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Abstract

Background

Acute kidney injury (AKI) is an adverse event that carries significant morbidity. Given that

interventions after AKI occurrence have poor performance, there is substantial interest in

prediction of AKI prior to its diagnosis. However, integration of real-time prognostic modeling

into the electronic health record (EHR) has been challenging, as complex models increase

the risk of error and complicate deployment. Our goal in this study was to create an imple-

mentable predictive model to accurately predict AKI in hospitalized patients and could be

easily integrated within an existing EHR system.

Methods and findings

We performed a retrospective analysis looking at data of 169,859 hospitalized adults admit-

ted to one of three study hospitals in the United States (in New Haven and Bridgeport, Con-

necticut) from December 2012 to February 2016. Demographics, medical comorbidities,

hospital procedures, medications, and laboratory data were used to develop a model to pre-

dict AKI within 24 hours of a given observation. Outcomes of AKI severity, requirement for

renal replacement therapy, and mortality were also measured and predicted. Models were

trained using discrete-time logistic regression in a subset of Hospital 1, internally validated

in the remainder of Hospital 1, and externally validated in Hospital 2 and Hospital 3. Model

performance was assessed via the area under the receiver-operator characteristic (ROC)

curve (AUC). The training set cohort contained 60,701 patients, and the internal validation

set contained 30,599 patients. External validation data sets contained 43,534 and 35,025

patients. Patients in the overall cohort were generally older (median age ranging from 61 to

68 across hospitals); 44%–49% were male, 16%–20% were black, and 23%–29% were

admitted to surgical wards. In the training set and external validation set, 19.1% and 18.9%

of patients, respectively, developed AKI. The full model, including all covariates, had good

ability to predict imminent AKI for the validation set, sustained AKI, dialysis, and death with

AUCs of 0.74 (95% CI 0.73–0.74), 0.77 (95% CI 0.76–0.78), 0.79 (95% CI 0.73–0.85), and
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0.69 (95% CI 0.67–0.72), respectively. A simple model using only readily available, time-

updated laboratory values had very similar predictive performance to the complete model.

The main limitation of this study is that it is observational in nature; thus, we are unable to

conclude a causal relationship between covariates and AKI and do not provide an optimal

treatment strategy for those predicted to develop AKI.

Conclusions

In this study, we observed that a simple model using readily available laboratory data could be

developed to predict imminent AKI with good discrimination. This model may lend itself well to

integration into the EHR without sacrificing the performance seen in more complex models.

Author summary

Why was this study done?

• Acute kidney injury (AKI) is an adverse event associated with significant morbidity and

healthcare costs.

• Treatments for AKI are generally poor and largely supportive; thus, there has been a

focus on early identification and prevention of AKI.

• There has been growing interest in harnessing electronic health data for the prediction

of AKI in hospitalized patients.

What did the researchers do and find?

• We developed a mathematical model that predicts which patients would develop AKI

for 169,859 patients observed at three hospitals in the US (specifically in New Haven

and Bridgeport, Connecticut) between 2012 and 2016.

• The model included several elements about the patients, including demographics, medi-

cal history, and bloodwork.

• The model was able to provide a good prediction for patients who would develop AKI

and was also able to predict with fair discrimination whether the patient would need

dialysis or whether they would die in the hospital.

What do these findings mean?

• This model could be readily implemented on an electronic health record (EHR) to alert

or caution healthcare providers of their patient’s risk for developing AKI and provide

guided decision support to best help prevent this adverse event.

• In the future, there could be a study evaluating different interventions randomized to

individual patients at high risk for developing AKI as per the model. This strategy could

develop novel therapies for the prevention of AKI.
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Introduction

Among hospitalized patients, acute kidney injury (AKI) is strongly associated with increased

costs, length of stay, and mortality [1, 2]. As such, hospital-acquired AKI is being evaluated as

a potential quality measure by the Centers for Medicare and Medicaid Services [3]. AKI is

diagnosed in relation to a rise in creatinine, but this marker rises late in the course of the syn-

drome [4, 5]. Real-time prediction of AKI prior to a creatinine increase holds promise to pre-

empt such events through medication adjustment, avoiding nephrotoxins, optimizing

hemodynamics, or engaging in other diagnostic or therapeutic procedures, including bio-

marker measurement [6].

Modern electronic health record (EHR) systems can provide readily accessible data (e.g.,

demographics, laboratory studies) to fuel scientific study and prediction modeling [7, 8].

