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Abstract: Glass fibre reinforced polyamide 6 (GFPA6) thermoplastic composites (TPCs) are promising
materials with excellent properties, but due to their low surface free energy they are usually difficult
to wet, and therefore, possesses poor adhesion properties. µPlasma modification offers potential
solutions to this problem through functionalisation of the GFPA6 surface. In this study, the effect of
µPlasma on the wetting behaviour of GFPA6 surfaces was investigated. Following single µPlasma
treatment scans of GFPA6 samples, a substantial enhancement in wettability was observed. However,
the effect of the µPlasma modification was subject to an ageing (hydrophobic recovery) phenomenon,
although the enhancement was still partially maintained after 4 weeks. The ageing process was
slower when the GFPA6 material was pre-dried and stored in low humidity conditions, thereby
demonstrating the importance of the storage environment to the rate of ageing. Orientation of the
fibres to the observed contact angle was found to be crucial for obtaining reproducible measurements
with lower deviation. The influence of testing liquid, droplet volume and surface texture on the
repeatability of the measured contact angle were also investigated.
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1. Introduction

Thermoplastic composites (TPCs) are a class of polymers that have attracted much
attention due to the desirable combination of good mechanical properties, ease of manufac-
ture, low density and their ease of recycling [1,2]. In recent years, the industrial demand
for glass fibre reinforced polyamides has increased, especially in the automotive sector,
due to their excellent thermal stability, high toughness and stiffness [3–7]. For example,
Polyamide 6 with glass fibre reinforcement offers good thermal stability, and higher tensile
strength [1,8], which makes it an attractive material for the automotive industry. Often
there is a requirement that the TPC is bonded to other structural materials, such as metals
or other composites. However, due to the typically low surface free energy, poor chemical
reactivity, polymers and TPCs are usually difficult to wet, and therefore, possess poor adhe-
sion properties [9,10]. A potential solution to this problem is through surface modification
of the polymers or TPCs to improve their surface properties, while still retaining their
desirable bulk properties.

A number of studies have demonstrated that surface treatments, such as laser treat-
ment, chemical treatment, plasma treatment, ion beam and ion implantation [11–16], can
enhance the wettability of different materials. In particular, plasma treatment of polymer
materials has been shown to modify the surface by removing contaminants, introducing
functional groups, and improving the surface free energy without affecting the substrate
material [17]. Consequently, plasma surface modification of polymers has become an attrac-
tive solution to overcome the challenges associated with the poor wetting and adhesion of
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these materials. However, plasma-based techniques, such as active screen plasma nitriding,
are usually operated at low pressures, and therefore, require costly treatment chambers
capable of achieving low pressures coupled with sufficiently powerful vacuum systems
necessary to reach the desired pressures [17–19]. In addition, it is difficult, if not impossible,
to achieve continuous treatment using the active screen plasma technique. To overcome
these limitations, atmospheric plasma treatments have been explored, an example is a
µPlasma modification. These plasma treatment techniques offer the ability to perform
localised treatments under atmospheric conditions and thus demonstrate great promise for
future industrial uptake [20–22].

Numerous studies have demonstrated that plasma surface treatment can modify the
wettability of polymer surfaces significantly [23–28], however, despite its great potential,
only two publications reported µPlasma modification on polymers [20,29]. Plasma surface
treatment on different kinds of polymers has also been reported, including polyamide
materials, such as polyamide 12, polyamide 6,6 and polyamide 6 [30–34], however, there
are no studies that report on the plasma treatment of glass-fibre reinforced polyamide 6.

