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The co-evolution of helminths with their hosts has required these parasites to develop a range
of sophisticated molecular mechanisms and adaptations to evade, suppress and activate host
cells to maximize survival and maintain infection within their chosen niche. Recent studies have
revealed that Schistosoma mansoni (S. mansoni)-derived lipids are agonists of innate pattern
recognition receptors on eosinophils, mediating a pro-fibrotic phenotype. Indeed, the release of
lipids from Schistosoma could be a key factor driving disease pathogenesis in hepatosplenic forms
of the infection, where excessive hepatic fibrosis is linked to significant morbidity. A fundamental
question that remains is how are lipids derived from the tegumental outer surface of S. mansoni
adult worms, cercariae and eggs, transported and protected from the inflammatory milieu to
target and activate surface receptors on eosinophils. The recent identification of lipid-enriched
extracellular vesicles (EVs) as an evolutionarily conserved form of host-pathogen communication,
has led us to speculate that S. mansoni-derived extracellular vesicles are responsible for the targeting
of bioactive lipids to eosinophils, and we argue that these cargo delivery systems may be an
influential factor in both tissue repair and fibrosis during helminth infection.

SCHISTOSOMAL LIPIDS TRIGGER EOSINOPHILIC TISSUE
REPAIR

Schistosomiasis is an infectious parasitic disease caused by the trematode flukes of the genus
Schistosoma. The schistosmiasis lifecycle involves free-living larval cerceriae that penetrate human
skin, mature into schistosomula in the tissues then migrate through the lungs and systemic
circulation before residing in either vesical (S. haematobium) or mesenteric (S. japonicum, and
S. mansoni) veins as sexually mature adults where they can evade the immune system for years
(1). Females release eggs which either leave the body in excreta to propagate the lifecycle, or get
trapped in the tissues inducing a granulomatous immune response. The schistosoma granuloma
is a complex immune structure comprised of macrophages and eosinophils in a concentric inner
ring with infiltrating dendritic cells and CD4+ T cells interspersed surrounded by an outer layer of
fibroblasts which form around eggs deposited in the liver (2), which can result in clinical morbidity
from the ongoing fibrosis that encases calcified eggs. In hepatosplenic schistosomiasis, chronic
complications develop as a consequence to the inflammatory response to either S. mansoni or S.
japonicum, causing excessive hepatic fibrosis which results in portal hypertension and congestive
splenomegaly, the most common causes of mortality associated with this disease (3).
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Eosinophillia is a prominent feature during S. mansoni
infection, with exponential increases in the levels of eosinophils
in peripheral blood correlating with disease progression and
granuloma development within the host liver during acute
infection. Eosinophils comprise ∼44–60% of cells within the
schistosoma granuloma during acute and chronic infection,
respectively (4). Given the persistence of eosinophils during
infection, their role in tissue remodeling and fibrosis during
and/or following infection has been postulated, especially
due to the association between chronic eosinophilia and
other fibrotic conditions (5). The participation of eosinophils
and type-2 immunity in tissue remodeling and repair was
recently demonstrated in murine models of infection where
eosinophils were shown to directly drive IL-4-mediated wound
repair and regeneration as a post-toxin injury response in
skeletal muscle and liver tissue (6, 7). Interestingly, eosinophil-
derived IL-4 was shown to support T. spiralis new-born larval
growth in muscle tissue by limiting the interferon-driven local
inflammatory environment (8). However, type-2 cytokines are
not the only molecules secreted by eosinophils to induce
wound repair. Another pro-fibrotic mediator human eosinophils
are known to release is Transforming Growth Factor-beta
(TGF-β), which contributes strongly to airway remodeling in
asthma (9), fibroblast proliferation and matrix deposition in the
lung (10).