There have been several attempts to utilize large medical data sets for predicting which patients

will develop AKI; however, none are widely implemented in clinical settings [9–17]. Some of

these models focus on AKI in the setting of cardiac intervention, e.g., percutaneous coronary

intervention, or focus on specific populations such as children or the elderly and thus do not

generalize to all hospitalized patients [11, 12, 18, 19]. Other studies are limited to intensive

care unit (ICU) patients [14]. Three prior studies have leveraged usage of real-time data to pre-

dict AKI onset; however, no study has identified which clinical data elements provide the most

“bang for the buck” for accurate predictions and ease of EHR implementation [10, 16, 17].

We set out to study the relationship between several sets of variables and imminent AKI

onset to guide future research into AKI prediction and management. We wanted to compare

the predictiveness of time-invariant (static) variables, such as sex and race, with time-varying

(dynamic) variables, such as laboratory values and requirement for vasopressors. We hypothe-

sized that time-varying data, such as lab studies, would be both effective to model AKI and

would be sufficiently simple to facilitate rapid deployment into the EHR.

Materials and methods

Patients

This retrospective analysis evaluated data from hospitalized adult patients from three hospitals

—Yale New Haven Hospital (YNHH), St. Raphael’s Hospital (SRH), and Bridgeport Hospital

(BH)—admitted from 12/31/2012 to 2/09/2016 who had at least two inpatient creatinine values

who were considered for inclusion. YNHH is a large tertiary care center set in an urban setting,

SRH is a community teaching hospital, and BH is a private acute care hospital in an urban set-

ting. All three hospitals used the same inpatient EHR (Epic, Verona, Wisconsin). Patients who

were missing discharge times and those with an admission or prior ICD-9 or ICD-10 code

consistent with end-stage kidney disease were excluded. Patients with an admission creatinine

greater than or equal to 4 mg/dl were also excluded (Fig 1). Ethics approval was obtained from

the institutional review board and the study operated under a waiver of informed consent

from the Yale Human Research Protections Program.

Study reporting

This study utilized the Strengthening the Reporting of Observation Studies in Epidemiology

(STROBE) guidelines, as per the S1 Checklist, for reporting.

Variable ascertainment

Demographics, vital signs, and laboratory data were obtained directly from the EHR, and all

time-variable data (e.g., creatinine) was assigned a timestamp for further analyses. Our data set
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included the following variables, which were extracted electronically from the EHR: age, sex,

race (measured as black or non-black), whether the admission was a surgical admission,

patient history of congestive heart failure (CHF), hypertension, liver disease, on-admission

Elixhauser score, laboratory findings including last bicarbonate, blood urea nitrogen (BUN),

chloride, baseline creatinine, last creatinine, change in creatinine over the last 48 hours, hemo-

globin, potassium, sodium, white blood cell count, platelet count, requirement during hospi-

talization for Bilevel Positive Airway Pressure (BiPAP), contrast studies, invasive ventilation,

ICU admission, cardiac catheterization, red blood cell (RBC) transfusion, administration of

angiotensin converting enzyme inhibitors (ACEs) or angiotensin II receptor blockers (ARBs),

antibiotics, chemotherapy, diuretics, narcotics, nonsteroidal anti-inflammatory drugs

(NSAIDs), vasopressors, proton pump inhibitors, and statins. Each patient would have a data

row for each time point that a measurement (e.g., a vital sign) took place. Variables were car-

ried forward through time until a new measurement for that variable took place. A visualiza-

tion of this data set construction for a theoretical patient is provided in S1 Fig.

Clinical definitions

AKI was defined per the Kidney Disease: Improving Global Outcomes (KDIGO) creatinine

criteria [20]. Due to the relative sparsity of urine output data on the general hospital wards,

urine output criteria for AKI were not considered. Thus, our definition of AKI was an increase

in serum creatinine by 0.3 mg/dL in 48 hours or an increase in serum creatinine of 1.5 times

baseline, which was defined as the lowest measured creatinine over the preceding 7 days. Also,

given that the data set only contained inpatient data, community-acquired AKI was not stud-

ied in this model. The primary goal was to predict “AKI within 24 hours,” i.e., any set of mea-

surements within 24 hours of AKI onset were considered “positive,” while any measurements

prior to 24 hours of AKI onset (and all time points among the patients who did not develop

AKI) were considered “negative.” AKI was only defined in relation to inpatient creatinine

Fig 1. Flow diagram of the patient cohort with distribution of data among training and validation data sets.

https://doi.org/10.1371/journal.pmed.1002861.g001
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values; a patient’s “baseline” creatinine was not imputed from previous hospitalizations or out-

patient lab studies. Time points before the first creatinine measurement would have “missing”

values and AKI could not develop until a patient would have at least two measured creatinine

values. Time points occurring after AKI onset were not included in modeling.