While plasma treatments are effective in improving polymer surface wettability, it
is well established that these enhancements are not permanent [35,36]. A pronounced
increase in wettability is typically observed immediately following plasma treatment, with
a gradual decrease over time, to the point where the wettability of the surface almost
matches the untreated polymer [10,37]. This decay of the wettability over time is known as
the hydrophobic recovery or ageing of the surface [38], and studies have reported these
phenomena with different forms of plasma treatments, including low-pressure plasma
treatment of polyamide 6 rods [10] and polyamide 6 sheets [39], NH3 plasma treatment of
polyamide 6 foil [40], and atmospheric pressure plasma treatment of polyamide 6 fibres [41].
However, the ageing data was typically reported on a daily or weekly basis, with minimal
focus on the initial changes within the first few minutes or hours after the treatment.
Therefore, given the dynamic nature of the surface following plasma treatment, it is critical
to investigate and characterise the initial wettability fluctuations and ageing behaviour
following plasma treatment to enable a better understanding of this phenomenon, as well
as approaches to prevent or slow this ageing behaviour.

To characterise the change in surface wettability after plasma treatments, many studies
rely on the measurement of the contact angle. However, the reliability and validity of
these measurements on hydrophilic, and potentially rough, surfaces have proven to be
challenging. The measurement of contact angle is affected by numerous factors including
the liquid used, the volume of the drop, ambient humidity and surface flatness. Studies
by Baek et al. [42] and Li et al. [43] considered the effect of the external conditions on the
measured contact angle in reverse osmosis (RO) membrane surfaces. It was established
that using different droplet sizes, measuring times, liquid type and humidity can affect
the contact angles of the material. However, there are no comparable studies involving
polyamides (either filled or unfilled). In the case of polyamide 6, the measurement will be
complicated because of the hygroscopic nature of the material [1], which can influence the
accuracy of the contact angle measurement when using water. Moreover, the existence of
fibres in fibre-reinforced polymer composites significantly increases the roughness of the
material surface, which can also affect the contact angles. Therefore, it is clear that there is
a need for systematic investigation of the contact angle measurement procedure on GFPA6
materials, including characterisation of the effect of variables, such as the liquids used,
orientation used to measure the angle, the location on the sample surface and the volume
of the droplets.

Hence, the aims of this study were two-fold. The primary aim was to investigate the
effect of µPlasma modification on the wettability of GFPA6 surfaces, and their short-term
(minutes to hours) and long-term (days to weeks) hydrophobic recovery. The secondary
aim was to develop a more reliable systematic protocol for measuring contact angles
on GFPA6 to better characterise the surface wettability and ageing behaviour after the
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treatment. Finally, approaches that will hinder or prevent complete hydrophobic recovery
of the treated surfaces are briefly explored.

2. Materials and Methods
2.1. Material

Celstran® CFR-TP PA6 GF60-03 tape (GFPA6, Celanese Corporation, Dallas, TX, USA),
which is a polyamide-6 matrix (40 wt%) reinforced with continuous unidirectional glass
fibre (60% by weight), was used for all testing within this study. Thermal analysis was
carried out using a differential scanning calorimeter (PerkinElmer DSC-7, PerkinElmer Inc.,
Waltham, MA, USA), and the melting temperature (Tm) and glass transition temperature
(Tg) were found to be 222.0 ◦C and 49.8 ◦C, respectively. The measured heat of fusion and
calculated degree of crystallinity was found to be 43.88 Jg−1 and 19.08%, respectively.

2.2. µPlasma Modification

The untreated GFPA6 was initially cleaned using ethanol to remove any contaminants
on the surface, and then the surface was dried in air. The cleaned sample was then µPlasma
treated using a Roth & Rau Pixdro LP50 plasma inkjet printer (InnoPhysics, Eindhoven,
The Netherlands) (Figure 1) fitted with an InnoPhysics POD24 print-head (as illustrated in
Figure 2a). There are 24 needles placed in two rows on a movable print head (as shown
in Figure 2), which is connected to a high voltage alternating current power supply. The
plasma within this study was ignited using a single row of 12 needles, and different
combinations of parameters were tested, coupled with results of material wettability (i.e.,
contact angle measurements) to optimise the treatment parameters. The optimal settings
were determined as follows: an accelerating voltage of 7 kV, a printing rate of 20 mm/s, and
a working distance from the sample surface to the tips of the printing needles of 100 µm.
Patterns were designed as 20 × 20 mm2 squares, where the plasma spots overlap with each
other (shown in Figure 3), to produce uniform treatment coverage.
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Figure 2. (a) Schematic of µPlasma modification setup. (b) µPlasma discharges pattern generated by
24 needle electrons from top view.
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Figure 3. Plasma modification pattern.

