6%<br>53.2%<br> ² = 97%<br>100.0%<br> ² = 93%<br>20.1%<br>Weight<br>16.8%<br>17.0%<br>17.0%                                                                                                                      | 7.43 [5.56, 9.30]<br>11.37 [3.66, 19.08]<br>13.56 [8.58, 18.54]<br>Mean Difference<br>IV. Random, 95% Cl<br>9.47 [7.96, 10.98]<br>0.50 [-0.41, 1.41]<br>9.70 [8.67, 10.73]                                                                                                                                                                                 | -100      | I<br>-50<br>Curcumin<br>Mean D<br>IV, Rand                             | 0 50<br>Control                                                  | 100      |
| SX Yan2021<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: :<br>Total (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: :<br>Test for subaroup diffe<br>LVFS<br><u>Study or Subgroup</u><br>1.1.2 Rats<br>CH Liu2015<br>Yoichi Sunagawa2012<br>Yoichi Sunagawa2014<br>Yong Sook Kim2012                                                                                                                                                                                                                                                                                                       | 21.23<br>30.09; C<br>Z = 2.89<br>23.38; C<br>Z = 5.33<br>rences: (<br><u>Cu</u><br><u>Mean</u><br>26.7<br>14.1<br>25.2<br>19.22                                                                         | 2.3<br>$hi^2 = 35$<br>(P = 0.0)<br>$hi^2 = 44$<br>(P < 0.0)<br>Chi <sup>2</sup> = 1<br><b>rcumin</b><br><b>SD</b><br>1.15<br>0.9<br>1.6<br>2.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9<br>19<br>.06, d<br>004)<br><b>39</b><br>.15, d<br>00001<br>.25. d<br><b>Total</b><br>12<br>5<br>11<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13.8<br>f = 1 (P<br>f = 3 (P<br>)<br>f = 1 (P<br><u>C</u><br><u>Mean</u><br>17.23<br>13.6<br>15.5<br>11.6                                             | 1.5<br>< 0.0<br>< 0.0<br>= 0.2<br>ontrol<br>SD<br>1.97<br>0.4<br>0.7<br>2.08                                             | 7<br>15<br>0001);<br>31<br>0001);<br>6). I <sup>2</sup> =<br><u>Total</u><br>8<br>3<br>11<br>4                                                                                                                                                       | 26.6%<br>53.2%<br> 2 = 97%<br>100.0%<br> 2 = 93%<br>20.1%<br>Weight<br>16.8%<br>17.0%<br>15.7%                                                                                                                      | 7.43 [5.56, 9.30]<br>11.37 [3.66, 19.08]<br>13.56 [8.58, 18.54]<br>Mean Difference<br>IV. Random, 95% Cl<br>9.47 [7.96, 10.98]<br>0.50 [-0.41, 1.41]<br>9.70 [8.67, 10.73]<br>7.62 [4.47, 10.77]                                                                                                                                                           | -100      | I<br>-50<br>Curcumin<br>Mean D<br>IV, Rand                             | 0 50<br>Control                                                  | 100      |
| SX Yan2021<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: :<br>Total (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for subaroup diffe<br>LVFS<br>Study or Subgroup<br>1.1.2 Rats<br>CH Liu2015<br>Yoichi Sunagawa2012<br>Yoichi Sunagawa2014<br>Yong Sook Kim2012<br>Subtotal (95% Cl)                                                                                                                                                                                                                                                                                                                       | 21.23<br>30.09; C<br>Z = 2.89<br>23.38; C<br>Z = 5.33<br>rences: (<br><u>Cu</u><br><u>Mean</u><br>26.7<br>14.1<br>25.2<br>19.22                                                                         | 2.3<br>$hi^2 = 35$<br>(P = 0.0)<br>$hi^2 = 44$<br>(P < 0.0)<br>Chi <sup>2</sup> = 1<br>rcumin<br>SD<br>1.15<br>0.9<br>1.6<br>2.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9<br>19<br>.06, d<br>004)<br>39<br>.15, d<br>00001<br>.25. d<br>Total<br>12<br>5<br>11<br>3<br>31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13.8<br>f = 1 (P<br>f = 3 (P<br>)<br>f = 1 (P<br><u>C</u><br><u>Mean</u><br>17.23<br>13.6<br>15.5<br>11.6                                             | 1.5<br>< 0.0<br>= 0.2<br>ontroi<br>SD<br>1.97<br>0.4<br>0.7<br>2.08                                                      | 7<br>15<br>0001);<br>31<br>0001);<br>6). I <sup>2</sup> =<br><u>Total</u><br>8<br>3<br>11<br>4<br><b>26</b>                                                                                                                                          | 26.6%<br>53.2%<br> ² = 97%<br>100.0%<br> ² = 93%<br>20.1%<br>Weight<br>16.8%<br>17.0%<br>15.7%<br>66.5%                                                                                                             | 7.43 [5.56, 9.30]         11.37 [3.66, 19.08]         13.56 [8.58, 18.54]         13.56 [8.58, 18.54]         9.47 [7.96, 10.88]         0.50 [-0.41, 1.41]         9.70 [8.67, 10.73]         7.62 [4.47, 10.77]         6.80 [1.29, 12.30]                                                                                                               | -100      | I<br>-50<br>Curcumin<br>Mean D<br>IV, Rand                             | 0 50<br>Control                                                  | 100      |