Statistical methods

We used descriptive statistics to characterize patients across the three hospitals and by AKI sta-

tus. To compare continuously and across the study hospitals, we used Kruskall–Wallis and

chi-square testing, respectively. We assessed the univariable differences in patient characteris-

tics at time points prior to AKI and not prior to AKI by univariable logistic regression with

clustering at the patient level to account for the nonindependence of within-patient

observations.

For our AKI prediction model, two-thirds of data from YNHH were used for training and

one-third for internal validation. External validation was performed in the two other study

hospitals (BH and SRH). We utilized a discrete-time logistic regression approach for predic-

tion, with a new prediction being generated each time a covariate value was updated in the

EHR. We again accounted for nonindependence of within-patient observations by clustering

at the patient level. Candidate covariates were selected based on prior research and additionally

considered variables measured in >90% of hospitalized patients (S1 Table) [21, 22]. Model

covariates were divided into four classes: demographics, which included all time-invariant

covariates; medications; and laboratory values and procedures. Given the uniquely strong per-

formance of the rate of change of creatinine, we additionally modeled this feature indepen-

dently. We assessed model performance using the AUC, again clustering at the patient level.

The model was trained and evaluated on the primary outcome, a time-varying binary variable

representing “AKI onset within 24 hours of this time point.” We measured covariate signifi-

cance as the absolute value of the covariate’s Wald z-score in the full multivariable model.

While the primary outcome was AKI within 24 hours, we also evaluated model perfor-

mance on the other kidney-relevant outcomes, including sustained AKI within 24 hours

(defined as at least two consecutive creatinine values consistent with an AKI diagnosis), inpa-

tient dialysis, and inpatient death.

We assumed time-varying variables were static after measurement, e.g., if the potassium

level was measured as 5.1 meq/L, it was considered to be 5.1 meq/L at all future time points

unless remeasured. Missing data was limited to laboratory values and represented less than

10% of all observations. Missing data were not imputed; it was decided to not generate predic-

tions for time points when relevant data was unavailable, as this is what would occur in real-

time should models be built into the medical record. In large data sets, case-wise deletion of

incomplete records may be less biased than various imputation methods [23, 24]. Stata v. 15

(StataCorp., College Station, Texas) was used for all statistical tests.

Ethics statement

Ethics approval was obtained from the institutional review board and the study operated

under a waiver of informed consent from the Yale Human Research Protections Program.

Results

After exclusion criteria were applied, the cohort contained 60,701 patients in the training set.

The validation sets at YNHH, SRH, and BH contained 30,599 patients, 43,534 patients, and

35,025 patients, respectively. Table 1 displays baseline characteristics of patients included in

the analysis. While significant differences existed across the hospitals, the cohort was
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characteristic of a hospitalized population with a median age ranging from 61 to 68 years. Sta-

tistically significant testing differences were expected between hospitals given very large sam-

ple sizes. Across hospitals, a range of 44%–49% of patients were male, 16%–20% were black,

and 23%–29% were admitted to surgical wards.

Table 1. Baseline patient characteristics. Baseline patient characteristics in the training and validation sets. Data is in count (%) or median (IQR). There is significant dif-

ference across the data sets for all variables listed here at P< 0.001. Missing data is provided as a percentage of total time points included in the model (N = 22,743,165).

YNHH Training Set (N = 60,701) YNHH Validation Set (N = 30,599) SRH (N = 43,534) BH (N = 35,025) Missing Data (%)

Demographics

Age, y 61 (47–74) 60 (47–74) 68 (55–81) 65 (50–79) 0

Sex, male 29,649 (48.8%) 15,013 (49.1%) 19,478 (44.7%) 16,212 (46.3%) 0

Race, black 10,173 (16.8%) 5,066 (16.6%) 7,694 (17.7%) 6,973 (19.9%) 0

Surgical admission 17,265 (28.4%) 8,809 (28.8%) 11,197 (25.7%) 8,214 (23.5%) 0

Laboratory

Bicarbonate, mmol/L 22.7 (20.6–24.9) 22.6 (20.5–24.8) 24 (22–26) 25 (23–28) 9.1

BUN, mg/dL 16 (11–24) 16 (11–24) 17 (12–25) 17 (12–25) 9.2

Chloride, mmol/L 102 (99–105) 102 (99–105) 102 (99–105) 103 (100–106) 9.8

Creatinine, mg/dL 0.9 (0.7–1.2) 0.9 (0.7–1.2) 0.9 (0.7–1.2) 0.9 (0.7–1.2) 8.9

Hemoglobin, g/dL 12.6 (10.8–14.1) 12.5 (10.8–14.1) 12.4 (10.9–13.8) 12.2 (10.6–13.6) 8.6