2.3. Scanning Electron Microscopy (SEM)

A JEOL 7000F SEM (JEOL, Tokyo, Japan) with an accelerating voltage of 5 kV was
used to characterise changes in the surface morphology following treatment of the GFPA6
material. Before SEM imaging, samples were gold sputter-coated using an EMITECH K550
set (EMITECH, Kent, UK) at a current of 25 mA and for a duration of 2 min.

2.4. Contact Angle Testing

Contact angle measurements were carried out using the sessile drop method with an
experimental apparatus that complied with the ISO 19403-2:2020 standard [44]. Samples
were placed on a height (z-axis) adjustable laboratory jack, while a light source and a
camera connected to a monitor were used to obtain a clear image of the droplet. The light
source, sample surface and camera were placed in a straight line and at the same horizontal
plane (i.e., same height/z-axis) to ensure contact angle measurements were obtained from
the same viewpoint across different samples. Three repeats were performed on each sample
to allow for average and standard deviation calculations of the measured contact angles.
The measurements were carried out under ambient temperature and humidity conditions,
where deionised water, diiodomethane, and glycerol were used as the liquids for the tests.
To limit the potential influence of gravity, droplets were carefully deposited on the sample
surface using a calibrated pipette. The average of the left and right contact angles was
obtained for each individual droplet. For both wettability and ageing testing of sample
surfaces, the overall average contact angle was calculated from the three repeat droplets.
The captured images were analysed using the contact angle plugin on ImageJ to obtain
contact angle values.

2.5. Wetting Envelope and Surface Free Energy

To better understand the wettability changes following the µPlasma modification,
surface free energy values were calculated, producing wetting envelopes to evaluate the
changes in the surface free energy and predict the wetting capabilities against different
liquids. Surface free energies of the surfaces were calculated based on Young’s Equation (1),
which describes the relationship between the surface energy of a solid (σS), the surface
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tension of a liquid (σL), the solid-liquid interface tension (γSL), and the contact angle
formed at the solid-liquid interface (θ), as well as Fowkes theory of splitting the total
surface energies (both solid surfaces and liquids) into a combination of a dispersive, σD,
and a polar, σP, component. Equation (3), which was used to calculate the surface energies,
forms from the combination of Equations (1) and (2).

σS = γSL + σLcosθ (1)

γSL = σS + σL − 2·
(√

σD
S ·σD

L +
√

σP
S ·σP

L

)
(2)

(σP
L )

1/2·(σP
S )

1/2
+ (σD

L )
1/2·(σD

S )
1/2

=
σL (cosθ + 1)

2
(3)

where σL
P is a polar component of the liquid surface tension, σS

P is the polar component of
solid surface energy, σL

D is a dispersive component of the liquid surface tension, σS
D is the

dispersive component of solid surface energy, and σL is the total liquid surface tension. The
dispersive and polar components of solid surface energy, σS

P, were calculated by applying
two different liquids, diiodomethane (σL

D = 50.8 mN/m, σL
P = 0) and deionised water

(σL
D = 46.4 mN/m, σL

P = 26.4 mN/m) to Equation (3). Therefore, the total surface energy
of the solid, σS, was calculated as σS = σS

P + σS
D.

When the polar and dispersive components of a standard liquid are brought into a
coordinate system as a function, a wetting parameter R can be obtained using Equation (4),
with polar (R·cosφ) and dispersive (R·sinφ) component contributions to the total magnitude
of the surface energy being calculated using the formed angle (φ).