Whilst studies continue to define the role of eosinophils in
tissue repair during helminth infection, what remains unexplored
within current literature is how this occurs through recognition
of parasite-derived pathogen associated molecular patterns. A
new report by Magalhaes and colleagues has discovered that
lipids derived from S. mansoni, namely lysophosphatidylcholine
(LPC) and prostaglandin (PG)D2, can activate eosinophils via
toll-like receptor 2 (TLR2) and prostaglandin D2 receptor
1 (DP1) promoting the release of TGF-β to support both
fibrosis and tissue repair (11). This novel finding built upon
the authors previous research that established LPC signaling
through TLR2 mediates eosinophil recruitment and function
during S. mansoni infection, whereby TLR2 deficient mice lacked
strong type-2 immunity and blood/tissue eosinophilia (12).
Interestingly, recent studies from the same group demonstrated
a similar effect of schistosomal LPC on macrophages, in
which macrophages polarized to an alternatively-activated M2
phenotype through a PPAR-γ-dependent mechanism and were
capable of secreting TGF-β, identifying a common pathway
to potentiate tissue repair in response to the recognition of
schistosomal lipids within the microenvironment (13). It would
be reasonable to speculate that the continual release of these
active lipid mediators during chronic infection could be a major
contributing factor in the excessive fibrotic response observed
in hepatosplenic schistosomiasis, and an attractive target for
therapeutic intervention.

Exactly how eosinophils and potentially macrophages and
dendritic cells within the granuloma and the periphery
receive lipid signals from S. mansoni is poorly understood.
We argue that it is highly unlikely to only occur through
direct contact with the egg or schistosomula due to limited
mobility within the center of the granuloma, particularly

after the onset of fibrosis. Furthermore, the majority of
schistosomula die before sexual maturity, with this necrotic
process compromising tegumental integrity and facilitating the
rapid enzymatic destruction of lipid components. Together
this would suggest that like chemical messengers, schistosomal
lipids must be actively released into the granulomatous
environment and mesenteric veins to access target cells in the
microenvironment in a bioactively stable form. We propose a
central role exists here for extracellular vesicles; highly lipid
enriched messengers utilized by cells to transport proteins and
nucleic acids to mediate cell: cell, and more recently, host:
pathogen communication.

EXTRACELLULAR VESICLES AS A FORM
OF HOST: PATHOGEN COMMUNICATION

The phospholipid LPC is highly surface active (44.3 dyn/cm)
(14), so assembly of LPC within the lipid bilayer of the
worm membrane could indeed have potent effects on those
immune cells which come into direct contact as suggested by
Magalhães et al. (11). It was proposed that LPC and other
lysophospholipids may be excreted as degradation products
of the worm tegument, activating the TLR2 pathway as
apoptotic biproducts (12). However, tegumental phospholipids
have been demonstrated to have a far shorter half-life than those
contained within the worm body and LPC is rapidly metabolized
by lysophospholipase and LPC-acyltransferase which instead,
strongly suggests that unbound LPC would be immediately
degraded in vivo following worm necrosis and have limited
biological activity.

Lipids are poorly water soluble so need to act either in short
range or be transported by specific carriers such as lipoproteins.
Magalhães et al. use an artificial lipid worm extract in their
studies representing a highly pure and concentrated helminth
product not derived from a necrotic process, nor structurally
contained within a tegumental lipid enriched bilayer (11).
Interestingly, a recent S. mansoni lipidome study found LPC to
be enriched in cercariae and eggs, although only present as a
minor phospholipid in the adult worm suggesting the amount of
LPC within the worm tegument may not be sufficient to engage
and ligate TLRs to drive cellular activation (15). Furthermore,
the importance of targeted delivery of LPC, which would not
be achieved by the release of apoptotic bodies, is emphasized by
the rapid degradation of lysophospholipids by lipid phosphate
phosphatases present on the surface of all cells, enzymes shown
to rapidly hydrolyze and reduce the effective local concentration
of the lipid agonist (16). Thus, for LPC to interact with surface
receptors on eosinophils in vivo it is highly likely that LPC from
the worm tegument is concentrated and tightly packaged within
the lipid bilayer of S. mansoni-derived extracellular vesicles and
actively released.

Exosomes are submicron bioactive extracellular vesicles
released through a regulated pathway from all healthy cells of the
body as a mechanism of intercellular communication. In recent
years, the definition of different forms of extracellular vesicles
has become more defined owing to their ubiquity in many
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biological and disease contexts. As such, minimal guidelines have
been introduced to classify different populations of extracellular
vesicles, including exosomes, ectosomes, and microparticles
(17). Within the parent cell, the molecular sorting of its
cytosolic contents including proteins and nucleic acids into intra-
luminal vesicles encased by a cholesterol-enriched lipid bilayer
is regulated by intercellular RabGTPases. Exosomes have been
shown to transport an array of GTP-activatable phospholipases
and prostaglandins (PGs) packaged within the lipid bilayer from
cell to cell (18) [reviewed in Sagini et al. (19)]. Due to the potential
immunomodulatory nature of different types of extracellular
vesicle, as was described in the adult liver fluke, Fasciola hepatica
(20), we will refer to any potential vesicles secreted by S. mansoni
as extracellular vesicles, that presumably may be of exosomal
origin. Extracellular vesicles are released from the intracellular
Leishmania spp. and Trypanosoma cruzi parasites as well as
extracellular pathogens, providing a mechanism for the import
of parasite cargo into host cells, including virulence factors