Platelets (x 109/L) 232 (176–298) 232 (175–297) 227 (179–287) 224 (174–282) 8.7

Potassium, mmol/L 4 (3.7–4.4) 4 (3.7–4.4) 4.1 (3.7–4.4) 4.2 (3.9–4.6) 9.2

Sodium, mmol/L 138 (136–141) 138 (136–141) 139 (136–141) 139 (136–141) 9.1

White blood cells (cells/mm3) 9.1 (6.7–12.3) 9.1 (6.7–12.4) 9 (6.8–12.2) 9.1 (6.8–12.3) 8.7

Medical History

CHF 9,038 (14.9%) 4,474 (14.6%) 7,806 (17.9%) 5,216 (14.9%) 0

Diabetes 13,124 (21.6%) 6,650 (21.7%) 10,599 (24.3%) 7,175 (20.5%) 0

Hypertension 5,369 (8.8%) 2,675 (8.7%) 4,989 (11.5%) 3,001 (8.6%) 0

Liver disease 4,556 (7.5%) 2,288 (7.5%) 2,348 (5.4%) 1,580 (4.5%) 0

Elixhauser score 3 (1–5) 3 (1–5) 3 (1–5) 2 (0–4) 0

Medical Procedures

BiPAP use 1,991 (3.3%) 1,054 (3.4%) 1,999 (4.6%) 1,009 (2.9%) 0

Contrast study 14,267 (23.5%) 6,947 (22.7%) 6,177 (14.2%) 7,203 (20.6%) 0

Ventilation requirement 5,064 (8.3%) 2,473 (8.1%) 1,305 (3%) 1,642 (4.7%) 0

ICU 14,059 (23.2%) 6,911 (22.6%) 5,198 (11.9%) 4,429 (12.6%) 0

Cardiac catheterization 2,954 (4.9%) 1,548 (5.1%) 1,130 (2.6%) 1,106 (3.2%) 0

RBC transfusion 8,390 (13.8%) 4,128 (13.5%) 4,355 (10%) 3,099 (8.8%) 0

Medications

ACE or ARB 12,427 (20.5%) 6,298 (20.6%) 11,699 (26.9%) 8,452 (24.1%) 0

Antibiotic 37,041 (61%) 18,558 (60.6%) 29,321 (67.4%) 17,227 (49.2%) 0

Chemotherapy 1,481 (2.4%) 708 (2.3%) 160 (0.4%) 312 (0.9%) 0

Diuretic 16,707 (27.5%) 8,467 (27.7%) 13,949 (32%) 8,373 (23.9%) 0

Narcotic 38,046 (62.7%) 19,152 (62.6%) 26,506 (60.9%) 16,487 (47.1%) 0

NSAID 5,928 (9.8%) 3,020 (9.9%) 6,678 (15.3%) 3,407 (9.7%) 0

Vasopressor 11,091 (18.3%) 5,497 (18%) 7,955 (18.3%) 3,798 (10.8%) 0

Proton pump inhibitor 23,967 (39.5%) 11,852 (38.7%) 20,421 (46.9%) 11,864 (33.9%) 0

Statin 11,637 (19.2%) 5,854 (19.1%) 10,250 (23.5%) 5,967 (17.0%) 0

Abbreviations: ACE, angiotensin converting enzyme inhibitor; ARB, angiotensin II receptor blockers; AKI, acute kidney injury; BH, Bridgeport Hospital; BiPAP,

Bilevel Positive Airway Pressure; BUN, blood urea nitrogen; CHF, congestive heart failure; ICU, intensive care unit; IQR, interquartile range; NSAID, nonsteroidal anti-

inflammatory drug; SRH, Saint Raphael’s Hospital; RBC, red blood cell; YNHH, Yale New Haven Hospital.

https://doi.org/10.1371/journal.pmed.1002861.t001
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Outcomes across the three study hospitals appear in Table 2. There was substantial hetero-

geneity in the rates of the primary outcome, with AKI rates ranging from 11.4%–19.1%

between hospitals. Similar heterogeneity was noted between study hospitals when data was

stratified by AKI stage.

