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Evolution of the average avalanche shape
with the universality class
Lasse Laurson1, Xavier Illa2, Stéphane Santucci3, Ken Tore Tallakstad4, Knut Jørgen Måløy4 & Mikko J. Alava1

A multitude of systems ranging from the Barkhausen effect in ferromagnetic materials to

plastic deformation and earthquakes respond to slow external driving by exhibiting inter-

mittent, scale-free avalanche dynamics or crackling noise. The avalanches are power-law

distributed in size, and have a typical average shape: these are the two most important

signatures of avalanching systems. Here we show how the average avalanche shape evolves

with the universality class of the avalanche dynamics by employing a combination of scaling

theory, extensive numerical simulations and data from crack propagation experiments. It

follows a simple scaling form parameterized by two numbers, the scaling exponent relating

the average avalanche size to its duration and a parameter characterizing the temporal

asymmetry of the avalanches. The latter reflects a broken time-reversal symmetry in the

avalanche dynamics, emerging from the local nature of the interaction kernel mediating the

avalanche dynamics.
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T
he theoretical interpretation of crackling noise1, observed
in numerous systems, including the Barkhausen effect
in ferromagnetic materials2,3, plastic deformation4–6,

structural transitions7 and fracture8,9 of solids and earth-
quakes10, has found a formulation in terms of non-equilibrium
phase transitions11. These transitions separate quiescent
and active phases of the system, and naturally give rise to
critical scaling12. In the vicinity of such a phase transition, the
time evolution of the activity signal V(t) or the order parameter of
the transition (for example, the interface velocity for a depinning
transition) exhibits scale-free bursts or avalanches. Statistical
analysis of such fluctuations, together with renormalization
group calculations13, suggest that in general systems with
avalanche dynamics can be classified into universality classes
characterized by the values of the critical exponents, depending
on, for example, the spatial dimension and the interaction range
of the system.

The average temporal shape of bursts in a crackling noise
signal is a fundamental signature of avalanches, and has been esti-
mated for systems as diverse as plastically deforming crystals14,
earthquakes15 and Barkhausen noise16–18. For the latter, the
symmetric average avalanche shape observed in ferromagnetic
films of intermediate thickness where the long-range dipolar
interactions render the avalanche dynamics mean field-like has
been explained within the ABBM model19, and shown to be given
by an inverted parabola16,20–22. In thick enough samples eddy
currents induce an effective mass for the propagating domain
walls, visible as an asymmetry in the (mean-field-like) average
shape of the Barkhausen pulses17. In general, clear-cut shape
determinations should give strong indications of the underlying
physics, such as the kind and range of interactions governing the
avalanche dynamics.

Here we present a general scaling form for the average
avalanche shapes for non-mean-field systems. It is verified within
a large-scale numerical study of avalanches at the depinning
transition of driven elastic interfaces in random media. We vary
systematically the range of the elastic interaction kernel, and thus
the universality class of the avalanche dynamics23, showing how
the avalanche shape depends on the universality class. The
average shape is to a high precision given by a function
parameterized by the scaling exponent g characterizing the
scaling of the average avalanche size as a function of the
avalanche duration, and a parameter a describing the temporal
asymmetry of the average avalanche shapes. We find that an
inherent asymmetry in the average avalanche shapes is present in
systems where the interaction kernel is not fully non-local,
reflecting the underlying broken time-reversal symmetry of the
avalanche dynamics. Finally, we compare these results with
experiments of planar crack front propagation, finding good
agreement with the predictions of the scaling theory and the
relevant depinning model.