| SX Yan2021<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: 7<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for subarous diffe<br>LVFS<br>Study or Subgroup<br>1.1.2 Rats<br>CH Liu2015<br>Yoichi Sunagawa2012<br>Yoichi Sunagawa2012<br>Yoichi Sunagawa2012<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 3<br>Test for overall effect: 2                                                                                                                                                                                                                                                | 21.23<br>30.09; C<br>Z = 2.89<br>23.38; C<br>Z = 5.33<br>rences: (<br><u>Rean</u><br>26.7<br>14.1<br>25.2<br>19.22<br>30.68; Ch<br>Z = 2.42 (                                                           | 2.3<br>$hi^2 = 35$<br>(P = 0.0)<br>$hi^2 = 44$<br>(P < 0.0)<br>Chi <sup>2</sup> = 1<br>rcumin<br>SD<br>1.15<br>0.9<br>1.6<br>2.12<br>$i^2 = 207$<br>P = 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9<br><b>19</b><br>.06, d<br>004)<br><b>39</b><br>.15, d<br>00001<br>.25, d<br><b>Total</b><br>12<br>5<br>11<br>3<br>31<br>.90, dl<br>22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13.8<br>f = 1 (P<br>f = 3 (P)<br>f = 1 (P<br>C<br>Mean<br>17.23<br>13.6<br>15.5<br>11.6                                                               | 1.5<br>< 0.0<br>= 0.2<br>00000000000000000000000000000000000                                                             | 7<br>15<br>00001);<br>31<br>6). I <sup>2</sup> =<br><u>Total</u><br>8<br>3<br>3<br>11<br>4<br>26<br>0001); I                                                                                                                                         | 26.6%<br>53.2%<br>1 <sup>2</sup> = 97%<br>100.0%<br>1 <sup>2</sup> = 93%<br>20.1%<br>16.8%<br>17.0%<br>15.7%<br>66.5%<br><sup>2</sup> = 99%                                                                         | 7.43 [5.56, 9.30]         11.37 [3.66, 19.08]         13.56 [8.58, 18.54]         13.56 [8.58, 18.54]         9.47 [7.96, 10.98]         0.50 [-0.41, 1.41]         9.70 [8.67, 10.73]         7.62 [4.47, 10.77]         6.80 [1.29, 12.30]                                                                                                               | -100      | I<br>-50<br>Curcumin<br>Mean D<br>IV, Rand                             | 0 50<br>Control                                                  | 100      |
| SX Yan2021<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: :<br>Total (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: :<br>Test for suboroup diffe<br>LVFS<br><u>Study or Subgroup</u><br>1.1.2 Rats<br>CH Liu2015<br>Yoichi Sunagawa2012<br>Yoichi Sunagawa2012<br>Yoichi Sunagawa2012<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 3<br>Test for overall effect: Z<br>1.1.3 Mice                                                                                                                                                                                             | 21.23<br>30.09; C<br>Z = 2.89<br>23.38; C<br>Z = 5.33<br>rences: (<br><u>Mean</u><br>26.7<br>14.1<br>25.2<br>19.22<br>30.68; Ch<br>Z = 2.42 (I                                                          | 2.3<br>$hi^2 = 35$<br>$(P = 0.1)^{-1}$<br>$hi^2 = 44$<br>$(P < 0.2)^{-1}$<br>$hi^2 = 44$<br>$hi^2 = 44$<br>$(P < 0.2)^{-1}$<br>$hi^2 = 44$<br>$hi^2 = 44$<br>$hi^2 = 44$<br>$hi^2 = 44$<br>$hi^2 = 1$<br>$hi^2 = 1$ | 9<br><b>19</b><br>.06, d<br>004)<br><b>39</b><br>.15, d<br>000011<br>.25, d<br><b>Total</b><br>12<br>5<br>11<br>3<br>31<br>.90, dH<br>2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13.8<br>f = 1 (P<br>f = 3 (P<br>)<br>f = 1 (P<br><u>Mean</u><br>17.23<br>13.6<br>15.5<br>11.6<br>f = 3 (P                                             | 1.5<br>< 0.0<br>= 0.2<br>00000000000000000000000000000000000                                                             | 7<br>15<br>00001);<br>31<br>00001);<br>1 <sup>2</sup> =<br><u>Total</u><br>8<br>3<br>11<br>4<br>26<br>00001); 1                                                                                                                                      | 26.6%<br>53.2%<br> 2 = 97%<br>100.0%<br> 2 = 93%<br>20.1%<br>Weight<br>16.8%<br>17.0%<br>15.7%<br>66.5%<br>2 = 99%                                                                                                  | 7.43 [5.56, 9.30]         11.37 [3.66, 19.08]         13.56 [8.58, 18.54]         Mean Difference         IV. Random, 95% Cl         9.47 [7.96, 10.98]         0.50 [-0.41, 1.41]         9.70 [8.67, 10.73]         7.62 [4.47, 10.77]         6.80 [1.29, 12.30]                                                                                        | -100      | I<br>-50<br>Curcumin<br>Mean D<br>IV, Rand                             |                                                                  | 100      |
