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The photoperiodic system is concealed in the highly complex black-box, comprising four
functional subunits: 1) a photo/thermo-sensitive input unit, 2) a photoperiodic clock based
on a circadian system, 3) a condenser unit counting the number of inductive signals, and 4)
a neuroendocrine switch that triggers a phenotypic shift. This review aims to summarize
the research history and current reach of our understanding on this subject to connect it
with the molecular mechanism of the circadian clock rapidly being unveiled. The review
also focuses on the mode of intersubunit information transduction. It will scan the recent
advancement in research on each functional subunit, but special attention will be given to
the circadian clock–endocrine conjunct and the role of melatonin signaling in the regulation
of insect photoperiodism. Prothoracicotropic hormone (PTTH) probably plays the most
crucial role in the regulation of pupal diapause, which is the simplest model system of
diapause regulation by hormones investigated so far, particularly in the Chinese oak
silkmoth (Antheraea pernyi). A search for the trigger to release the PTTH found some
candidates, that is, indoleamines. Indolamine metabolism is controlled by arylalkylamine
N-acetyltransferase (aaNAT). Indolamine dynamics and aaNAT enzymatic activity changed
according to photoperiods. aaNAT activity and melatonin content in the brain showed not
only a photoperiodic response but also a circadian fluctuation. aaNAT had multiple
E-boxes, suggesting that it is a clock-controlled gene (ccg), which implies that cycle
(cyc, or brain–muscle Arnt-like 1 = Bmal1)/Clock (Clk) heterodimer binds to E-box and
stimulates the transcription of aaNAT, which causes the synthesis of melatonin. RNAi
against transcription modulators, cyc, or Clk downregulated aaNAT transcription, while
RNAi against repressor of cyc/Clk, per upregulated aaNAT transcription.
Immunohistochemical localization showed that the circadian neurons carry epitopes of
melatonin-producing elements such as aaNAT, the precursor serotonin, HIOMT, and
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melatonin as well as clock gene products such as cyc-ir, Per-ir, and dbt-ir, while PTTH-
producing neurons juxtaposed against the clock neurons showed hMT2-ir in A. pernyi
brain. Melatonin probably binds to the putative melatonin receptor (MT) that stimulates
Ca2+ influx, which in turn activates PKC. This induces Rab 8 phosphorylation and
exocytosis of PTTH, leading to termination of diapause. All the PTTH-expressing
neurons have PKC-ir, and Rab8-ir. When diapause is induced and maintained under
short days, serotonin binding to 5HTR1B suppresses PTTH release in a yet unknown way.
RNAi against this receptor knocked out photoperiodism; short day response is blocked
and diapause was terminated even under the short day condition. The result showed that a
relatively simple system controls both induction and termination in pupal diapause of A.
pernyi: the circadian system regulates the transcription of aaNAT as a binary switch, the
enzyme produces a melatonin rhythm that gates PTTH release, and 5HTR1B and MT are
probably also under photoperiodic regulation. Finally, we listed the remaining riddles which
need to be resolved, to fully understand this highly complex system in future studies.

Keywords: arylalkylamine N-acetyltransferase, circadian oscillation, E-box, prothoracicotropic hormone,
melatonin, photoperiodic time measurement, serotonin receptor, melatonin receptors

DAWN OF PHOTOPERIODIC RESEARCH IN
INSECTS AND MITES

Phenotypic plasticity is most extensively observed in the
developmental time course of species of the phylum
Arthropoda. Photoperiodic determination of diapause/non-
diapause shift is the culmination of life cycle adaptations in
insects and mites because it determines their voltinism and
increases stress tolerance. However, the regulatory mechanisms
of these shifts still remain unknown (Withrow, 1959; Nelson
et al., 2010).

The photoperiodic system comprises four functional subunits,
each capable of being an independent target of study: 1) an input
pathway, usually mediated via a photo- or thermo-sensor; 2) a
photoperiodic clock based on the circadian system; 3) a
photoperiodic counter of inductive cycle number; and 4) an
output pathway, usually a neuroendocrine switch that induces
a phenotypic shift. Studies on each subunit are valuable, but the
information flow across the subunits has not received much
attention.

The hormonal regulation of diapause has been studied
extensively (Denlinger, 1985, Denlinger, 2022); however, our
understanding of the connection between the internal clock
and the endocrine system is critically lacking or limited to
circadian influences on the hormone gland size, hormone titer,
hormone receptor, and enzyme activities for hormone synthesis
(Rensing et al., 1965; Vafopoulou and Steel, 1996, 2006;
Bembenek et al., 2005a). Many types of environmental signals
affect both the clock and the endocrine system, such as
photoperiod, temperature, social stress, nutritional condition,
and infection. Also, photoperiodism controls the manifestation
of different phenotypes, not only diapause/non-diapause but also
polyphenism, reproduction, behavior, and pigmentation.
Alternative phenotypes are combined through some sorting
mechanism to form a set of short-day type or long-day type.
The former, for example, undergoes diapause, stops feeding, and

becomes stress tolerant, while the latter continues feeding,
reproducing, and migrating. Collectively, such a sorted
collection of short-day or long-day phenotypes is called
diapause syndrome (de Wilde, 1969).

Nutritional conditions are continuously monitored in terms of
neural (Khan et al., 1983) or endocrine feedback (Mikani et al.,
2015). For example, in the Colorado potato beetle (Leptinotarsa
decemlineata), starvation neurally suppresses the corpus allatum
to reduce juvenile hormone synthesis (Khan et al., 1983).
Intensive cross-talks among neurotransmitters, neuropeptides,
and lipid factors such as JH and ecdysteroids have been
documented in various species. For example, in the American
cockroach (Periplaneta americana), starvation upregulates the
synthesis and secretion of short neuropeptide F (sNPF), which in
turn downregulates the synthesis and secretion of crustacean
cardioactive peptide (CCAP) via an autocrine loop (Mikani et al.,
2015). sNPF shuts down JH synthesis, whereas CCAP upregulates
it. These peptides as well as indolamines regulate two JH-
synthesizing enzymes (Kamruzzaman et al., 2020). It was also
shown that the indoleamines are under the control of
arylalkylamine N-acetyltransferase (aaNAT), which is encoded
by the clock-controlled gene (ccg) aaNAT (see later for detail). So,
various factors are interacting at different levels.