R2 =(σP
L )

2
+ (σD

L )
2

(4)

σP
L = R·cosφ (5)

σD
L = R·sinφ (6)

Substituting these Equations (4)–(6) into Equation (7), which describes the surface
energy contributions for a solid and liquid under complete wetting (i.e., cosθ = 1 or contact
angle = 0), forms Equation (7). In this equation, R, which is the absolute vector, can
be calculated for different φ angles between 0 and 90◦, to form a wetting envelope that
describes the polar and dispersive surface tension limits for theoretical complete wetting
of the surface. Comparisons of the area within the produced wetting envelope can give
information related to the wetting capabilities of a surface, with larger wetting envelopes
indicating greater surface wettability (i.e., more liquids are expected to be capable of fully
wetting the surface).

R =

(√
σP

s sinφ +
√

σD
s cosφ

cosφ + sinφ

)2

f or 0◦ ≤ φ ≤ 90◦ (7)

3. Results and Discussion
3.1. µPlasma Modification Process Optimisation

To optimise the µPlasma modification settings, the contact angles of untreated and
µPlasma treated samples under different settings, including printing rate, the working dis-
tance (from the sample surface to the tips of the printing needles) and accelerating voltage,
were measured (as shown in Figure 4). When keeping the voltage and working distance
constant, but changing the printing rate, the contact angles do not demonstrate substantial
change. Although not significantly different, the biggest reduction in contact angle was
found under 20 mm/s printing rate, and therefore, this was chosen for the following
optimisation tests. When the voltage and printing rate were kept constant and the working
distance was adjusted, the biggest reduction of contact angle was observed with a working
distance of 100 µm. Therefore, a working distance of 100 µm (and printing rate of 20 mm/s)
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was chosen for the final process optimisation test (influence of accelerating voltage). A
trend of continuously reducing contact angles was observed with increasing accelerating
voltage, with an accelerating voltage of 7 kV demonstrating the largest reduction. This
reduction in water contact angles was measured to be significant, going from 78.8 ± 3.1◦

(untreated) to 32.5 ± 4.7◦ following µPlasma modification at 7 kV. This indicates that the
accelerating voltage is the dominating parameter of the µPlasma modification process for
controlling final sample surface wettability. A higher accelerating voltage of 8 kV was also
attempted; however, issues with the stability of the plasma prevented the further use of
this setting (plasma remained active in between treatment scan lines).
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The increase in wettability can be attributed to the increase of the total surface energy
and the formation of new polar groups following µPlasma modification (a more detailed
explanation can be found in Section 3.4). The contact angles of untreated and µPlasma
treated samples (1–10 treatment scans) are displayed in Figure 5. It was observed that
no discernible enhancement or synergetic improvement could be observed in the surface
wettability with increasing treatment numbers, i.e., it was found that a single treatment scan
on the sample surface was sufficient to modify the wettability to the same degree as multiple
scans. Similar results have been previously reported by Károly et al. [45], whereby no
significant further enhancement in wettability of unfilled polyamide 6 surfaces was found
with increasing plasma treatment time. Therefore, since increasing treatment numbers
did not significantly enhance the wettability of the surfaces when compared to single
treatment scans, all other tests performed within this study were carried out with surfaces
subjected to a single treatment scan. In summary, one treatment was found to induce
enough modification of the surface to approximately reduce the contact angle by 50◦.

3.2. Ageing of GFPA6 Surface after µPlasma Modification

Although µPlasma modification can significantly improve the wettability of GFPA6
surfaces, the effect was found to not be permanent when the sample surface was exposed to
air. A sharp increase in the measured contact angles was observed immediately following
µPlasma modification (0–80 min), revealing a fast ageing mechanism. Figure 6a shows
the increase in surface contact angle of µPlasma treated GFPA6 samples left to age in the
air for 5 h. The value of the measured contact angle rose from 32.5◦ to 40.6◦ within the
first 10 min, with a further increase to 53.7◦ after 80 min. This decrease in hydrophilicity
is known as hydrophobic recovery, which is typically attributed to the reorientation and
diffusion of the polar functional groups that are produced, and introduced onto the surface
of the samples, during the µPlasma modification. The increase in contact angles is much
less significant between 80 min and 3 h, with gradual plateauing of the measured contact
angles. Despite the ageing process, the measured contact angle did not return to values
comparable to untreated samples; the wettability modification of the sample surface
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partially remained, even up to 4 weeks of ageing (as shown in Figure 6b). This may develop
due to the interaction between the polar groups formed on the GFPA6 surface and the
water molecules on the top surface, with the absorption of moisture from the air acting
to provide a polar environment that protects the decay of the polar groups. In summary,
the µPlasma treated sample age and loses much of the wettability introduced onto their
surfaces within the first two hours following treatment, and then levelled off in the next
4 weeks.
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(b) 4 weeks.