Within the training set, there were 8,302,779 time points assessed during time periods not

associated with AKI in the following 24 hours and 459,456 time points during time periods

within 24 hours of AKI onset. The median (interquartile range [IQR]) number of predictions

generated per patient in the training set was 99 (61–169). Table 3 characterizes the time-invari-

ant and time-variant data at those time points. In univariable analysis, those who developed

AKI tended to be older, male, and black. All medical comorbidities evaluated, namely CHF,

diabetes, hypertension, and liver disease, were significantly more prevalent in patients who

developed AKI. With respect to laboratory studies, patients who would imminently develop

AKI had higher BUN and creatinine. Initiation of BiPAP, mechanical ventilation, transfer to

the ICU, cardiac catheterization, and RBC transfusion were all more prevalent in patients with

imminent AKI. Receiving a contrast study was inversely correlated with imminent AKI. With

respect to medications, chemotherapeutics and NSAID exposure were inversely correlated to

AKI development, whereas antibiotics, diuretics, narcotics, vasopressors, ACE/ARBs, proton

pump inhibitors, and statins were associated with increased risk. Multivariable model odds

ratios appear in S1 Table.

Fig 2 displays the contribution of the various covariates for AKI prediction in the full multi-

variable model. Change in creatinine over the past 48 hours was by far the strongest predictor

of imminent AKI; however, several other variables were strongly predictive, including admis-

sion to the ICU, most recent creatinine, requirement for ventilation, Elixhauser score, serum

sodium, bicarbonate, and chloride concentration. After multivariable adjustment, the protec-

tive effect of NSAIDs and chemotherapy exposure was no longer seen.

Model performance in terms of prediction of imminent AKI, imminent sustained AKI,

renal replacement therapy, and death is reported in Table 4. The full model, which includes

time-invariant, medication, laboratory study, and procedure data, performed the best of all

models evaluated (average AUC across hospitals of 0.73) in terms of imminent prediction of

AKI. Among the simpler models, models utilizing time-updated laboratory values performed

best (average AUC 0.69). The complete model similarly performed strongest for prediction of

other clinically relevant outcomes, such as renal replacement therapy (average AUC 0.82), sus-

tained AKI (average AUC 0.76), and mortality (average AUC 0.72). Again, the model contain-

ing only time-updated laboratory values had similar performance in predicting all of these

outcomes. Model performance was generally stable in all models for predictions on the

Table 2. Patient outcomes within training and testing cohort. Outcomes within the training and test cohort. Values are N (%). P values represent differences across the

three test cohorts.

YNHH Training Set YNHH Validation Set SRH BH P value

N 60,701 30,599 43,534 35,025 <0.001

AKI (any stage) 11,593 (19.1) 5,772 (18.9) 7,416 (17.0) 3,977 (11.4) <0.001

AKI Stage 1 9,366 (15.4) 4,657 (15.2) 6,194 (14.2) 3,157 (9.0) <0.001

AKI Stage 2 1,578 (2.6) 758 (2.5) 916 (2.1) 542 (1.5) <0.001

AKI Stage 3 657 (1.1) 364 (1.2) 308 (0.7) 295 (0.8) <0.001

Sustained AKI 6,196 (10.2) 3,056 (10.0) 3,463 (8.0) 2,070 (5.9) <0.001

Renal replacement therapy 341 (0.6) 204 (0.7) 117 (0.3) 135 (0.4) <0.001

Death 1,698 (2.8) 868 (2.8) 696 (1.6) 760 (2.2) <0.001

Abbreviations: AKI, acute kidney injury; BH, Bridgeport Hospital; SRH, Saint Raphael’s Hospital; YNHH, Yale New Haven Hospital.

https://doi.org/10.1371/journal.pmed.1002861.t002
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validation data set and two external data sets. AUC curves for the various models and out-

comes are displayed in Fig 3. The closed form equation of the laboratory-value model along

with coefficients is provided in S2 Fig.

Table 3. Characteristics of patients at times not prior to AKI versus prior to AKI. Characteristics and univariable comparisons between times within 24 hours of AKI

onset versus times not prior to AKI onset in the training set. Data is count (%) or median (IQR).