from Trichomonas vaginalis and Trypanosoma brucei (21, 22).
In regard to helminth infections, extracellular vesicles have been
shown to be a common component in the excretory-secretory

product (20, 23, 24). Recent investigations of Echinostoma
caproni, Fasciola hepatica, Dicrocoelium dendriticum, Schistsoma
japonicum, Opisthorchis viverrine, Heligmosomoides polygyrus,
and Trichuris suis demonstrated that exosomes are excreted

from helminths and can be taken up by immune cells (25–
30) and notably S. mansoni and S. japonicum exosomes shown
to transport potential host modulating proteins, miRNAs, and

tsRNAs (23, 31). We first identified that H. polygyrus released
extracellular vesicles that were present in the excretory-secretory
product of the adult parasitic worm and revealed that these
bioactive vesicles could alter host gene expression, suggesting
extracellular vesicles are a highly specialized mechanism for

shuttling parasite factors into host cells to modulate the immune
system (32).

S. MANSONI-DERIVED EXTRACELLULAR
VESICLES DELIVER LIPID AGONISTS TO
TRIGGER TLRS ON EOSINOPHILS

Lipids are a critical component of exosomes and small
extracellular vesicles, forming the protective lipid bilayer which
is directly exposed to the environment and forms the interacting
surface with recipient host cells. Surprisingly, the lipid content
of helminth-derived exosomes remains relatively unknown, with
only a small number of entries for vesicle cargo devoted to
lipids in the online database Vesiclepedia. Of those published,
themajority list the lipid composition of human-derived immune
cells and cancer cell lines [reviewed in Yáñez-Mó et al. (33)].
The identification of the agonists of PGR and TLR2 receptors
by Magalhães et al. suggests that lipids embedded within
the membranous bilayer of extracellular vesicles secreted by
helminths are more than just structural components and may
indeed act as novel second messengers within the inflammatory
environment (11).

It is well known that exosomes, in comparison to their
cellular origin, are highly enriched in an array of lipid species,
including phosphatidylserine, sphingomyelin, cholesterol, and
plasmalogen. The composition of the lipid moiety within
exosomes can not only influence their stability in vivo, but
can also have their own functional consequences. Exosomes
have been shown to interact with cell peripheral lipid receptors
such as Tim4 which recognizes phosphatidylserine (34). Lyso-
phosphatidylserine extracted from the tegument of S. mansoni
has been shown to activate TLR2 and direct dendritic cell

FIGURE 1 | S. mansoni lipid-enriched extracellular vesicles trigger eosinophil tissue repair. S. mansoni eggs and worms release extracellular vesicles exosomes

enriched in nucleic acid, proteins, cholesterol, and lipids including LPC and DP1. Packaging in the bilayer of exosomes protects lipids from enzymatic degradation

once released in the inflammatory milieu as a component of the helminth excretory/secretory product allowing LPC and PGD2 to be targeted for delivery and

recognition by TLR2 and PDG1, respectively, on the surface of eosinophils. Activation of TLR2 and DP1 by S. mansoni-derived exosomes drives lipid droplet

accumulation within eosinophils and release of pro-fibrotic TGF-β to drive fibrosis in the granuloma or epithelium.
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polarization. Fascinatingly, the effect of lyso-phosphatidylserine
on TLR2 was specifically mediated by the parasite lyso-
phosphatidylserine species as a commercial synthetic and
mammalian-derived lyso-phosphatidylserine had no effect on
TLR2 activation (35). Similarly, PGs have been identified in
exosomes, with vesicular PGE2 enriched in T cell derived
exosomes (36). A recent study of the S. mansoni lipidome found
PDG2 to be the most abundant prostaglandin, identified in
cercariae and eggs, and was particularly enriched in soluble egg
antigen, worm secretory product and egg excretory/secretory
product, strongly suggesting PGD2 is released in extracellular
vesicles within the excretory/secretory product of S. mansoni
in vivo (15). Thus, it is highly plausible that LPC and PG
species in the lipid bilayer encasing S. mansoni derived-
extracellular vesicle contents are themselves able to modulate
the immune response upon recognition by surface receptors on
target cells.