Photoperiodism was first recognized in the animal kingdom in
morph determination in aphids by Marcovitch (1924) and in
voltinism shift in the silkworm (Bombyx mori) by Kogure (1933)
and then later in reproduction and embryonic development in
spider mites by Bondarenko (1950), Lees (1950), Miller (1950),
and Gasser (1951). Phenomenological characterization and the
basic nature of insect photoperiodism and diapause were well
formulated in the iconic book “Photoperiodism and Seasonal
Development in Insects” by Danilevskii (1965), first published in
1961 in Russian. The ecological aspects of diapause and seasonal
adaptations in insects and mites were also collected in several
textbooks and reviews (Andrewartha, 1952; Lees, 1955; Tanaka,
1950a, Tanaka, 1950b, Tanaka, 1950c, Tanaka, 1951; Beck, 1968;
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Veerman, 1985; Tauber et al., 1986; Danks, 1987; Bradshaw and
Holzapfel, 2009; Emerson et al., 2009). Debates among scholars
have focused on the nature of photoperiodic clocks, that is,
endogenous oscillator-based vs. hour-glass timer, prompting
the development of several empirical models for photoperiodic
time measurement including the Bünning hypothesis (Bünning,
1936, Bünning, 1958, Bünning, 1960), the external coincidence
model (Pittendrigh, 1966, i.e., a more elaborate form of the
Bünning hypothesis), and several types of internal coincidence
models (i.e., double-oscillator type: Tyshchenko, 1966;
Danilevsky et al., 1970; multi-oscillator type, e.g., resonance
model, Pittendrigh, 1972; a model based on interactions of
multiple oscillators, Pittendrigh, 1981); this phase of studies
has been well documented by Saunders (2002), Beck (1980),
and Zaslavski (1988). These models are based on the assumption
that photoperiodic time measurement is a function of circadian
oscillations. However, Lees (1953), Lees (1973) observed the
hour-glass type of responses in the European red mite
[Metatetranychus (=Panonychus) ulmi] and the vetch aphid
(Megoura viciae). Takeda and Masaki (1976) and Takeda
(1985) also observed hourglass-type responses to non-diel
photoperiods and night interruptions with various lengths of
light–dark cycles in the Indian meal moth (Plodia interpunctella)
and the Southwestern corn borer moth (Diatraea grandiosella),
whereas in the cabbage butterfly (Pieris brassicae) and the ground
cricket (Pteronemobius fascipes), both circadian and hourglass-
type responses were observed (Dumortier and Brunerius, 1977;
Claret, 1985; Takeda, 1986; Dumortier, 1994). Claret and
Arpagaus (1994) have provided a double hour-glass model for
ichneumonid wasps.

These models were formulated in rather simplistic ways to
explain a set of particular circadian and photoperiodic data in a
model species, but model makers have been tempted to construct
more overarching models to explain a broader range of data and
species. For example, Tyshchenko (1966) and Danilevsky et al.
(1970) constructed a double-oscillator model that postulated that
diapause incidence depended on the overlap of the active phase of
two oscillators, one phase-fixed to dawn and the other to dusk. By
introducing a latent period sensitive to temperature or natural
selection, the model became able to explain the observed
variability in photoperiodic response curves at different
temperatures in different species. This model was unique
because the identity of each oscillator was sought to two types
of oscillators regulating eight-hour spontaneous firing in the
ventral nerve cord of the pine-tree lappet moth (Dendrolimus
pini). These oscillators are localized; one in the brain and the
other in an unknown site posterior to the neck ligation, and one
phase-locked to light-on and the other to light-off.

Subsequently, the scotonon–photonon model by Truman
(1971) attempted to concurrently explain post-diapause
eclosion behavior and photoperiodic activation of pupal
diapause in A. pernyi on the same oscillator phased to dusk,
with the kinetics called scotonon. The scotonon starts its
synthetic phase upon light-off. After reaching the hypothetical
peak, another decay reaction follows with different kinetics. The
retention of this reaction depends on the arrival of dawn, which
starts another kinetic decay called the photonon. Interactions of

this oscillator and the time zone of forbidden eclosion were
postulated to determine diapause/non-diapause fate. This was
an endocrinological model because prothoracicotropic hormone
(PTTH)/20-hydroxyecdysone, eclosion hormone (EH), and the
circadian oscillator can be handled as concrete endocrine subjects
that are experimentally testable. Eclosion hormone release was
postulated to depend on 20-hydroxyecdysone clearance and the
gate opening allowed by the circadian system. The EH release is
gated in the tobacco horn worm (Manduca sexta) where the
major Zeitgeber is the temperature cycle (Truman, 1984). EH
release depends on the clock gate of the G-system and ecdysteroid
titer that is regulated by another circadian oscillator (E-system).
This system behaves like the coupled oscillator hypothesis
formulated in the fruit fly (Drosophila pseudoobscura) and
showed six transient cycles, although this was formulated to
explain eclosion rhythm and not intended to explain
photoperiodism in this species. Truman considered that the
E-system probably resided in the prothoracic gland. These
neuroendocrine models provided better accessibility to the
physiological reality of the photoperiodic system, but “the
active phases,” “inhibitory zone,” or “circadian gating” are yet
to be defined.

The next model of this type, which was highly speculative, was
the dual system theory (DST) proposed by Beck (1974a), Beck
(1974b), Beck (1975), Beck (1976a), Beck (1976b), who postulated
the interaction of two oscillators, each engaged with dawn and
dusk, respectively, having photonon and scotonon kinetics. By
manipulating parameters, Beck was able to explain a variety of
photoperiodic response curves, temperature modifications, and
thermoperiodic response curves as well as the circadian gate. This
type of model making was succeeded by Vaz Nunes and Veerman
(1979a), Vaz Nunes and Veerman (1979b). Here, almost
everything we know about circadian and photoperiodic
reactions and photoperiodic summation was explained;
however, as the number of assumptions and hypotheses
increased, physiological realities faded out, and critical
examination via experiments became more difficult. However,
revelation came from the molecular biology of the circadian
clock. Here, a new model based on identified circadian
parameters with respect to circadian genes is awaited. It would
have been exciting if we had new Vaz Nunes–Veerman models
based on the recent molecular data

INPUT PATHWAY OF THE
PHOTOPERIODIC CLOCK

The locus of the photoperiodic clock and its photoreceptor were
examined in L. decemlineata (de Wilde and Bonga, 1958) and A.
pernyi (Williams and Adkisson, 1964) by illuminating either the
head or the abdomen and in M. viciae (Lees, 1964) by
illuminating small patches of the head. In these experiments,
the central part of the brain was found to be important, whereas
the abdomen, thorax, and compound eyes were found to be
unimportant.

Transplantation is a powerful means of examining the
locations of the photoperiodic clock and photoreceptors.
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Williams and Adkisson (1964) showed that the graft of the brain
contained the clock in A. pernyi. Bowen et al. (1984) confirmed
that the isolated brain allowed photoperiodic determination of
diapause in M. sexta. Truman (1971) used this approach to
examine the eclosion clock in two silk moths, A. pernyi and
the cecropia moth (Hyalophora cecropia), which showed the peak
of eclosion at dusk and dawn, respectively. The host was
debrained of its proto- and tritocerebrum and transplanted
with the central brain of the other species (i.e., A. pernyi host
with H. cecropia central brain and vice versa), and it was found
that the host emerged at the time according to the graft (Truman,
1971); these findings confirmed those of Williams (1969).