No AKI in 24 (N = 8,302,779) Yes AKI in 24 (N = 459,456) P value

Demographics

Age, y 61 (48–73) 66 (53–77) <0.001

Sex, male 50.2% 54.4% <0.001

Race, black 15.1% 16.2% 0.006

Surgical admission 21.4% 24.6% <0.001

Laboratory

Bicarbonate, mmol/L 22.8 (20.8–25) 22 (19.5–24.4) <0.001

BUN, mg/dL 15 (10–22) 19 (13–29) <0.001

Chloride, mmol/L 103 (100–105) 103 (99–106) 0.14

Creatinine, mg/dL 0.8 (0.6–1) 1 (0.7–1.4) <0.001

Change in creatinine over last 48 hours, mg/dL 0 (0–0) 0 (0–0.1) <0.001

Hemoglobin, g/dL 11.2 (9.5–12.9) 11 (9.4–12.7) <0.001

Platelets (x 109/L) 221 (159–295) 203 (141–277) <0.001

Potassium, mmol/L 4 (3.7–4.3) 4.1 (3.7–4.4) <0.001

Sodium, mmol/L 138 (136–141) 138 (136–141) 0.08

White blood cells (cells/mm3) 8.7 (6.3–11.8) 9.9 (7–13.6) <0.001

Medical History

CHF 15.9% 30.7% <0.001

Diabetes 21.8% 28.9% <0.001

Hypertension 7.8% 18.5% <0.001

Liver disease 7.9% 11.9% <0.001

Elixhauser score 3 (1–5) 4 (3–6) <0.001

Medical Procedures

BiPAP use 4.4% 7.6% <0.001

Contrast study 27.6% 25.4% <0.001

Ventilation requirement 13.8% 28.4% <0.001

ICU 20.2% 40% <0.001

Cardiac catheterization 4.1% 8% <0.001

RBC transfusion 18.1% 25.1% <0.001

Medications

ACE or ARB 13.9% 14.7% 0.02

Antibiotic 63.5% 68.8% <0.001

Chemotherapy 2.7% 1.6% <0.001

Diuretic 23.6% 36.1% <0.001

Narcotic 64.6% 68.5% <0.001

NSAID 5.8% 3.9% <0.001

Vasopressor 22.2% 33.9% <0.001

Proton pump inhibitor 36.7% 38.1% 0.007

Statin 14.7% 15.5% 0.03

Abbreviations: ACE, angiotensin converting enzyme inhibitor; ARB, angiotensin II receptor blockers; AKI, acute kidney injury; BiPAP, Bilevel Positive Airway

Pressure; BUN, blood urea nitrogen; CHF, congestive heart failure; ICU, intensive care unit; IQR, interquartile range; NSAID, nonsteroidal anti-inflammatory drug;

RBC, red blood cell.

https://doi.org/10.1371/journal.pmed.1002861.t003
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Discussion

In this study, we assessed the performance of a predictive model built from EHR data from

three US hospitals to predict the onset of AKI within 24 hours. Our complete model, which

Fig 2. Performance of model covariates within the fully adjusted model. Higher absolute value of Wald z-scores

indicate a greater degree of statistical significance within the predictive model.

https://doi.org/10.1371/journal.pmed.1002861.g002

Table 4. Model performance for prediction of 24-hour AKI and related outcomes. Performance of multivariable models for prediction of 24-hour AKI, sustained AKI,

renal replacement therapy, and inpatient mortality, with columns signifying models utilizing different subsets of input variables. Model performance is displayed as AUC

for each model when applied to data from the YNHH validation set and SRH and BH data sets.

AUC (95% CI)

Full Model Demographic Medications Change in Creatinine Procedures Laboratory Studies

24-hour AKI

YNHH validation set 0.74 (0.73–0.74) 0.65 (0.64–0.66) 0.59 (0.59–0.60) 0.61 (0.60–0.61) 0.63 (0.62–0.63) 0.69 (0.68–0.70)

SRH 0.69 (0.68–0.69) 0.62 (0.61–0.63) 0.60 (0.59–0.61) 0.59 (0.58–0.60) 0.59 (0.58–0.59) 0.64 (0.63–0.65)

BH 0.76 (0.75–0.77) 0.63 (0.62–0.65) 0.62 (0.61–0.63) 0.64 (0.63–0.65) 0.60 (0.59–0.61) 0.74 (0.73–0.75)

Sustained AKI

YNHH validation set 0.77 (0.76–0.78) 0.68 (0.67–0.69) 0.62 (0.61–0.63) 0.60 (0.59–0.61) 0.66 (0.65–0.67) 0.70 (0.69–0.72)