It has been postulated that exosome recognition by cells
involves G2A, a G protein coupled receptor that recognizes
LPC on the surface of exosomes (37). Autotaxin, the
lysophospholipase responsible for generating lisophosphatidic
acid (LPA) from its substrate LPC, is an enzyme which once
secreted can bind to the surface of exosomes (38). Exosome-
bound autotaxin is catalytically active and can bind to the host
cell through specific integrin interactions, facilitating the release
of LPA to activate cell surface G-protein-coupled receptors (38).
It is tempting to speculate that a similar mechanism of action
exists for the delivery and recognition of LPC by TLR2 on
eosinophils. Therefore, we propose the mechanism underlying
the findings of Magalhães et al. involves active release and
targeted binding of S. mansoni-derived LPC-loaded extracellular
vesicles to deliver the lipid agonist to TLR2 on eosinophils, and
a similar exosomal delivery method of PDG2 may also exist
(Figure 1).

S. MANSONI EXTRACELLULAR VESICLES
AS VACCINE CANDIDATES–RESETTING
THE BALANCE BETWEEN TISSUE REPAIR
AND FIBROSIS

Complex participation from the different life stages of S. mansoni
including cercariae, soluble egg antigen and even the sex of
the adult worm can drive potent host immunosuppression
(39, 40). As such, isolating helminth products with similar
immunomodulatory properties, such as those found in parasite
excretory-secretory products or from the parasite itself, may
represent a target for vaccine development. Recent reports
have highlighted the use of helminth-derived extracellular
vesicles to prevent future infection. Indeed, we recently found
that vaccination of mice with extracellular vesicles derived
from H. polygyrus protected against a subsequent infection,
inducing high titres of EV-specific antibodies (32). Similar
immunomodulatory properties were demonstrated with S.
japonicum-derived exosomes which were shown to induce M1
macrophage polarization (27). Vaccines have also been directed

against specific molecules enriched in extracellular vesicles,
such as cathepsins and heat-shock proteins, rather than the
entire extracellular vesicles (41). Currently, S. mansoni-derived
proteins are being tested as vaccines against Schistosomiasis with
promising results (42), with the fatty-acid binding protein Sm14,
which plays a role in S. mansoni lipid uptake, assortment, and
transport, currently being trialed as a potential vaccine candidate
in humans and animals (43). Although the lipids investigated in
the recent study by Magalhães et al. are shown to potentiate a
tissue repair cascade, chronic release of these mediators could
potentially drive an unfavorable disease phenotype, characterized
by advanced hepatic fibrosis, aggravated portal hypertension and
the induction of splenomegaly. As such, targeting these lipid-
vesicle complexes by vaccination could neutralize an excessive
fibrotic response, whilst simultaneously directing immunity
against parasite-derived lipids (especially if these same lipids
can be found on a particular life-stage of the parasitic worm).
Moreover, if the vaccine could prevent establishment of the
parasite and perturb it’s lifecycle, this would diminish subsequent
inflammation and progression of severe hepatosplenic fibrosis,
which is far beyond the reparative fibrosis of granulomas that
occurs in patients who have the benign hepatointestinal form of
the disease.

It is likely that vesicle secretion by the parasite, host or
both is associated with co-evolutionary adaptations of both
parasite and host alike to maintain a chronic infection whilst
attempting to resolve damage to host tissues. Unfortunately, an
excessive tissue-repair response may result in unfavorable
clinical outcomes, such as hepatosplenic fibrosis. The
identification of LPC and PDG2 as potential extracellular
vesicle-derived targets (in which the mechanism of action
has been established) highlights their potential clinical
applications 2-fold. Enrichment of LPC and PDG2 lipids
within the serum above levels of a healthy subject could be
used as diagnostic biomarkers and it would be of interest
to see if serum levels of these lipids correlated with disease
severity or more excitingly, increased fibrosis. Moreover,
LPC and PDG2 have been identified as promising new
vaccine targets in masonic and japonica schistosomiasis.
Now it is of importance to determine whether targeting
these schistosomal lipids through vaccination will alter
the recruitment and activation of eosinophils to the site
of inflammation and influence or limit disease pathology
during schistosome infection, which could have broader
implications for infections in which eosinophils play a
key role.
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