The sensory systems for perception of the photoperiod and
temperature were investigated in some insect species and mites in
terms of action spectra (de Wilde and Bonga, 1958; Hayes, 1971;
Lees, 1981; Suzuki et al., 2008a; Ikeno et al., 2010) and, more
recently, in terms of the low temperature-sensing cation channel
transient receptor potential A1 (TRPA1) (Sato et al., 2014).
Photoreceptor pigments, which serve as a photoperiodic input
system, were studied by Veerman and his colleagues in their
studies with carotenoid feeding and albino mutants in mites.

Carotenoids are a class of tetraterpenoids that have a C40

structure consisting of eight isoprene units and function not only
as coloration pigments and antioxidants but also as
photoreceptor pigments. The first evidence of carotenoid
involvement in the photoperiodic induction of insect diapause
was obtained from a dietary experiment in D. grandiosella
(Takeda, 1978). Additional evidence was provided by dietary
studies on the photoperiodic induction of diapause in B. mori
(Shimizu et al., 1981) and the predatory mite (Amblyseius
potentillae = A. andersoni) (Van Zon et al., 1981; Veerman
et al., 1983). Although predatory mites lack eyes, reproductive
diapause is clearly induced by long-night photoperiods
experienced during the immature stages (McMurtry et al.,
1976), suggesting that extraretinal photoreceptors function as
an input system for photoperiodism. No induction of diapause
occurs, even under long-night photoperiods when the predatory
mitesA. potentillae andA. cucumeris are fed on albino spider mite
eggs or broad bean pollen, which are almost devoid of carotenoids
(Van Zon et al., 1981; Veerman et al., 1983). However,
supplementation of these carotenoid-limited diets with β-
carotene, 3-hydroxyechinenone, or vitamin A acetate (retinol
acetate) allows photoperiodic induction of diapause to occur,
although supplementation with astaxanthin and vitamin A acid
(retinoic acid) does not (Van Zon et al., 1981; Veerman et al.,
1983). These studies indicate that pigments derived from vitamin
A and its precursors (provitamin A) are essential for the
perception of the photoperiod. This also suggests that opsin
apoproteins binding the chromophore retinal, a vitamin A
derivative, function as extraretinal photoreceptors in
predatory mites.

The eyes in the two-spotted spider mite (Tetranychus urticae)
are red due to accumulation of carotenoid pigments; however,
albino mutants lack eye pigmentation (Ballantyne, 1969;
Veerman, 1974). The genes responsible for albinism in spider
mites include carotenoid biosynthesis genes that were
horizontally transferred from fungi (Bryon et al., 2017;

Wybouw et al., 2019). In T. urticae, diapause incidence in
albino mutants is significantly lower than that in wild-type
under long-night photoperiods (Veerman and Helle, 1978;
Veerman, 1980). In addition, the albino mutants enter
diapause under long-night photoperiods after feeding on diets
containing vitamin A and β-carotene (Bosse and Veerman, 1996).
This suggests that opsin-type photoreceptors utilizing retinal as a
chromophore are required for the perception of the diapause-
inducing photoperiod in this species. Photoperiodism in T.
urticae is observed not only for diapause induction but also
for diapause termination (Veerman, 1977a). Although this
species is less responsive to visible light during diapause, it is
not totally blind (Suzuki et al., 2009a, 2013), and diapause
termination is enhanced under short-night photoperiods after
chilling for several months compared to long-night photoperiods
or continuous darkness. Hori et al. (2014) removed the eyes from
diapausing adults by using a laser ablation technique and
evaluated their diapause termination. Removal of all eyes that
consisted of two pairs of ocelli (Mills, 1974) prevented diapause
termination even under short-night photoperiods, indicating that
these eyes function as a photoperiodic input system. Whole-
genome sequencing of T. urticae (Grbić et al., 2011) has revealed
the presence of putative genes for ultraviolet-sensitive opsin,
long-wavelength–sensitive opsin, and peropsin.

In addition to opsin-type photoreceptors involved in the
photoperiodic clock that most probably operates as a non-
circadian hourglass for measuring the night length of
photoperiods, another type of photoreceptor has been
suggested in T. urticae that is required for entrainment of the
circadian system involved in photoperiodic time measurement
(Veerman, 2001). The Nanda–Hamner experiment (Nanda and
Hamner, 1958) revealed that the internal clock involved in
photoperiodic time measurement resonated with the length of
one light–dark cycle (T) at an interval of 20 h (Veerman and Vaz
Nunes, 1980). Under long-night photoperiods with T = 20 h (LD
= 8:12-h), diapause was induced even when the illumination
provided was orange-red light (>580 nm). Under long-night
photoperiods with T = 24 h (LD = 12:12-h), which is a
diapause-inducing condition when the illumination is provided
with white light, no diapause was induced with orange-red light
(Veerman, 2001). This suggests that in T. urticae, when T is
identical to the internal periodicity (20 h) of the clock like an
oscillator, diapause is induced only by measuring the length of
long-night photoperiods via a photoperiodic clock connected to
opsin-type photoreceptors, which are sensitive to a broad range of
wavelengths including orange-red light. In contrast, circadian
entrainment by photoreception may be required for
photoperiodic time measurement at T = 24 h, but this process
does not occur under orange-red light and diapause is not
induced even under long-night photoperiods, suggesting that
the photoreceptors involved in the circadian system are
sensitive only to short-wavelength light. One of the candidate
photoreceptors is Drosophila cryptochrome (Cry-d), a
photoreceptor protein coupled with a flavin chromophore,
which is sensitive to ultraviolet-A and blue light and
insensitive to light with a wavelength greater than 500 nm
(Stanewsky et al., 1998). Indeed, an orthologous gene of cry-d
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is present in the genome of T. urticae (Grbić et al., 2011). Reverse
genetic approaches such as RNA interference (RNAi) and
genome editing, which have been shown to be effective in T.
urticae (Suzuki et al., 2017; Dermauw et al., 2020), will help to
clarify the functions of these candidate photoreceptor genes in
photoperiodic time measurement and circadian entrainment.

OVERVIEWOF THECIRCADIAN SYSTEM IN
DROSOPHILA MELANOGASTER

It has already been half a century since Konopka and Benzer
(1971) identified period (per) as the first circadian gene from the
fruit fly (D. melanogaster). per appeared to encode a transcription
modulator, but the protein lacked a DNA-binding domain. Per
had heterodimerization domains shared not only by Per but by
aryl hydrocarbon receptor nuclear translocator (Arnt) and single-
minded (Sim). They are now called Per-Arnt-Sim (PAS)
domains. Searches in silico have revealed several dimerization
partners including cycle (cyc)/Bmal1 (brain-muscle Arnt-like 1)
and Clock (Clk). timeless (tim) was retrieved from a forward
genetic mutation search (Sehgal et al., 1996), which encodes a
direct partner of Per.

Clk and cyc form a heterodimer that possesses a DNA-binding
domain with a basic helix-loop-helix. Per forms a heterodimer
with Tim that is photosensitive for degradation by ubiquitin-
mediated proteasome. Cry-d is photosensitive. Per degradation is
mediated by double-time (Dbt), a casein kinase Iε, which was also
identified from a mutation search (Price et al., 1998). Clk/Cyc
heterodimer binds an E-box to activate transcription of per and
tim. After transcription, the resulting proteins form a
heterodimer, which stabilizes both proteins. After
dimerization, the heterodimer translocates to the nucleus
where it interrupts Clk/Cyc from binding to the E-box of per
and tim. This completes a negative feedback loop.