SRH 0.72 (0.71–0.73) 0.65 (0.64–0.66) 0.62 (0.61–0.63) 0.57 (0.56–0.58) 0.62 (0.61–0.63) 0.65 (0.64–0.66)

BH 0.79 (0.78–0.80) 0.65 (0.64–0.67) 0.63 (0.62–0.65) 0.63 (0.62–0.65) 0.63 (0.61–0.64) 0.76 (0.74–0.77)

Renal Replacement Therapy

YNHH validation set 0.79 (0.73–0.85) 0.79 (0.73–0.85) 0.60 (0.52–0.67) 0.51 (0.48–0.54) 0.67 (0.61–0.74) 0.73 (0.66–0.79)

SRH 0.85 (0.80–0.89) 0.78 (0.73–0.83) 0.61 (0.55–0.67) 0.51 (0.46–0.57) 0.62 (0.55–0.69) 0.83 (0.78–0.88)

BH 0.78 (0.74–0.82) 0.72 (0.66–0.78) 0.56 (0.49–0.63) 0.50 (0.47–0.54) 0.62 (0.57–0.68) 0.70 (0.64–0.75)

Inpatient Mortality

YNHH validation set 0.69 (0.67–0.72) 0.66 (0.64–0.69) 0.59 (0.56–0.62) 0.53 (0.51–0.54) 0.67 (0.65–0.70) 0.60 (0.57–0.63)

SRH 0.75 (0.73–0.77) 0.74 (0.71–0.76) 0.67 (0.64–0.69) 0.53 (0.52–0.55) 0.72 (0.69–0.75) 0.63 (0.60–0.66)

BH 0.73 (0.71–0.75) 0.68 (0.65–0.71) 0.63 (0.60–0.66) 0.56 (0.55–0.58) 0.66 (0.63–0.70) 0.65 (0.62–0.67)

Abbreviations: AKI, acute kidney injury; AUC, area under the ROC curve; BH, Bridgeport Hospital; SRH, Saint Raphael’s Hospital; YNHH, Yale New Haven Hospital.

https://doi.org/10.1371/journal.pmed.1002861.t004
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utilized all potential covariates, displayed moderately good performance for predicting

24-hour AKI (average AUC across hospitals of 0.73) as well as the clinically pertinent out-

comes of requirement for renal replacement therapy and mortality. A simpler model utilizing

only time-updated laboratory data performed nearly as well as the complete model and main-

tained its performance across the three hospitals and across the outcomes of sustained AKI

and requirement for renal replacement therapy.

Several variables revealed themselves as having strong relationships with respect to impend-

ing AKI. Change in creatinine over the last 48 hours was by far the most predictive variable;

however, change in creatinine alone had poor predictive ability across all outcomes. As was

expected, patients sicker at baseline and those with higher hospitalization acuity were at higher

risk for developing AKI. Specifically, patients with CHF and liver disease were at higher risk,

as were patients who required ICU admission, ventilation, vasopressors, or cardiac catheteriza-

tion. Several variables typically tied to renal injury, namely NSAID use, ACE/ARB use, and

contrast studies contributed minimally to imminent AKI prediction in the multivariable mod-

els. We hypothesize providers cautiously order these medications and studies for inpatients,

and these unmeasured nuances of provider behavior limit the utility of these variables for AKI

prediction. Such selection bias has been previously discussed regarding studying the

Fig 3. ROC curves of the various AKI models. Curves reflect performance in a test set composed of a combination of

the internal and external validation cohorts. (A) Prediction of AKI in 24 hours. (B) Prediction of hospital mortality.

(C) Prediction of need for renal replacement therapy. (D) Prediction of sustained AKI. AKI, acute kidney injury; ROC,

receiver-operator characteristic.

https://doi.org/10.1371/journal.pmed.1002861.g003
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relationship of contrast studies and AKI and may reflect a similar phenomenon with NSAIDs

and ACE/ARBs [25].

Prior efforts have shown that electronic alerts have seen mixed results; some studies show

no benefit, whereas others show benefit for AKI progression when tied to nephrology consul-

tation or other interventions [21, 26, 27]. One recent study developed an e-alert prediction

tool for hospital-acquired AKI, which showed improved outcomes [28]. AUC for this tool,

however, was inferior to our simple laboratory model, and the variables used may be difficult

to operationalize, as they combine chart-documented medical history as well as physical exam

findings [29]. Our model, while maintaining similar predictive performance to previously pub-

lished models, uses only commonly measured laboratory data for making its predictions. By

avoiding variables such as nursing and provider documentation, subjective patient assess-

ments, and institution-specific hospital events, we suggest that our model may be implemented

more easily than preceding models onto other EHRs than preceding models without a loss of

predictive performance.