| SX Yan2021<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: :<br>Total (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: :<br>Test for suboroup diffe<br>LVFS<br><u>Study or Subgroup</u><br>1.1.2 Rats<br>CH Liu2015<br>Yoichi Sunagawa2012<br>Yoichi Sunagawa2014<br>Yong Sook Kim2012<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 3<br>Test for overall effect: Z<br>1.1.3 Mice<br>LL Chen2014                                                                                                                                                                                | 21.23<br>30.09; C<br>Z = 2.89<br>23.38; C<br>Z = 5.33<br>rences: (<br><u>Mean</u><br>26.7<br>14.1<br>25.2<br>19.22<br>30.68; Ch<br>Z = 2.42 (I<br>35.8                                                  | 2.3<br>P = 0.1<br>P =                                                                                                                                                                                                                                                                                                                                          | 9<br>19<br>.06, d<br>004)<br>39<br>.15, d<br>00001<br>.25. d<br>12<br>5<br>11<br>3<br>31<br>.90, dt<br>2)<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13.8<br>f = 1 (P<br>)<br>f = 3 (P<br>)<br>f = 1 (P<br><b>C</b><br><b>C</b><br><b>Mean</b><br>17.23<br>13.6<br>15.5<br>11.6<br>= 3 (P<br>21.3          | 1.5<br>< 0.0<br>< 0.0<br>= 0.2<br>0.4<br>0.7<br>2.08<br>< 0.00<br>1.5                                                    | 7<br>15<br>00001);<br>31<br>00001); l <sup>2</sup> =<br><u>Total</u><br>8<br>3<br>1<br>1<br>4<br>26<br>0001); l<br>8<br>8                                                                                                                            | 26.6%<br>53.2%<br> 2 = 97%<br>100.0%<br> 2 = 93%<br>20.1%<br>16.8%<br>17.0%<br>15.7%<br>66.5%<br>2 = 99%<br>16.6%                                                                                                   | 7.43 [5.56, 9.30]<br>11.37 [3.66, 19.08]<br>13.56 [8.58, 18.54]<br>13.56 [8.58, 18.54]<br>9.47 [7.96, 10.98]<br>0.50 [-0.41, 1.41]<br>9.70 [8.67, 10.73]<br>7.62 [4.47, 10.77]<br>6.80 [1.29, 12.30]                                                                                                                                                       | -100      | I<br>-50<br>Curcumin<br>Mean D<br>IV, Rand                             | 0 50<br>Control                                                  |          |
| SX Yan2021<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for subaroun diffe<br>LVFS<br>Study or Subgroup<br>1.1.2 Rats<br>CH Liu2015<br>Yoichi Sunagawa2012<br>Yoichi Sunagawa2014<br>Yong Sock Kim2012<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 3<br>Test for overall effect: 2<br>1.1.3 Mice<br>LL Chen2014<br>SX Yan2021<br>Subtotal (95% CI)                                                                                                                                                                                    | 21.23<br>30.09; C<br>Z = 2.89<br>23.38; C<br>Z = 5.33<br>rences: (<br><u>Cu</u><br><u>Mean</u><br>26.7<br>14.1<br>25.2<br>19.22<br>30.68; Ch<br>Z = 2.42 (I<br>35.8<br>11.2                             | 2.3<br>P = 0.0<br>P =                                                                                                                                                                                                                                                                                                                                          | 9<br><b>19</b><br>.06, d<br>004)<br><b>39</b><br>.15, d<br>00001<br>.25. d<br><b>Total</b><br>12<br>5<br>11<br>3<br>31<br>.90, dl<br>2)<br>10<br>9<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13.8<br>f = 1 (P<br>)<br>f = 3 (P<br>)<br>f = 1 (P<br><b>C</b><br><b>C</b><br><b>Mean</b><br>17.23<br>13.6<br>15.5<br>11.6<br>f = 3 (P<br>21.3<br>6.9 | 1.5<br>< 0.0<br>< 0.0<br>= 0.2<br>0.4<br>0.7<br>2.08<br>< 0.00<br>1.5<br>1                                               | 7<br>15<br>00001);<br>31<br>0001);<br>6). l <sup>2</sup> =<br>Total<br>8<br>3<br>11<br>4<br>26<br>0001); 1<br>8<br>8<br>7<br>7                                                                                                                       | 26.6%<br>53.2%<br> 2 = 97%<br>100.0%<br> 2 = 93%<br>20.1%<br>16.8%<br>17.0%<br>15.7%<br>66.5%<br>2 = 99%<br>16.6%<br>16.6%<br>16.6%                                                                                 | 7.43 [5.56, 9.30]<br>11.37 [3.66, 19.08]<br>13.56 [8.58, 18.54]<br>13.56 [8.58, 18.54]<br>9.47 [7.96, 10.98]<br>0.50 [-0.41, 1.41]<br>9.70 [8.67, 10.73]<br>7.62 [4.47, 10.77]<br>6.80 [1.29, 12.30]                                                                                                                                                       | -100      | I<br>-50<br>Curcumin<br>Mean D<br>IV, Rand                             |                                                                  | 100      |