Additional genes that contribute to the clock function and its
stability have been subsequently identified. Clk and per mRNA
are produced in antiphase, which indicates a coupling between
Clk and PAR domain protein 1 (Pdp1)/Vrille (Vri) loop (Cyran
et al., 2003). E-boxes function as a key for the circadian system to
interact with a clock-controlled gene (ccg). The pdp1 and vri
genes have E-boxes, and therefore they are ccg. Clk has a Pdp1/
Vri box, and therefore Clk also becomes a ccg. Thus, these two
loops become interlocked (i.e., become an interlocked negative
feedback loop). Pdp1 and Vri regulation via Pdp1/Vri box are
antagonized by one another, which could provide one of the
fundamentals of circadian rhythms, that is, temperature
compensation.

Organisms must consist of multiple oscillators. The phase
relationship (Ψxy) among constituent oscillators (. . .x . . . y . . . )
may form a hierarchical system with strong or weak coupling.
When the coupling is weak, each rhythm behaves in an
independent manner. In some cases where the coupling is
strong, the subordinate oscillator behaves as a slave and the
other oscillator like the pacemaker (circadian pacemaker,
CPM), as adopted in Pittendrigh’s coupled oscillator
hypothesis (Pittendrigh et al., 1958; Pittendrigh, 1960). This

hypothesis was formulated based on the eclosion rhythm of
the fruit fly, D. pseudoobscura, particularly to explain transient
cycles after reset by a brief light pulse placed at different circadian
times and the difference between post-reset rhythms by light and
temperature Zeitgebers, although D. melanogaster does not
display transient cycles. Nevertheless, the biological clock must
control several rhythms, each controlled by a slave oscillator
having a different ΨrL, as shown in the pink bollworm
(Pectinophora gossypiella) (Pittendrigh and Minis, 1964,
Pittendrigh and Minis, 1971). To stabilize steady-state ΨrL’s,
E-box–mediated transcription is a good tool to adjust different
rhythms graded by a common negative regulator. The clockwork
orange (CWO) protein may play this role, which competes with
other transcription modulators for E-box binding, something like
a general music tempo indicator like sempre piano or forte. For
example, the free-running rhythm of cwo transcript of the
tobacco cutworm moth (Spodoptera litura) was strong in
continuous darkness, whereas per and tim transcript rhythms
were quickly damped out in continuous darkness (Zhang et al.,
2021). Depending on the species and situation, the leader can be
either Per, Clk, or CWO (Tomiyama et al., 2020), as was nicely
shown in a study of CWO in the cricket (Gryllus bimaculatus).

In the negative feedback system, two state variables rely upon
each other to make oscillatory trajectories showing a limit cycle.
Translated proteins must decay in terms of photo-oriented
degradation or through a proteasome or some other mode.
Per degradation is aided by the phosphorylation pathway by
Dbt and Tim degradation by Cry, which was originally identified
in Arabidopsis (Lin and Shalitin, 2003) and Shaggy, respectively,
which stimulates ubiquitination and the proteasome pathway for
degradation (Sehgal et al., 1996). Cry has different functions in
different species: Cry-d is a blue-sensitive photoreceptor protein,
whereas mammalian-type Cry (Cry-m) dimerizes with Per and
makes a nuclear translocation with Dbt (Lin et al., 2002).

VARIATION AND CONSERVED
STRUCTURE OF THE CIRCADIAN SYSTEM
IN SPECIES OTHER THAN D.
MELANOGASTER

D.melanogasterwas used by T. H. Morgan andmany other Nobel
laureates, including J. C. Hall, M. Rosbash, and M. W. Young, for
elucidating the intricacies of the biological clock. It is indeed
surprising to see that the structure and genes are conserved
between insect clocks and vertebrate clocks, including that in
humans. Contrasting to such a high constancy, two Drosophila
species, D. melanogaster and D. pseudoobscura, share the basic
structure but have some differences. The threonine–glycine
repeat that was once considered as a landscape structure in D.
melanogaster Per is lacking in D. pseudoobscura Per. A similar
situation has been found in the cellular structure in two closely
related cricket species, Dianemobius nigrofasciatus and
Allonemobius allardi (Sehadová et al., 2006; Shao et al., 2006,
Shao et al., 2008a, Shao et al., 2008b). Many insects such as
the honey bee (Apis mellifera) lack tim (Rubin et al., 2006).
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Two lark transcripts are present in B. mori (Iwai et al., 2007).
Bmal1 rather than Cyc is found in the monarch butterfly, Danaus
plexippus (Zhang et al., 2017), although the lepidopteran homolog
is phylogenetically remote from mammals than from flies. In
contrast to Drosophila, Tim does not play a role as a dimerization
partner in humans where the partner is Cry-m. Many of the
lepidopterans such as A. pernyi, D. plexippus, and B. mori have
both cry-d and cry-m genes. The genome of T. urticae (Grbić et al.,
2011) contains per, tim, cyc, Clk, cry-d, and cry-m genes, but their
functions remain unclear.

Melatonin is produced by many organisms—unicellular,
multicellular, vertebrates, invertebrates, fungi, and plants.
However, its roles in circadian and photoperiodic regulation
and metabolic pathways are basically shared but sometimes
vary among taxa (Hiragaki et al., 2015 for a review focused on
aaNAT). Melatonin is indispensable for generating circadian
rhythmicity in locomotor rhythm in P. americana
(Kamruzzaman et al., 2021) and photoperiodic regulation of
pupal diapause in A. pernyi (Wang et al., 2013; Mohamed
et al., 2014), but the melatonin synthetic pathway must be
unique in insects because their hydroxyindole-O-
methyltransferase activity is very weak (Hiragaki et al., 2009).
Also, in bony fish, the salmoniform fishes lost circadian
regulation of pineal secretion of melatonin, whereas the
osmeriform fishes show a circadian pattern in melatonin
secretion. Thus, phylogenetic modification must be extensive
in photoperiodism regulation.

AMBIENT TEMPERATURE AND
TEMPERATURE STEP-UP OR -DOWN CAN
AFFECT THE CIRCADIAN SYSTEM AND
PHOTOPERIODISM

In formulating the coupled oscillator hypothesis, Pittendrigh et al.
(1958) intended to explain two peculiar behaviors observed in the
pupal eclosion rhythms of the fruit fly, D. pseudoobscura: 1) the
first seven cycles after a light pulse placed at different circadian
times before the entrained oscillator establishes a new steady-state
and 2) when phase shifts are forced to occur due to changes in
light cycle and temperature, the eclosion peak immediately
followed the new temperature regimen but slowly caught up
with the light regimen. Pittendrigh et al. (1958) concluded that
the eclosion clock consists of two coupled oscillators, one
behaving as a CPM (or oscillator A) and the other as a slave
(or oscillator B). The phase reference point, a phase with a visible
marker (such as eclosion peak), resides on the slave. The CPM
immediately obtains a fixedΨrL to the light and the slave keeps up
with the CPM. The slave regains the original ΨBA to the CPM
within seven cycles. In this sense, temperature is a determinant of
circadian phasing. A similar behavior has been observed in theM.
sexta eclosin clock (Truman, 1984) as discussed earlier.