3.3. Optimisation of the Contact Angle Measurement Procedure
3.3.1. Optimisation of the Contact Angle Measurement Protocol

The glass fibre reinforcement was clearly visible in the composite samples, and this
is illustrated in Figure 7a. To ensure that a sufficiently large and representative surface
area was covered by the water droplet, the contact angle was recorded as a function of
droplet size in the range of 2 to 20 µL. The number of fibres covered by each droplet was
measured using ImageJ from SEM images, as shown in Figure 7a. Figure 8 shows the
calculated number of fibres covered by each droplet size. The number of the fibres covered
by the droplet increases with the droplet size. A 2 µL droplet has been calculated to cover
approximately 103 fibres, which is assumed to be sufficient to reduce the contact angle error
associated with the deviations introduced due to the fibre protrusions on the surface. Since
all tested droplet sizes were found to be sufficient, 6 µL droplets were used within this
study as they also correspond to the ISO standard (ISO 19403-2:2020), which enables clearer
and more accurate droplet contours to be mapped during software angle measurements.
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the untreated sample surface.

As shown in Figure 5a, two observer directions are possible when measuring contact
angles, either parallel or perpendicular to the fibres, with the alignment of the fibres
potentially influencing the measured value of the contact angles (as illustrated schematically
in Figure 9). Therefore, contact angle mapping of the surfaces was performed using
50 deionised water droplets produced on a 5 × 10 cm2 untreated sample surface, with
measurements being recorded from both a parallel (a) and perpendicular (b) perspective to
the fibres. The distribution of the contact angles of the 50 droplets are represented using
colour heat mapping in Figure 10. The result demonstrates that the standard deviation is
larger when the contact angles are measured perpendicular (±4.3◦), rather than parallel
(±3.1◦), to the fibres. It can be seen that the colour distribution is more uniform when
measuring parallel to the fibres, this difference may arise due to the superficial fibres
present in the perpendicular direction acting as walls to impede the spread of the droplet.
This can, therefore, promote increased cohesion of the water molecules, thereby forming
larger angles against the surface, or alternatively, when the force of water droplet is great
enough to break beyond the wall, the angle returns to normal, or even smaller. Ultimately,
this results in the incorrect measurement of contact angles, and increased variation in
measured data, in comparison with measurements parallel to the fibres. Hence, all other
contact angles measurements in this experiment were recorded parallel to the fibres, to
enable accurate and reliable data to be recorded for the fibre reinforced polymer surface.
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the pre-existing moisture in the untreated material plays a significant role in facilitating 
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bulk, which results in a less polar surface. Additionally, the moisture is mostly absorbed 
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3.3.2. Optimisation of the Wettability Ageing of GFPA6 Samples

Given that polyamide 6 is hydrophilic, the water content in the sample may influence
the ageing behaviour. To investigate this, the post-treatment time-dependence of the
contact angles of untreated material was determined. Samples were either stored in the air
prior to treatment or had been oven dried for 3 h, contact angles were then recorded every
10 min for 5 h following µPlasma modification. It was observed that when the sample was
dried before the treatment, the ageing process was impeded (Figure 11). The measured
contact angle was found to plateau at 59.3◦ after 5 h of ageing, while the undried sample
reached a plateau at 71.2◦, with signs of further ageing still in progress. This suggests that
the pre-existing moisture in the untreated material plays a significant role in facilitating
the ageing process. This can potentially be attributed to the hydrated material providing a
polar environment for the polar groups generated by the µPlasma modification, therefore,
facilitating the reorientation process of the polar groups and diffusion back into the bulk,
which results in a less polar surface. Additionally, the moisture is mostly absorbed in
the amorphous phase of the polymer, which can induce a reorganisation of the hydrogen
bond structure of the material, leading to an expansion of the free volume and increased
mobility of surface chains. Therefore, drying of the samples prior to µPlasma modification
is necessary to slow down the ageing process.