| SX Yan2021<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: :<br>Total (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: :<br>Test for subaroup diffe<br>LVFS<br>Study or Subgroup<br>1.1.2 Rats<br>CH Liu2015<br>Yoichi Sunagawa2012<br>Yoichi Sunagawa2012<br>Yoichi Sunagawa2012<br>Yoichi Sunagawa2012<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 3<br>Test for overall effect: 2<br>1.1.3 Mice<br>LL Chen2014<br>SX Yan2021<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 5<br>Test for overall effect: 2                                                      | 21.23<br>30.09; C<br>Z = 2.89<br>23.38; C<br>Z = 5.33<br>rences: (<br><u>Mean</u><br>26.7<br>14.1<br>25.2<br>19.22<br>30.68; Ch<br>12.2<br>35.8<br>11.2<br>51.34; Ch<br>Z = 1.84 ([                     | 2.3<br>$hi^2 = 35$<br>$(P = 0.1)^{-1}$<br>$hi^2 = 44$<br>$(P < 0.0)^{-1}$<br>$hi^2 = 44$<br>$hi^2 = 1$<br>$hi^2 = 44$<br>$hi^2 = 1$<br>$hi^2 = 1$<br>$hi^2 = 1$<br>$hi^2 = 207$<br>$hi^2 = 207$                                        | 9<br>19<br>.06, d<br>004)<br>39<br>.15, d<br>00001<br>.25, d<br>12<br>5<br>11<br>3<br>31<br>.90, df<br>2)<br>10<br>9<br>19<br>49, df f<br>7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13.8<br>f = 1 (P<br>f = 3 (P<br>)<br>f = 1 (P<br><b>C</b><br><b>C</b><br><b>Mean</b><br>17.23<br>13.6<br>15.5<br>11.6<br>5<br>= 3 (P                  | 1.5<br>< 0.0<br>= 0.2<br>0000000<br>1.97<br>0.4<br>0.7<br>2.08<br>< 0.000<br>1.5<br>1<br>: 0.0000                        | 7<br>15<br>00001);<br>31<br>00001);<br>6). l <sup>2</sup> =<br><u>Total</u><br>8<br>3<br>11<br>4<br>26<br>0001); l<br>8<br>8<br>7<br>7<br>15<br>001); l <sup>2</sup>                                                                                 | 26.6%<br>53.2%<br> 2 = 97%<br>100.0%<br> 2 = 93%<br>20.1%<br>16.8%<br>17.0%<br>15.7%<br>66.5%<br>2 = 99%<br>16.6%<br>33.5%<br>= 99%                                                                                 | 7.43 [5.56, 9.30]         11.37 [3.66, 19.08]         13.56 [8.58, 18.54]         13.56 [8.58, 18.54]         9.47 [7.96, 10.98]         0.50 [-0.41, 1.41]         9.70 [8.67, 10.73]         7.62 [4.47, 10.77]         6.80 [1.29, 12.30]         14.50 [12.69, 16.31]         4.30 [2.91, 5.69]         9.38 [-0.61, 19.38]                            | -100      | I<br>-50<br>Curcumin<br>Mean D<br>IV, Rand                             |                                                                  | 100      |
| SX Yan2021<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: :<br>Total (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: :<br>Test for subaroup diffe<br>LVFS<br>Study or Subgroup<br>1.1.2 Rats<br>CH Liu2015<br>Yoichi Sunagawa2012<br>Yoichi Sunagawa2014<br>Yong Sook Kim2012<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 3<br>Test for overall effect: 2<br>1.1.3 Mice<br>LL Chen2014<br>SX Yan2021<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 5<br>Test for overall effect: 2<br>Total (95% Cl)                                                             | 21.23<br>30.09; C<br>Z = 2.89<br>23.38; C<br>Z = 5.33<br>rences: (<br>Mean<br>26.7<br>14.1<br>25.2<br>19.22<br>30.68; Ch<br>2 = 2.42 ((<br>35.8<br>11.2<br>51.34; Ch<br>2 = 1.84 ((                     | 2.3<br>hi <sup>2</sup> = 35<br>(P = 0.1<br>hi <sup>2</sup> = 44<br>(P < 0.0<br>chi <sup>2</sup> = 1<br>rcumin<br>SD<br>1.15<br>0.9<br>1.6<br>2.12<br>i <sup>2</sup> = 207<br>P = 0.02<br>2.4<br>1.8<br>i <sup>2</sup> = 76.4<br>P = 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9<br>19<br>.06, d<br>004)<br>39<br>.15, d<br>00001<br>.25, d<br>12<br>5<br>11<br>3<br>31<br>.90, dt<br>2)<br>10<br>9<br>19<br>49, df<br>7)<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13.8<br>f = 1 (P<br>f = 3 (P<br>)<br>f = 1 (P<br>C<br>C<br>Mean<br>17.23<br>13.6<br>15.5<br>11.6<br>5<br>= 3 (P<br>21.3<br>6.9<br>= 1 (P <            | 1.5<br>< 0.0<br>= 0.2<br>0000000<br>5D<br>0.4<br>0.7<br>2.08<br>< 0.00<br>1.5<br>1<br>: 0.0000                           | 7<br>15<br>0001);<br>31<br>0001);<br>6). I <sup>2</sup> =<br><u>Total</u><br>8<br>3<br>11<br>4<br>26<br>0001); I<br>2<br>8<br>7<br>15<br>15<br>001); I <sup>2</sup>                                                                                  | 26.6%<br>53.2%<br> 2 = 97%<br>100.0%<br> 2 = 93%<br>20.1%<br>Weight<br>16.8%<br>17.0%<br>17.0%<br>15.7%<br>66.5%<br>2 = 99%<br>16.6%<br>33.5%<br>= 99%                                                              | 7.43 [5.56, 9.30]         11.37 [3.66, 19.08]         13.56 [8.58, 18.54]         13.56 [8.58, 18.54]         9.47 [7.96, 10.98]         0.50 [-0.41, 1.41]         9.70 [8.67, 10.73]         7.62 [4.47, 10.77]         6.80 [1.29, 12.30]         14.50 [12.69, 16.31]         4.30 [2.91, 5.69]         9.38 [-0.61, 19.38]         7.66 [3.31, 12.01] | -100      | l<br>-50<br>Curcumin<br>Mean D<br>IV, Rand                             |                                                                  | 100      |