It is not only circadian rhythms that are affected by
temperature; photoperiodic response curves are also affected
by ambient temperature and by temperature cycles and
different thermoperiods (Saunders, 1973). Critical daylengths

across that diapause incidence dramatically changes are more
strongly affected by temperature (Danilevskii, 1965; Pittendrigh
and Takamura, 1987) in contrast to τ, the free-running period,
which is “temperature-compensated.” Thermoperiod-dependent
induction of diapause is well known from the work of Veerman’s
group on the predatory mite (van Houten et al., 1987; Veerman,
1992). In the predatory mite, A. andersoni, diapause is induced
not only by long-night (scotophase) photoperiods but also by
long-cryophase thermoperiods even under continuous darkness,
with the photoperiodic response and thermoperiodic response
curves showing similarities. In addition, combined treatment
with photoperiods and thermoperiods revealed that the
coincidence of the scotophase and cryophase most effectively
induces diapause. In mites, it is well known that as temperature
increases, the diapause-inducing effect of long-night
photoperiods decreases (Veerman, 1985), which may be due to
shortening of the period in which the mite is sensitive to the
photoperiod because development is accelerated at high
temperature, thereby reducing the amount of information
accumulated by the photoperiod counter to induce diapause.
However, the synergistic effect of the scotophase and cryophase
on the induction of diapause cannot be explained only by the
length of the period of sensitivity. Thus, studies are needed to
investigate the dynamics of the biomolecules involved in the
perception and measurement of the photoperiod and
thermoperiod.

Temperature also controls the circadian rhythm by affecting
the pattern of differential splicing of per transcript at the 3′ end in
D. melanogaster (Collins et al., 2004). D. melanogaster is a day-
active animal, and this differential splice pattern contributes to
conserving this trait. However, how this aspect affects
photoperiodism has not been investigated in detail.

In B. mori, temperature determines the incidence and
termination of diapause more dominantly than photoperiod
via a peptide, the corazonin-mediated pathway, and diapause
hormone (Tsuchiya et al., 2021). The temperature signal is
mediated by TRPA1. In A. pernyi, pupal diapause is
terminated by long days and low temperatures (Matsumoto
and Takeda, 1996, Matsumoto and Takeda, 2002; Tohno et al.,
2000; Tohno and Takeda, 2001). However, at which stage of
diapause the termination cascade is affected by low temperature,
possibly via TRPA1, has not been investigated. Also unknown is
whether the receptor resides in the clock neurons or in PTTH-
secreting cells. In arthropods, the TRPA subfamily, which
diverged from an ancient TRPA1 gene, has expanded (Peng
et al., 2015). Although the predatory mite (Metaseiulus
occidentalis = Galendromus occidentalis) also expresses TRPA1,
none of the TRPA subfamily genes have been found in the
genome of T. urticae (Grbić et al., 2011). This suggests that
the loss of ancient TRPA1 occurred in the two-spotted spider
mite and that this species is unable to directly sense temperature
signals and that the rate of development, which determines the
length of the stages in which photoperiodic information can be
accumulated, may change with temperature and indirectly affect
photoperiodic induction of diapause. Lack of TRPA1 has also
been observed in the water flea (Daphnia pulex) and in
Hymenopteran insects, although they have multiple other
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TRPA subfamily genes that may compensate for this lack
(Matsuura et al., 2009).

Cross-talk partners could be involved in the circadian system,
endocrine system, calcium signaling pathways, phosphoinositide
pathway, or phosphorylation/dephosphorylation, or they could
be endocytic elements.

NEUROENDOCRINE REGULATION OF
INSECT DIAPAUSE AND THE UPSTREAM
REGULATORY STRUCTURE
It was Yoshimaro Tanaka who first used non-diel photoperiodic
regimens in photoperiodic analyses of pupal diapause inA. pernyi
(Tanaka, 1950a; Tanaka, 1950b; Tanaka, 1950c; Tanaka, 1951).
This species has since been used as a model system for
examination of the hormonal regulation of diapause
(Williams, 1969; Truman, 1971). A. pernyi, as well as H.
cecropia, has also been used as a model for examining
activation of the prothoracic gland by the brain for secretion
of prothoracicotropic hormone (PTTH). Other model
photoperiodic species where interactions are suggested
between the endocrine system and biological clock include B.
mori (Sehadová et al., 2004; Iwai et al., 2006; Iwai et al., 2007; Iwai
et al., 2008; Trang et al., 2006; Tsuchiya et al., 2021), two closely
related cricket species (Dianemobius nigrofasciatus and
Allonemobius allardi) (Shao et al., 2006; Shao et al., 2008a;
Shao et al., 2008b; Izawa et al., 2009), the bean bug (Riptortus
pedestris) (Ikeno et al., 2008), and the lindenbug (Pyrrhocoris
apterus) (Doležel et al., 2007), where the colocalization of clock
and related gene products and neurohormones, cloning of clock
and related genes, and RNAi are conducted. The interference with
some of the circadian gene impaired photoperiodism but this
simply implies the circadian system is a photoperiodic
component but does not show how so.

Williams and Adkisson (1964) and Williams (1969) identified
that the brain is the anatomical site that regulates,
photoperiodically, pupal diapause of A. pernyi for both
initiation and termination in such a way that short-day
photoperiods initiate and maintain diapause and long-day
photoperiods terminate diapause or block diapause initiation.
Long-day photoperiods induce PTTH secretion in the brain,
which in turn activates the prothoracic gland to secrete
ecdysone. Ecdysone is mono-oxygenated in the midgut and
other peripheral organs to 20-hydroxyecdysone, a molting
hormone, which triggers metamorphosis in the rising phase,
but in the falling phase with the circadian gate open, it
determines the release of eclosion hormone to trigger eclosion
behavior (Truman, 1971).

RIA measurement showed that about 10 cycles of long-day
activation of diapause pupae of A. pernyi induced the secretion of
ecdysone into the hemolymph (Matsumoto and Takeda, 2002;
Mohamed et al., 2014). Not only long days but also a long
exposure of about 2 months to a low temperature of 5°C
activated the brain (Tohno et al., 2000; Tohno and Takeda,
2001). Temperature and photoperiod regulate the brain
independently because an insufficient number of cycles at low

temperature and long-day photoperiod produces post-diapause
emergence peaks in an independent rather than additive manner
(Tohno et al., 2000; Tohno and Takeda, 2001), meaning that
thermal activation and photoactivation are different physiological
processes.