As the µPlasma modification is highly sensitive to the working distance (distance
between needle tips to sample surface), the roughness caused by the fibres in the surface
of the material can affect the uniformity of the µPlasma modification, and therefore, the
resulting contact angle tests are prone to fluctuations. To optimise the measurement, and
eliminate the inconsistencies, measurements of the contact angles on the same location are
potentially more reliable. However, since the material is hydrophilic, it can absorb water
during the measurements process, and this will influence the spreading of subsequent
droplets on the surface (and also promote the ageing process as described above). Therefore,
a different liquid diiodomethane, which is not absorbed by the material and vaporises
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quickly in the air, was used for contact angle tests on the same locations. It can be seen in
Figure 12 that although the contact angles measured using diiodomethane show a similar
trend to those made using water, large fluctuations compared to water measurements are
observed and this masks the early stages of the ageing process. Therefore, it is not feasible
to test contact angles on the same sample location using either water or diiodomethane,
and different sample locations must be used for subsequent contact angle measurements.
Results of contact angles of different liquids including water, diiodomethane and glycerol
are shown in Figure 13. Among them, deionised water was found to give relatively lower
fluctuations.
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In summary, there are two features of the GFPA6 material that need to be considered
during the contact angle measurements for GFPA6, the absorbance of water into the matrix
and the roughness caused by fibres on the surface. Using water droplets as small as
2 µL is sufficient to cover enough fibres to reduce errors. In this study, we used 6 µL,
as recommended in the ISO standard, for increased consistency during the testing. The
water can facilitate the ageing process; therefore, the samples need to be dried before the
treatment, and testing on the same locations should be avoided. For a hydrophilic material,
diiodomethane is more suitable for testing on the same locations; however, there is far
more variability in comparison to water.

3.4. Wetting Envelope and Surface Energy

The wetting envelope (shown in Figure 14) can be used to extrapolate the wettability
of the untreated and treated surfaces, to hypothetical liquids with varying surface free
energies, using the calculated surface free energies obtained with the Fowkes equation.
When the polar (σS) and dispersive components (σD) of a liquid are within the enclosed
area of the produced wetting envelope, complete wetting (i.e., cosθ = 1 or contact angle = 0◦)
of the surface can be expected. As shown in Figure 14, the total area of the wetting envelope
was the smallest for the untreated sample, before significantly increasing following the
µPlasma modification (at 0 h). This indicates a significant enhancement of the overall
surface wettability of the GFPA6 following the initial treatment of the surface. The total
area of the wetting envelope was then found to have a sharp, but smaller, decrease after
one hour of ageing, with minimal changes over the following 2–5 h, therefore, indicating
relatively stable surface wettability. However, it should be noted that, in all cases, the
surface wettability of the treated surfaces was found to increase in comparison to the
untreated surfaces.

To better understand the wettability, the surface energy of untreated GFPA6 and
treated GFPA6 aged for 5 h were measured using two different liquids (deionised water and
diiodomethane). It can be seen from Figure 15 that the total surface free energy increased
from 42.2 mN/m to 67.6 mN/m. This increase can be attributed to the change in the
polar component of the surface free energy, which significantly increased from 6.4 mN/m
to 34.5 mN/m, and the decrease of the dispersive component of the surface free energy,
from 93.6 mN/m to 65.5 mN/m. The total surface free energy decreased by 10.6 mN/m
one hour after the treatment, with the polar and dispersive components decreasing and
increasing by 2.5 mN/m each, respectively, therefore, indicating a slight reduction in
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surface wettability. All three surface free energies values (total, dispersive component,
polar component) plateaued in the following three hours, remaining significantly higher
than the total surface free energy of the untreated surfaces. This demonstrates that the
µPlasma modification can both, significantly enhance the surface wettability, and retain
elevated wettability following 5 h of ageing.
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The results of the surface energy were consistent with the wetting envelope. The
increase of wetting property of the GFPA6 right after the µPlasma modification was due
to the increase of polar groups produced by the plasma. Although the treated sample
recovered its property fast even in the first one hour, the wetting property was still partially
remained when the surface energy levelled off over the next three hours.