| SX Yan2021<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: :<br>Total (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: :<br>Test for subaroup diffe<br>LVFS<br>Study or Subgroup<br>1.1.2 Rats<br>CH Liu2015<br>Yoichi Sunagawa2012<br>Yoichi Sunagawa2012<br>Yoichi Sunagawa2012<br>Yoichi Sunagawa2014<br>Yong Sook Kim2012<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 3<br>Test for overall effect: 2<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 5<br>Test for overall effect: 2<br>Total (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 5<br>Total (95% Cl) | 21.23<br>30.09; C<br>Z = 2.89<br>23.38; C<br>Z = 5.33<br>rences: (<br><u>Mean</u><br>26.7<br>14.1<br>25.2<br>19.22<br>30.68; Ch<br>2 = 2.42 ((<br>35.8<br>11.2<br>51.34; Ch<br>2 = 1.84 ((<br>28.77; Ch | 2.3<br>$hi^2 = 35$<br>$(P = 0.1)^{-1}$<br>$hi^2 = 44$<br>$(P < 0.0)^{-1}$<br>$hi^2 = 44$<br>$(P < 0.0)^{-1}$<br>$(P < 0.0)^{-1}$<br>$hi^2 = 44$<br>$(P < 0.0)^{-1}$<br>$hi^2 = 44$<br>$(P < 0.0)^{-1}$<br>$hi^2 = 44$<br>$hi^2 = 200^{-1}$<br>$hi^2 = 200^{-1}$<br>$hi^2$                                                                                     | 9<br>19<br>.06, d<br>004)<br>39<br>.15, d<br>00001<br>.25, d<br>12<br>5<br>11<br>31<br>.90, dt<br>2)<br>10<br>9<br>19<br>49, df<br>7)<br>50<br>.08, dt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13.8<br>f = 1 (P<br>f = 3 (P<br>)<br>f = 1 (P<br>$\frac{C C}{Mean}$<br>17.23<br>13.6<br>15.5<br>11.6<br>f = 3 (P<br>21.3<br>6.9<br>= 1 (P <           | 1.5<br>< 0.0<br>= 0.2<br>000000<br>5D<br>1.97<br>0.4<br>0.7<br>2.08<br>< 0.00<br>1.5<br>1<br>: 0.0000<br>< 0.000         | 7<br>15<br>00001);<br>31<br>00001);<br>6). I <sup>2</sup> =<br><u>Total</u><br>8<br>3<br>11<br>4<br>26<br>6<br>3<br>11<br>4<br>26<br>0001); I<br>2<br>8<br>8<br>7<br>15<br>0001); I <sup>2</sup>                                                     | 26.6%<br>53.2%<br> 2 = 97%<br>100.0%<br> 2 = 93%<br>20.1%<br>16.8%<br>17.0%<br>17.0%<br>15.7%<br>66.5%<br>2 = 99%<br>16.6%<br>33.5%<br>= 99%<br>100.0%<br>2 = 98%                                                   | 7.43 [5.56, 9.30]         11.37 [3.66, 19.08]         13.56 [8.58, 18.54]         13.56 [8.58, 18.54]         9.47 [7.96, 10.98]         0.50 [-0.41, 1.41]         9.70 [8.67, 10.73]         7.62 [4.47, 10.77]         6.80 [1.29, 12.30]         14.50 [12.69, 16.31]         4.30 [2.91, 5.69]         9.38 [-0.61, 19.38]         7.66 [3.31, 12.01] | -100      | H<br>-50<br>Curcumin<br>Mean D<br>IV, Rand                             | ♦<br>0 50<br>Control<br>Difference<br>lom, 95% CI<br>•<br>•<br>• | 100      |
| SX Yan2021<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for subaroun diffe<br>LVFS<br>Study or Subgroup<br>1.1.2 Rats<br>CH Liu2015<br>Yoichi Sunagawa2012<br>Yoichi Sunagawa2014<br>Yong Sook Kim2012<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 3<br>Test for overall effect: Z<br>1.1.3 Mice<br>LL Chen2014<br>SX Yan2021<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 5<br>Test for overall effect: Z<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 2<br>Test for overall effect: Z<br>Total (95% CI)      | 21.23<br>30.09; C<br>Z = 2.89<br>23.38; C<br>Z = 5.33<br>rences: (<br>Mean<br>26.7<br>14.1<br>25.2<br>19.22<br>30.68; Ch<br>2 = 2.42 (l<br>35.8<br>11.2<br>51.34; Ch<br>2 = 3.45 (l<br>ences: C         | 2.3<br>$hi^2 = 35$<br>$(P = 0.1)^{12} = 44$<br>$(P < 0.0)^{12} = 44$<br>$(P < 0.0)^{12} = 1$<br><b>reumin</b><br><b>SD</b><br>1.15<br>0.9<br>1.6<br>2.12<br>$i^2 = 207$<br>2.4<br>1.8<br>$i^2 = 76.4$<br>$i^2 = 76.4$<br>$i^2 = 76.4$<br>$i^2 = 10.07$<br>$i^2 = 30.01$<br>$i^2 = 0.007$<br>$i^2 = 0.007$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9<br>19<br>10,06, d<br>39<br>.15, d<br>00001<br>.25, d<br>12<br>5<br>11<br>.33<br>.90, dl<br>2)<br>10<br>9<br>19<br>49, df<br>7)<br>50<br>0.08, df<br>.25, d<br>.09, df<br>.25, d<br>.00, df<br>.25, d<br>.25, d | 13.8<br>f = 1 (P<br>f = 3 (P)<br>f = 1 (P<br>C<br>C<br>Mean<br>17.23<br>13.6<br>15.5<br>11.6<br>f = 3 (P<br>21.3<br>6.9<br>= 1 (P <                   | 1.5<br>< 0.0<br>= 0.2<br>000000<br>1.97<br>0.4<br>0.7<br>2.08<br>< 0.00<br>1.5<br>1<br>:<br>0.0000<br>< 0.000<br>< 0.000 | 7<br>15<br>00001);<br>31<br>00001);<br>1 <sup>2</sup> =<br><b>Total</b><br>8<br>3<br>11<br>4<br><b>26</b><br>0001); 1<br><b>2</b><br><b>15</b><br>0001); 1 <sup>2</sup><br><b>41</b><br>00001); 1<br><b>2</b><br><b>41</b><br>00001); 1 <sup>2</sup> | 26.6%<br>53.2%<br>1 <sup>2</sup> = 97%<br>100.0%<br>1 <sup>2</sup> = 93%<br>20.1%<br>Weight<br>16.8%<br>17.0%<br>17.0%<br>17.0%<br>2 = 99%<br>16.6%<br>16.8%<br>33.5%<br>= 99%<br>100.0%<br><sup>2</sup> = 98%<br>% | 7.43 [5.56, 9.30]         11.37 [3.66, 19.08]         13.56 [8.58, 18.54]         13.56 [8.58, 18.54]         9.47 [7.96, 10.98]         0.50 [-0.41, 1.41]         9.70 [8.67, 10.73]         7.62 [4.47, 10.77]         6.80 [1.29, 12.30]         14.50 [12.69, 16.31]         4.30 [2.91, 5.69]         9.38 [-0.61, 19.38]         7.66 [3.31, 12.01] | -100      | I<br>-50<br>Curcumin<br>IV, Rand<br>IV, Rand<br>-12<br>-25<br>Curcumin | 0 50<br>Control                                                  | 100      |