To examine what initiates PTTH secretion, we investigated
brain monoamine content during long-day activation by
means of electrochemical detection coupled with high-
performance liquid chromatography (Matsumoto and
Takeda, 2002) and found that serotonin content rose when
ecdysone content rose. The data suggested that serotonin or
its downstream products caused PTTH content to increase.
We then examined the indolamine pathway leading to
melatonin formation by means of radioenzymatic assay,
focusing on aaNAT in the activation process. We found
that the enzymatic activity of aaNAT was increased both by
long-day photoperiod and by low temperature (Matsumoto
and Takeda, 2002). Injection of melatonin into diapause
pupae terminated diapause. We also investigated the
neuroanatomical structure of this system by means of
immunohistochemistry targeting both PTTH-secreting
neurons and circadian clock neurons. We used antibodies
targeting Clk, Cyc, Per, PTTH, serotonin, aaNAT,
hydroxyindole-O-methyltransferase, melatonin, and
melatonin receptor both in adjacent sections and by
simultaneous staining (Mohamed et al., 2014). Both
examinations showed clearly that clock neurons (Sauman
and Reppert, 1996a) and PTTH neurons (Sauman and
Reppert, 1996b) were juxtaposed in the dorsolateral
protocerebrum and that the cell bodies were physically in
contact.

Circadian clock neurons showing dcyc-ir, PaPer-ir, and
BmDBT-ir have melatonin-producing machinery showing
serotonin-ir, PaaaNAT-ir, hydroxyindole-O-methyltransferase-
ir, and melatonin-ir, while PTTH-secreting neurons have
melatonin receptor (hMT2)-ir. We have documented by RIA
that the melatonin content in the brain of A. pernyi showed day/
night fluctuation under light–dark cycles of both LD = 16:8-h and
12:12-h. Melatonin content peaked at 4 h after light-off under
both cycles. In addition, both the peak and baseline values were
higher under the 16:8-h cycle than under the 12:12-h cycle, a
photoperiodic response. This seems reasonable because long days
terminate diapause or activate the brain. Melatonin injection and
melatonin coincubation with the brain in vitro stimulate the brain
in vitro to secrete PTTH in P. americana (Richter et al., 1999) and
A. pernyi (Mohamed et al., 2014).

Injection of the melatonin receptor antagonist luzindole
blocked diapause termination in A. pernyi under long days,
and RNAi against aaNAT also blocks long-day effects (Wang
et al., 2013; Mohamed et al., 2014). Melatonin-spiked water
rescues arrhythmicity caused by dsRNAaaNAT in P. americana
(Kamruzzaman et al., 2021) and the house cricket (Acheta
domesticus) (Yamano et al., 2001). These findings strongly
suggest that the melatonin system is operative in insects as it
is in vertebrates, mediating the communication between the
circadian clock and endocrine system (Wood and Loudon,
2014) and that aaNAT serves as a “timezyme” (Klein, 2007).
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aaNAT IS A CLOCK-CONTROLLED GENE

All of the known instruments to produce melatonin exist
within clock neurons (Mohamed et al., 2014; Wang et al.,
2013). PTTH-secreting neurons express melatonin receptor-
ir. This suggests that melatonin released by clock neurons
induces the release of PTTH in a clock-controlled manner.
aaNAT in insects exhibits high activities and plays important
roles in various physiological regulations including
neurotransmitter metabolism, cuticle formation,
reproduction, and midgut function (Hiragaki et al., 2015).
The aaNAT gene was first cloned in vertebrates, and it was
found that it is a critical component of the downstream
regulatory pathway in such a way that it is a clock-
controlled gene; it possesses multiple E-boxes to which
Bmal1/Clk heterodimer binds to stimulate the transcription
of aaNAT, which increases the activity of aaNAT enzyme,
catalyzing the synthesis of melatonin (Coon et al., 1995;
Borjigin et al., 1995). We cloned two types of aaNAT from
P. americana (Ichihara et al., 1997; Ichihara et al., 2001;
Bembenek et al., 2005a; Bembenek et al., 2005b), B. mori
(Tsugehara et al., 2007), and A. pernyi (Tsugehara et al., 2013).
Melatonin secreted from the clock neurons binds to the
putative melatonin receptor on the cell surface of PTTH-
secreting neurons, which stimulates Ca2+ influx. This influx
stimulates PKC and activated PKC phosphorylates Rab8 to
induce exocytosis of PTTH, leading to diapause termination
(Hiragaki et al., 2009), because all PTTH-ir neurosecretory
cells showed protein kinase C-ir and Rab8-ir. The latter two
reactivities have a wider distribution, but all PTTH cells share
these reactivities (Hiragaki et al., 2009). We confirmed this
model by using luzindole and several indoleamines as well as
RNAi against per, cyc (Bmal1), aaNAT, and two genes
encoding 5-hydroxytryptamine (serotonin) receptor
(5HTR1A and 5HTR1B) (Hiragaki et al., 2008). When
entering diapause under short days, aaNAT is not
expressed, and therefore, melatonin synthesis does not
occur while 5HT is accumulated, which enhances
serotonin-binding to 5HTR1B (Wang et al., 2013). This
prevents PTTH release, resulting in diapause initiation and
maintenance. 5HTR1B transcript decreased when pupae were
exposed to long days, while 5HTR1A was not sensitive to the
photoperiod. Also, RNAi only reversed the function of the
type 1B receptor, not that of the type 1A receptor (Wang et al.,
2013). Injection of dsRNA5HTR

1B induced termination of
diapause even under short days.

An equivalent mode of pupal diapause regulation was
found in the fall webworm (Hyphantria cunea). This
species has a long-day–type response both in diapause
induction and termination. The injection of dsRNAper

failed to maintain diapause even under short days, LD =
14:10-h (Yang et al., 2017a). Since Per is a negative
regulator of E-box binding in aaNAT, knockdown of per
should enhance E-box binding and therefore increase
melatonin synthesis, as seen in A. pernyi. Thus, the aaNAT
regulation hypothesis based on the circadian system is not
valid only in A. pernyi.

Downstream processes are integrated in a rather simple mode,
but several important features remain unsolved. Temperature
control is an important aspect of photoperiodism, and TRPA1
may provide an important clue to this research. We have shown
the presence of another aaNAT and another serotonin receptor
(i.e., aaNATB and 5HTR1A, respectively) in clock neurons in the
brain of A. pernyi. These may be involved in temperature
regulation of diapause in some way. We propose here a
possible representation of the neuroendocrine system
responsible for the photoperiodic time measurement and
diapause determination in A. pernyi (Figure 1). It summarizes
our current understanding of photoperiodic regulation of A.
pernyi pupal diapause. The circadian and photoperiodic
systems are complex. Cross-talks with other neuroendocrine
organs must occur to accommodate non-photic stress
adaptations to social stress, nutritional condition, desiccation,
and extreme temperature. Recently, we have shown extensive
cross-talks between neurotransmitters, neurohormones,
neuropeptides, and juvenile hormone and ecdysteroids in the
regulation of reproduction in P. americana (Kamruzzaman et al.,
2020). Feeding was found to induce crustacean cardioactive
peptide (CCAP) synthesis, which modulates locomotor
activity, allatotrophe, and ecdysiotrophe. CCAP neurons are
located at the CPM locus of the ventral optic tract in P.
americana. Short neuropeptide F (sNPF) is secreted from
CCAP neurons when cockroaches are starved, downregulating
juvenile hormone synthesis. Indolamines also control
allatotrophe. Melatonin is required for locomotor rhythm;
RNAi against aaNAT made the locomotor activity arrhythmic
but melatonin injection rescued the rhythm (Kamruzzaman et al.,
2021).