3.5. Storage of Treated GFPA6

Figure 16 shows the variation of the water contact angle of µPlasma treated GFPA6
surfaces stored under different conditions in the air (with a humidity of 50–60%), in a desic-
cator (with humidity of 10–20%), and under vacuum for 4 weeks (with assumed humidity
of 0%). It can be seen that all samples experienced hydrophobic recovery, but to varying
degrees under different conditions. The ageing process was faster when the samples were
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stored in higher humidity environments. This could be due to the higher humidity causing
plasticisation of the polymer, thus decreasing the glass transition temperature [46] and
leading to an increased free volume on the surface, and higher mobility of the polymer
chains at, or near, the surface, which accelerated hydrophobic recovery [47]. Furthermore,
the hydrophilic groups generated by plasma may have been partially dissolved by water
that was absorbed into the material from the environment. It was observed that the ageing
process was slowed down significantly when the sample was stored in the vacuum, which
suggests water was not the only variable facilitating ageing, but also the air. This could
be due to the radicals that are produced by plasma treatment being trapped on or near to
the material surface, which can then continuously react with the oxygen in the air after the
treatment [40]. Therefore, storing the µPlasma treated samples appropriately can largely
inhibit the ageing process after µPlasma modification.
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4. Conclusions

This study has shown that the novel technology of µPlasma modification can effec-
tively improve the wettability of the GFPA6 surfaces and benefits are achieved after only
a single treatment scan (water contact angles decreased from 78.8◦ to 32.5◦). However,
hydrophobic recovery is observed (contact angle recovered to 53.7◦ after 80 min) and there
is a lack of permanence in these benefits. It was apparent that the sample environment
strongly influenced the timescale and extent to which hydrophobic recovery could take
place with dry atmospheres and dried samples clearly hindering the recovery process.
The study has also shown that it is more reliable to measure contact angles on different
locations of the surface due to the hydrophilic nature of the material.

The contact angle measurements were optimised for the untreated GFPA6 surfaces
and for representing the ageing behaviour after the µPlasma modification. Regarding the
increase of roughness on the surface caused by the fibres, even with 2 µL it was found
to sufficiently minimise the error caused by the varying fibre coverage. The orientation
of the fibres was found to affect the accuracy of the contact angle measurements, with
measurements parallel to the fibres demonstrating higher consistency compared to mea-
surements perpendicular to the fibres. High surface roughness influences the uniformity of
the µPlasma modification due to the high sensitivity of the device to the working distance
between the needles and the specimen surface. As it is not absorbed by the material,
evaporates quickly in air, and does not facilitate the accelerated ageing of the surface,
diiodomethane was used to test on the same location of the sample surface to reduce the
inconsistency of the contact angle measurements. However, the result demonstrated that
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the diiodomethane contact angles fluctuated greatly, making it difficult to see clear trends
of the ageing behaviour. Consequently, contact angle testing on the different locations was
found to give relatively more accurate results. Different liquids were used to test ageing
on the treated surface of different locations. All three liquids tested (deionised water,
diiodomethane and glycerol) showed similar trends of ageing. Among them, deionised
water was found to give relatively lower fluctuations. Therefore, deionised water on dif-
ferent locations on the µPlasma treated GFPA6 surface was deemed the most appropriate
approach. The results of contact angles of deionised water and diiodomethane were used
to calculate the surface free energies of the samples and to plot their wetting envelopes.
The change of surface free energy was consistent with the wetting envelope. The increase
of wettability of the GFPA6 was attributed to the relative increase in the polar component
content following µPlasma modification. Although the treated samples initially recovered
their total surface free energy within the first hour, the wetting properties were still partially
retained over the next 4 weeks.
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