### Discussion

In this meta-analysis, we found that curcumin could reduce CK-MB, CK, LDH, and MDA levels. Also, it could lower SBP, DBP, LVEDP, LVW/BW, apoptosis index, LVEDD, LVESD, and myocardial infarction area and increase LVEF, LVFS, +dp/dtmax, and-dp/dtmax. However, it had no significant impact on the heart rate and the levels of SOD in the models.

The levels of CK, CK-MB, and LDH are commonly used markers of myocardial injury, as their changes can reflect the degree of myocardial injury. In myocardial infarction models, curcumin reduces CK, CK-MB, and LDH levels and alleviates myocardial injury. Inflammatory reaction and oxidative stress are the initiating and promoting factors of myocardial infarction, existing throughout the process of myocardial infarction. A byproduct of lipid peroxidation in oxidative stress is MDA, changes in which can reflect the degree of oxidative stress. Curcumin reduces the MDA concentration in myocardial infarction models, indirectly confirming the antioxidant effect of curcumin.

Curcumin has also been found to reduce SBP, DBP, and LVEDP. Blood pressure has an important impact on the prognosis of acute myocardial infarction. However, in human epidemiological studies, there has been debate about the reasonable control range of blood pressure. An international cohort study observing data from 22,672 patients with coronary atherosclerotic heart disease demonstrated that when SBP was controlled between 120 and 140 mmHg (1 mmHg = 0.1333 kPa), the incidence of cardiovascular events was the lowest. However, an SBP <120 mmHg was associated with an increased risk of cardiovascular death and all-cause death, and a mean follow-up of 5 years revealed that an SBP ≥140 mmHg or <120 mmHg and a DBP ≥80 mmHg or <70 mmHg were associated with an increased risk of cardiovascular events and showed a J-curve relationship (Selvaraj et al., 2016).

Curcumin reduces indicator numbers of cardiac structure, including LVW/BW, LVEDD, and LVESD, reduces left ventricular dilatation, alleviates myocardial hypertrophy and remodeling, increases cardiac systolic function indicators, including LVFS, LVEF, +dp/dtmax, and-dp/dtmax, and improves the diastolic and systolic capacity of the ventricle.

Myocardial apoptosis is the main form of myocardial cell loss in the early stages of myocardial ischemia (Wang et al., 2018). During myocardial ischemia, the apoptosis mechanism is first initiated. With time and dependent on the aggravation of the degree of ischemia, the cells in the ischemic center then progress to necrosis. Cardiomyocytes around the ischemia are then in apoptosis, a state of reversible damage. This is why, in acute myocardial infarction, apoptotic cells appear in the center and periphery of the infarction, and more apoptotic cells are found in the peripheral area of the infarction (Jo et al., 2020; Zhou et al., 2020; Sheng et al., 2021). Curcumin reduces the myocardial infarction area and apoptosis index in rat or mouse myocardial infarction models and alleviates myocardial necrosis and apoptosis. In some of the included studies, the dosage of curcumin was divided into several levels. The results of almost all such articles showed that the dosage of curcumin showed a dose effect with different dosage, and the effect of curcumin increased with the increase of dosage. In our study, the research results of the maximum dosage included in the study were selected. Because the dose distribution of the included studies was quite different, it was not possible to classify the doses for the time being.

### Conclusion

Curcumin alleviates myocardial injury and oxidative stress in myocardial infarction rodent models in terms of blood biochemistry indicators, improves the diastolic and systolic capacity of the ventricle in terms of hemodynamics, and reduces the necrosis and apoptosis of cardiomyocytes in terms of tissue structure. These results show the valuable effects of curcumin on myocardial infarction in the clinic. However, the methodological quality of the studies was low. Additional research is warranted focusing on rigour of assessment, intensity of interventions delivered and methodological limitations.

### Data availability statement

The raw data supporting the conclusion of this article will be made available by the authors, without undue reservation.

### Author contributions

Conception and design of the research: B-YP, YL, Y-HW, and L-HJ. Acquisition of data: B-YP, H-BD, Y-HW, and X-WJ. Analysis and interpretation of the data: B-YP, Y-HW, X-WJ and YL. Statistical analysis: B-YP and Y-HW. Obtaining financing: L-HJ. Writing of the manuscript: B-YP. Critical revision of the manuscript for intellectual content: YL and L-HJ. All authors read and approved the final draft.

### Funding

National Natural Science Foundation of China (No. 81673846).

### Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

### Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated

### References

Boarescu, P-M., Boarescu, I., Bocşan, I. C., Pop, R. M., Gheban, D., Bulboacă, A. E., et al. (2019). Curcumin nanoparticles protect against isoproterenol induced myocardial infarction by alleviating myocardial tissue oxidative stress, electrocardiogram, and biological changes. *Molecules* 24, E2802. doi:10.3390/molecules24152802

Boarescu, P-M., Chirilă, I., Bulboacă, A. E., Bocşan, I. C., Pop, R. M., Gheban, D., et al. (2019). Effects of curcumin nanoparticles in isoproterenol-induced myocardial infarction. *Oxidative Med. Cell. Longev.* 2019, 7847142. doi:10.1155/2019/7847142

Chen, L. L. (2014). Protective effect and mechanism of curcumin on ventricular remodeling after myocardial infarction in mice. Southern Medical University.

Chen, L. L., Wang, Z. M., Chen, B., Wang, L. S., and Yang, Z. J. (2015). Inhibitory effect of curcumin on inflammatory response after myocardial infarction in rats and its mechanism. *J. Nanjing Med. Univ. Sci. Ed.* 35, 1552–1556.

Cheng, H., and Liu, W. W. (2005). Protective effect of curcumin on myocardial ischemia-reperfusion injury in rats. *Chin. Pharmacol. Bull.* 55, 95–99. doi:10.1080/13880209.2016.1214741

Christensen, D. M., Strange, J. E., Phelps, M., Schjerning, A. M., Sehested, T. S. G., Gerds, T., et al. (2022). Age- and sex-specific trends in the incidence of myocardial infarction in Denmark, 2005 to 2021. *Atherosclerosis* 346, 63–67. doi:10.1016/j. atherosclerosis.2022.03.003

Cui, J. K., Geng, N. Z., Meng, F. J., Shi, L. C., Tian, G., and Yang, G. Q. (2020). The protective effect of nomethoxycurcumin on myocardial ischemia-reperfusion injury in rats by regulating autophagy through PI3K-Akt-MTOR signaling pathway. *Zhong Yi Yao Xue Bao* 48, 19–24.

Duan, W., Yang, Y., Yan, J., Yu, S., Liu, J., Zhou, J., et al. (2012). The effects of curcumin post-treatment against myocardial ischemia and reperfusion by activation of the JAK2/STAT3 signaling pathway. *Basic Res. Cardiol.* 107, 263. doi:10.1007/s00395-012-0263-7

Gao, C. J., Gao, D. Z., and Wang, Y. (2015). Protective effect of curcumin on acute myocardial infarction model rats. *Zhong Guo Yao Fang.* 26, 1782–1785.

Gao, J. Z., Wang, Y. L., Li, D. L., and Zhang, J. Y. (2011). Curcumin preconditioning alleviates myocardial apoptosis in acute myocardial ischemia rats. *Basic Med. Sci. Clin.* 31, 1247–1250. doi:10.3892/mmr.2019.10371

Geng, H. H. (2016). Study on the functional regulation mechanism and effect of microrNA-7A in myocardial cell injury induced by acute myocardial infarction. Shandong University.

Gu, H. P., Wu, M. Y., and Guo, X. H. (2016). Protective effect of curcumin on myocardial ischemia-reperfusion injury in mice and its correlation with Toll-like receptor 4/nuclear factor - KB signaling pathway. *Chin. J. Biol. Chin. J. Biol.* 29, 932–935.

Guo, H., Xu, C. N., Zhang, Y., Sun, Y. G., Qioa, R., Jin, P., et al. (2021). Curcumin activates mammalian sirolimus target protein signaling to inhibit autophagy and alleviate myocardial infarction injury in mice. *Chin. J. Clin. Pharmacol.* 37, 3097–3101. doi:10.1002/ijc.21932

He, Z. F., Liu, C. H., Liu, C. H., Lu, J. K., Li, Y. H., Fan, L., et al. (2015). Effects of curcumin on hemodynamics and expression of matrix metalloproteinase-2 after myocardial infarction. *Chin. Med.* 50, 32–35.

Hj W, K. Z., Zhang, J. M., Ma, L. W., and Zhuang, Y. (2021). Mechanism of curcumin against myocardial ischaemia-reperfusion injury based on the P13K/Akt/ mTOR signalling pathway. *Eur. Rev. Med. Pharmacol. Sci.* 25, 5490–5499. doi:10. 26355/eurrey\_202109\_26658

Hong, D., Zeng, X., Xu, W., Ma, J., Tong, Y., and Chen, Y. (2009). Altered profiles of gene expression in curcumin-treated rats with experimentally induced myocardial infarction. *Pharmacol. Res.* 61, 142–148. doi:10.1016/j.phrs.2009.08.009

Jo, W., Min, B. S., Yang, H. Y., Park, N. H., Kang, K. K., Lee, S., et al. (2020). Sappanone A prevents left ventricular dysfunction in a rat myocardial ischemia reperfusion injury model. *Int. J. Mol. Sci.* 21, E6935. doi:10.3390/ijms21186935

Kim, R. B., Kim, J. R., and Hwang, J. Y. (2022). Epidemiology of myocardial infarction in Korea: Hospitalization incidence, prevalence, and mortality.. *Epidemiol. Health* 44, e2022057. doi:10.4178/epih.e2022057

Kim, Y. S., Kwon, J. S., Cho, Y. K., Jeong, M. H., Cho, J. G., Park, J. C., et al. (2012). Curcurnin reduces the cardiac ischemia-reperfusion injury: Involvement of the toll-like receptor 2 in cardiomyocytes. J. Nutr. Biochem. 23, 1514–1523. doi:10.1016/j.jnutbio.2011.10.004 organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Kong, J. (2012). Effects of curcumin on the expression of NF-κB, PPAR-γ and Bcl-2 in rat myocardium after myocardial infarction. Xinxiang Medical University.