We have also shown that topical application of methoprene
(ZR-515), a juvenile hormone mimic, causes a phase shift in
eclosion rhythm of D. grandiosella (Yin et al., 1987). In A. pernyi,
the dorsolateral neurons expressing Per-ir innervate the corpus
allatum (Sauman and Reppert, 1996a). Many of the circadian
clock genes encode PAS proteins, including a juvenile hormone
receptor, Met. It may interact with other PAS proteins among all
clock proteins such as cry, Clk, and cyc, which has been shown in
P. apterus (Bajar et al., 2013). The circadian gene take-out is a
homolog of juvenile hormone binding protein (Sarov-Blat et al.,
2000; Saito et al., 2006).

A GABA receptor subunit, RDL (resistance to dieldrin)-ir, is
located at the circadian clock locus of the optic tract of P.
americana (Sattele et al., 2000), and GABA is involved in
diapause regulation in B. mori (Tsuchiya et al., 2021). The
functions of GABA in the circadian and photoperiodic
systems are yet to be investigated.

Organisms are most likely multi-oscillatory systems where
weak interactions are probably more commonplace. Recent
molecular elucidation is depicted as the interlocked negative
feedback loops; the system is interlocked with many
redundancies to stabilize the circadian system. The system is
standing solid in the storms of perturbations under various
environmental conditions in this way. The second loop (Pdp1/
Vri loop) is to accommodate nutritional stress conditions and
temperature fluctuations.
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PHOTOPERIODIC SUMMATION OR
COUNTER

How organisms accumulate measurements of day or night length
is one of the most interesting questions in photoperiodic studies.
As Danilevskii (1965) noted, diapause stage and sensitive stage for
photoperiodic determination are, in most cases, separated in
time. He even used this for the distinction of diapause from

quiescence. The isolation is, in extreme cases, transgenerational,
as it is in B. mori (Kogure, 1933) and M. viciae (Lees, 1959, Lees,
1960).

Gibbs (1975) has proposed that some hypothetical substance is
accumulated at each photoperiodic measurement and that if the
total amount accumulated (“diapause titer”) in a fixed period of
sensitivity surpasses the determination threshold, the
developmental fate is determined. Saunders (1981) extended

FIGURE 1 | Proposed non-photic and photoperiodic pathways that control pupal diapause in the Chinese tussar moth, Antheraea pernyi (Lepidoptera:
Saturniidae). Both pathways are based on circadian clock-driven regulation of arylalkylamine N-acetyltransferase (aaNAT) as an endocrine conjunct between the clock
and the secretagogue prothoracicotropic hormone (PTTH). The non-photic pathway responds to temperature rather than light. In the photoperiodic pathway (right),
long-day (LD) conditions prevent or terminate diapause, whereas short-day (SD) conditions induce or maintain diapause. In both the non-photic and photoperiodic
pathways, metamorphosis is driven by 20-hydroxyecdysone derived from 20C monooxygenation of ecdysone (E) secreted by the prothoracic gland (PTG) under
stimulation by PTTH released from dorsolateral neurosecretory cells colocalized with circadian clock neurons. The clock operates based on an interlocked transcription/
translation coupled negative feedback loop consisting of the genes period, timeless, cycle, clock, vrille, PAR domain protein 1, cryptochrome, double-time, clockwork
orange, sgg, and lark. The clock neurons are equipped with a melatonin-synthesizing enzyme complex such as aaNAT and hydroxyindole-O-methyltransferase as well
as their substrate indoleamines. aaNAT is a clock-controlled gene that has cis element enhancer E-boxes in its upstream promotor region, which is where the cycle/
Clock (cyc/Clk) heterodimer binds. This machinery synthesizes melatonin from 5-hydroxytryptamine (5HT; serotonin). In the photoperiodic pathway, aaNAT transcription
under circadian control is stimulated at night and under long-day conditions. PTTH-secreting cells express melatonin receptor type 2 (MT2). Melatonin binding to this
receptor opens Ca2+ channels in the cell membrane, which increases the intercellular Ca2+ concentration. The influx of Ca2+ activates protein kinase C (PKC) for the
phosphorylation of Rab8, which in turn drives exocytosis of secretary granules containing PTTH to the hemocoel. The released PTTH stimulates the PTG to release
ecdysone, a prohormone of the molting hormone 20-hydroxyecdysone (20E). 20E makes peripheral cells commit to metamorphosis or apoptosis. Under short-day
conditions, the aaNAT transcription level is low, and therefore, melatonin synthesis is also low, which results in the activation of 5HT receptor type B, which opens the
endocrine switch, resulting in the induction or maintenance of diapause. In the temperature-based pathway (left), diapause is terminated after about 2 months of
exposure to low temperatures. This process is likely independent of the photoperiodic process, and it is possible that another type of aaNAT, aaNATB, is expressed in
clock neurons and another type of 5HTR, 5HTRA (=5HTR1A), is expressed in PTTH-secreting cells. How this pathway increases or decreases aaNAT expression under a
particular photoperiod or temperature remains unknown, and it is difficult to solve multi-oscillator equations due to the large numbers of genes and proteins involved.
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this proposal to explain that the incidence of diapause depends on
two parameters, the required day number (RDN) of the inductive
cycle fixed by the photoperiod and the sensitive period. If the
RDN is reached during the sensitive period, the diapause program
is selected. The sensitive period is observable, and the RDN is
derived from the days when the individuals destined for non-
diapause development reach 50%. This explanation fits nicely
with the obtained data, but it may be tautological because the
RDN is not defined in any physiological reality. Indeed, we raised
D. grandiosella larvae under mixed cycles of short days and long
days on different artificial diets, and our results did not follow the
above prediction; instead, the incidence of diapause depended on
the larval period, even when the number of short days was less
than the number of long days (Takeda, 1978).

The neuroendocrine system resembles a hydraulic system with
an hourglass nature. Endocrine substances such as melatonin
takes time to accumulate via synthetic pathways, and it is
particularly so when the system is constructed as an
interlocked negative feedback loop. In this context, it is
interesting to see that the number of terminating cycles under
long days and that at low temperature are not additive; the cycle
number was 10 under long days but 2 months, that is, 60 cycles, at
low temperatures (Tohno et al., 2000; Tohno and Takeda, 2001;
Matsumoto and Takeda, 2002).