Strengths

Our study has several strengths. First, our model is generalizable to a variety of inpatient care

settings, as it was developed on a large cohort from a tertiary care center (YNHH) and further

validated at a community teaching (SRH) and nonteaching (BH) institution and maintained

good predictive performance across the three diverse care settings. Second, our model is gener-

alizable to a variety of inpatients, as it was developed on data from patients in both hospital

floor, surgical, and ICU settings. Lastly, our laboratory-based model is simple and holds prom-

ise for ready implementation into the EHR; this model is currently live and being evaluated

prospectively in one of the study hospitals.

Limitations

Our study should be interpreted in the light of several limitations. First, the predictability of

the model yielded similar AUCs to prior models with respect to predicting at least stage I AKI;

thus, we do not claim to have developed a model that is far superior to other models [10, 16,

17]. We also recognize that a recent study found AUCs of 0.9 for AKI prediction; we note,

however, that this model predicted stage II AKI (or greater) rather than stage I (or greater),

and our goal was to predict all hospital AKI irrespective of severity [16]. We hypothesize pre-

venting stage I may be more clinically beneficial for reversing disease rather than a stage II pre-

diction, at which point it may be too late to change disease course. Additionally, this and other

models contain a high quantity of variables, some calculated, which may be difficult to opera-

tionalize across diverse health systems and EHR platforms. Second, our model is descriptive in

nature; while it can reveal factors associated with imminent AKI, it is unable to imply causality

or provide explanations for unexpected findings. Third, given sparsity of data, we were unable

to include urine output into the model, and we recognize that urine output has significant

implications in terms of AKI incidence [30]. In addition, because we limit our definition of

AKI to look back 7 days from admission for baseline creatinine, it is likely that our model

misses some patients who present with AKI but do not have recent creatinine values from

which the patient would meet our definition. Fourth, all hospitals included in our analysis uti-

lized the Epic EHR system, and the model’s performance should ultimately be validated on

healthcare data obtained from other EHRs. A final limitation is that our model does not sug-

gest the best manner in which providers should react to notification of imminent AKI in a

patient.
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Future implications

To date, there remain limited interventions for treatment of hospitalized patients who develop

AKI. The development of predictive models could aid in AKI prevention and change a

patient’s course of disease.

The parsimonious model developed in this study should be further evaluated on other large

hospital data sets to validate model performance. Further work should be performed to deter-

mine optimal implementation of such a model into the EHR and how best to use the predic-

tions to affect provider behaviors while minimizing intrusiveness of such interventions and

maintaining sensitivity to increasing concerns of “alert fatigue” [31].

The laboratory model presented in this paper can be implemented in practice with different

cut-points for prediction to either optimize sensitivity or specificity of a model. For example,

from our AUROC curves of the laboratory-only model, prediction could be generated with

approximately 80% sensitivity and 50% specificity. With a prevalence of AKI of approximately

15% (as seen in our data set), such a prediction would carry a positive predictive value (PPV)

of 22%. This cut-point may be well-suited for low-level interventions (such as additional moni-

toring or avoidance of nephrotoxins). Alternatively, a cut point could be generated with

approximately 87.5% specificity but only 37.5% sensitivity. At the same prevalence, this predic-

tion would be expected to have a PPV of 35%. With this more specific prediction, one might

consider providing higher-level interventions, such as provision of intravenous fluids or usage

of pharmacy consultants. Further work needs to study such model implementations and see

how they best fit within workflow and optimize patient care.

In addition, after the deployment of such a model on the EHR, specific interventions could

be randomized and tested among patients to evaluate novel therapies for prevention of AKI.

Conclusion

Our study developed an original model for 24-hour prediction of AKI in hospitalized patients

with good predictability in the domains of AKI prediction as well as sustained AKI, require-

ment for renal replacement therapy, and mortality. Previously, integration of real-time predic-

tive analytics for AKI have been limited, in part due to implementation difficulties and in part

due to large model complexity [32–34]. Compared to prior studies, our study has shown that a

parsimonious model using only laboratory values maintains good performance and lends itself

to ready implementation in EHR. We anticipate that broad implementation of this algorithm

would change the treatment paradigm of AKI from reactive to proactive, which will afford

new opportunities for the evaluation, diagnosis, and treatment of the syndrome.
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