Lestari, M. L., and Indrayanto, G. (2014). Curcumin. Profiles Drug Subst. Excip. Relat. Methodol. 39, 113–204. doi:10.1016/B978-0-12-800173-8.00003-9

Li, H., Sureda, A., Devkota, H. P., Pittalà, V., Barreca, D., Silva, A. S., et al. (2020). Curcumin, the golden spice in treating cardiovascular diseases. *Biotechnol. Adv.* 38, 107343. doi:10.1016/j.biotechadv.2019.01.010

Liu, C. H., He, Z. F., Liu, C. H., Li, A. X., Liu, C., Lu, J. K., et al. (2015).Effects of curcumin on cardiac function and myocardial fibrosis in rats with acute myocardial infarction. *Xin Xue Guan Kang Fu Yi Xue Za ZHi* 24, 407–410.

Liu, H. J. (2018). [Protective effect and mechanism of curcumin on myocardial ischemia-reperfusion injury in rats. Nanjing Medical University.

Mehdi, R., Mehdi, H., Mahdi, A., Morteza, H., Hassan, A., Zirak, J. M., et al. (2019). Curcumin ameliorated myocardial infarction by inhibition of cardiotoxicity in the rat model. *J. Cell. Biochem.* 120, 11965–11972. doi:10.1002/jcb.28480

Musillo, C., Borgi, M., Saul, N., Möller, S., Luyten, W., Berry, A., et al. (2021). Natural products improve healthspan in aged mice and rats: A systematic review and meta-analysis. *Neurosci. Biobehav. Rev.* 121, 89–105. doi:10.1016/j.neubiorev. 2020.12.001

Selvaraj, S., Steg, P. G., Elbez, Y., Sorbets, E., Feldman, L. J., Eagle, K. A., et al. (2016). Pulse pressure and risk for cardiovascular events in patients with atherothrombosis: From the REACH registry. J. Am. Coll. Cardiol. 67, 392–403. doi:10.1016/j.jacc.2015.10.084

Shaoxi, Y., Mo, Z., Xiaoyun, Z., Yuanyuan, X., Juan, D., Mengwen, Y., et al. (2021). Anti-Inflammatory effect of curcumin on the mouse model of myocardial infarction through regulating macrophage polarization. *Mediat. Inflamm.* 21, 9976912. doi:10.1155/2021/9976912

Sheng, S., Yang, Q. N., Zhu, H. N., and Xian, Y. Y. (2021). Network pharmacology-based exploration of the mechanism of Guanxinning tablet for the treatment of stable coronary artery disease. *World J. Tradit. Chin. Med.* 7, 456–466. doi:10.4103/wjtcm.wjtcm\_25\_21

Sumitra, M., Manikandan, P., and Puvanakrishnan, R. (2007). Cardioprotective effects of curcumin. Adv. Exp. Med. Biol. 595, 359–377. doi:10.1007/978-0-387-46401-5\_16

Sunagawa, Y., Morimoto, T., Wada, H., Takaya, T., Katanasaka, Y., Kawamura, T., et al. (2011). A natural p300-specific histone acetyltransferase inhibitor, curcumin, in addition to angiotensin-converting enzyme inhibitor, exerts beneficial effects on left ventricular systolic function after myocardial infarction in rats. *Circ. J.* 75, 2151–2159. doi:10.1253/circj.cj-10-1072

Sunagawa, Y., Sono, S., Katanasaka, Y., Funamoto, M., Hirano, S., Miyazaki, Y., et al. (2014). Optimal dose-setting study of curcumin for improvement of left ventricular systolic function after myocardial infarction in rats. *J. Pharmacol. Sci.* 126, 329–336. doi:10.1254/jphs.14151FP

Sunagawa, Y., Wada, H., Suzuki, H., Sasaki, H., Imaizumi, A., Fukuda, H., et al. (2012). A novel drug delivery system of oral curcumin markedly improves efficacy of treatment for heart failure after myocardial infarction in rats. *Biol. Pharm. Bull.* 35, 139–144. doi:10.1248/bpb.35.139

Wang, R., Yao, Q., Chen, W., Gao, F., Li, P., Wu, J., et al. (2021). Stem cell therapy for crohn's disease: Systematic review and meta-analysis of preclinical and clinical studies. *Stem Cell Res. Ther.* 12 (1), 463. doi:10.1186/s13287-021-02533-0

Wang, R., Zhang, J. Y., Zhang, M., Zhai, M. G., Di, S. Y., Han, Q. H., et al. (2018). Curcumin attenuates IR-induced myocardial injury by activating SIRT3. *Eur. Rev. Med. Pharmacol. Sci.* 22, 1150–1160. doi:10.26355/eurrev\_201802\_14404

Wang, Y. (2008). Effects of curcumin on apoptosis and cardiac function after myocardial infarction in rats. Chongqing Medical University.

Xu, J. H., and Yang, B. (2015). Effect of flavin on expression of AT\_1 receptor in heart failure rats. *Shi Yong Yu Fang. Yi Xue* 22, 1069–1072.

Zhou, W. J., Li, J. L., Zhou, Q. M., Cai, F. F., Chen, X. L., LuYY, et al. (2020). Ginsenoside Rb1 pretreatment attenuates myocardial ischemia by reducing calcium/calmodulin-dependent protein kinase II-medicated calcium release. *World J. Tradit. Chin. Med.* 6, 284–294. doi:10.4103/wjtcm.wjtcm\_24\_20