Reproduction and diapause of T. urticae are predestined by
experiencing several short and long nights, respectively, during
the sensitive period (Suzuki and Takeda, 2009). The rationale for
measuring night length rather than day length in examining the
photoperiodism of T. urticae is that diapause is induced under
light–dark cycles of LD = 8:16-h and 6:16-h but not 16:8-h or 8:8-
h (Veerman and Vaz Nunes, 1987). In addition, because no
diapause is induced under continuous darkness (Veerman,
1977b; Veerman and Vaz Nunes, 1987; Suzuki et al., 2008a),
light plays a role as a “frame” to determine the night length and to
create multiple long-night photoperiods to ensure that diapause is
not induced by a single long-night photoperiod, which may occur
even in a season suitable for reproduction as a result of weather
conditions and microhabitats.

The molecular mechanism of the photoperiodic clock and
counter system in T. urticae are still largely unknown, but recent
innovations in omics technology have provided a useful means of
analysis. Transcriptome and proteome analyses have revealed
that several neurotransmitters and their receptors, biosynthesis
enzymes, and vesicular trafficking-related proteins are
upregulated in association with diapause in T. urticae (Zhao
et al., 2017). These include ionotropic glutamate receptors,
metabotropic glutamate receptors, glutamine synthetase,
glutaminase, octopamine/tyramine receptor, dopamine
transporter, neuropeptide F receptor, short neuropeptide F
precursor, proctolin receptor, synaptobrevin, synaptotagmin,
dynamin, and frequenin. The appearance of glutamate and
monoamine signaling-related factors suggests commonality
with the insect photoperiodic system. Accumulation of
glutamate is observed in the brain of diapause-destined larvae
in the cotton bollworm (Helicoverpa armigera) (Zhang et al.,
2012). In addition, Des Marteaux et al. (2022) have demonstrated
functional involvement of vesicular glutamate transporter in the

photoperiodic induction of adult diapause in the bean bug
(Riptortus pedestris). In A. pernyi, a model has been proposed
in which dopamine and melatonin function as photoperiodic
counters, inducing and inhibiting the photoperiodic termination
of pupal diapause, respectively (Wang et al., 2015a,Wang et al.,
2015b). Dopa decarboxylase and aaNAT are rate-limiting
enzymes for the synthesis of dopamine and melatonin,
respectively. The genes encoding dopa decarboxylase and
aaNAT have several E-box enhancer elements, which qualify
them as clock-controlled genes (Adamska et al., 2016), and they
may regulate photoperiodism as an output factor, a timezyme, of
the circadian clock (Klein, 2007; Hiragaki et al., 2015). Genes
encoding aaNAT are found in ecdysozoan genomic databases but
have not been identified in those of the Acari (Hiragaki et al.,
2015). Although aaNAT-like light-responsive enzyme activity has
been reported in T. urticae (Suzuki et al., 2008b; 2009b), the
absence of the aaNAT gene in its genome suggests that the activity
of other acetyltransferases belonging to the GCN5-related
N-acetyltransferase superfamily have been detected. On the
other hand, the genome of T. urticae (Grbić et al., 2011)
contains several genes that are annotated as encoding dopa
decarboxylases. Further investigations focusing on the GCN5-
related N-acetyltransferases and dopa decarboxylases are needed
to clarify the timezyme in T. urticae.

CONSEQUENCESOFDIFFERENTIATION IN
CIRCADIAN AND SEASONAL TIMING IN
SPECIES STATUS: NEUROENDOCRINE
AND CLOCK PLEIOTROPY

Photoperiodism regulates the insect life cycle by seasonally
separating immature stages from the reproductive stage. The
timing of adult emergence and the release of sex pheromone and
seasonality of the life cycle constitute a mechanism that seasonally
isolates reproductive groups. Differentiation in circadian
components could split reproductive population into two
groups, which likely affects species status. It may split
reproductive times after geographic separation as an allopatric
mode or it may open for a sympatric mode to play without
geographic isolation. It is tempting to assume that the latter case
may lead to sympatric speciation as in H. cunea (Takeda, 2005;
Yang et al., 2017a, Yang et al., 2017b) and possibly in the Japanese
burrowing cricket (Velarifictorus micado) (He and Takeda, 2013;
Wang et al., 2020). Indeed, pleiotropy, disruptive selection, the
presence of polymorphic intermediates, and assortative mating
may help sympatric speciation without allopatric segregation
when the number of loci involved is <10 (Maynard Smith,
1966; Forrest and Miller-Rushing, 2010); otherwise,
evolutionary novelties are not maintained in the population.
Per variation perfectly fits with this need. However, the effect
of mutation in clock components must be intensive on the species
status.

Another example is the European corn borer (Ostrinia
nubilalis). This species was accidentally introduced from
Europe to North America, and geographic adaptations
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thereafter produced several voltinism stocks, E- and
Z-pheromone types, and host preferences. The
Nanda–Hamner protocol revealed different patterns including
an hour-glass type in the univoltine Minnesota strain, a typical
circadian type in the bivoltine Iowa and Delaware strains, and a
unimodal pattern in the multivoltine Georgia strain (Takeda and
Skopik, 1985). The fundamentals of the circadian system of this
species have been elucidated, including the phase response curves
under two different light-pulse strengths (Skopik and Takeda,
1980, Skopik and Takeda, 1986; Skopik et al., 1981, Skopik et al.,
1986). Dopman’s group conducted quantitative trait locus (QTL)
analyses and identified differentiations including single-
nucleotide polymorphisms (SNPs) in several circadian genes,
endocrine genes, pheromone genes (Glover et al., 1992;
Dopman et al., 2004, 2010), and life-cycle trait genes such as
cry and per (Levy et al., 2015; Kozak et al., 2017, Kozak et al.,
2019). We have identified several SNPs in per between two closely
related species, H. cunea and Velarifictorus crickets, which
mutually interbreed and lay viable offspring but have different
life cycles (He and Takeda, 2013; Wang et al., 2020). The extent of
differentiations is much greater in the Asiatic corn borer, the
Ostrinia species complex which allows morphologically
identifiable determination such as O. furnacalis, O. scapulalis,
and O. zaguliaevi; however, North American Ostrinia species
have probably followed a similar differentiation path. The apple
maggot (Rhagoletis pomonella) is another example for the same
mode of speciation, but the timing aspect is yet to be examined in
detail (Feder et al., 1993). Tauber and Tauber (1973), Tauber and
Tauber (1977a), Tauber (1977b) proposed that the mode of
speciation fits with the sympatric speciation in the case of
lacewings (Chrysopa carnea and C. downesi) where the split of
the life cycle has affected loci related to habitat selection, life cycle,
and coloration, according to Maynard Smith (1966), although
Henry (1979) argued against this hypothesis and supported a

conventional allopatric mode based on acoustic data of
mating calls.

Thus, circadian timing has various influences in living
organisms for all aspects, from pigmentation, behavior,
developmental patterns, polyphenism, immunity, stress
adaptation, aging, and life cycle to species status. It has made
and is making “endless forms most beautiful and most
wonderful”, yet common mechanisms are shared among
different phyla such as melatonin signaling. Melatonin may be
a lubricant for cross-talking among components forming a
clock–neuroendocrine axis.
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