Results
Average avalanche shape scaling function. To obtain a general
scaling form for the average shape of the bursts in V(t) corre-
sponding to avalanches of a given duration T, hV(t | T) i, we start
from the well-known result that the average avalanche size
hs(T) i follows in the scaling regime

sðTÞh i �
ZT

0

Vðt j TÞh idt / Tg: ð1Þ

Thus, the amplitude of the average avalanche shape of ava-
lanches of duration T has with T the relation hV(t | T) ipTg� 1,

and is in general given by the form

Vðt j TÞh i ¼ Tg� 1f
t
T

� �
; ð2Þ

where f(x) is a scaling function characterizing the average
temporal avalanche shape. We make the Ansatz that the
average early-time growth of an avalanche is given by a power
law of time, that is, hV(t | T) iptd for t=T � b � 1. Given that
equation (2) implies that hV(t | T) ipT g� 1 for any fixed t/T,
it follows in particular that hV(bT | T) ipT g� 1. Therefore,
in order for the postulated power law early-time growth to
be compatible with this, one needs to have hV(bT | T) ip
(bT)dpT g� 1, that is, d¼ g� 1. Thus, the average early-time
growth scales with t as

Vðt j TÞh i / tg� 1; t � T: ð3Þ
To arrive at an expression for hV(t | T) i satisfying equations

(2) and (3), we multiply equation (3) by (1� t/T)g� 1, to describe
the (symmetric) deceleration at the end of an avalanche, and
obtain

hVðt j TÞi / Tg� 1 t
T

1� t
T

� �h ig� 1

: ð4Þ

In mean-field systems, hV(t | T) i is known to be given in the
scaling regime by the inverted parabola, predicted within the
ABBM model in the limit of vanishing drive rate and
demagnetizing factor, hV(t | T) ipt(1� t/T)�T(t/T)(1� t/T)
(ref. 16). This is in agreement with equation (4), given the
mean-field value g¼ 2. Notice also that random walk bridges
obey similar scaling with g¼ 3/2 (refs 24,25).

Although avalanches in mean-field systems have a symmetric
average shape16, there is no fundamental reason why this should
be true in general. Indeed, it is easy to see from the space-time
activity plots of avalanches from, for example, the local quenched
Edwards–Wilkinson (qEW) equation26 used in this study (see
Fig. 1a) that the internal dynamics of the avalanches appears to
violate time-reversal symmetry: the branching exhibited by the
activity pattern at all scales clearly defines a direction of time.
This means that the system is not Markovian: a possible signature
of that is a temporal asymmetry in the average avalanche shape
hV(t | T) i (ref. 24). For an increasing range of the elastic
interactions, the time-irreversible nature of the activity pattern
becomes less evident (Fig. 1b) and naturally vanishes for the
mean-field infinite range model (Fig. 1c; see below for the
definitions of the various interface depinning models): the activity
pattern becomes a cloud of points without any internal time-
irreversible structure.

Therefore, to account for the time-irreversible avalanche
dynamics, we need to allow for a small temporal asymmetry in
the average avalanche shape. Thus, we multiply equation (4) by
1� a(t/T� 1/2), that is, a first order correction term allowing for
an asymmetry quantified by a, and obtain

hVðt j TÞi / Tg� 1 t
T

1� t
T

� �h ig� 1

1� a
t
T
� 1

2

� �� �
: ð5Þ

If a¼ 0, equation (5) reduces to equation (4) and corresponds
to a symmetrical avalanche shape. With aa0, equation (5)
describes a temporally asymmetric avalanche shape, with
a positive or negative skewness for a40 and ao0, respectively
(see also Supplementary Note 1).

Numerical simulations of interface depinning models. To check
equation (5), we perform extensive simulations of a discretized
model of a 1d elastic string or interface in a 2d random
medium23, represented by a set of integer heights hi(t), i¼ 1 y L,
with L the system size. The lateral coordinates xi of the interface
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are given by xi¼ i. The total force acting on the interface
element i is

Fi ¼ G0

X
j 6¼ i

hj� hi

j xj� xi j a
þ Zðxi; hiÞþ Fext; ð6Þ

where the first term on the RHS represents the elastic interactions
characterized by the exponent a, Z is uncorrelated quenched
disorder and Fext is the external driving force. Notice that in the
limit a-N, the elastic interaction term becomes completely
local, G0(hiþ 1þ hi� 1� 2hi)�G0r2hi: thus, equation (6) reduces
to the qEW equation. In the opposite limit (a-0) the system
loses its spatial structure and we describe it by the mean-field
infinite-range model, by replacing the elastic interactions
in equation (6) by G00 �h� hi

� 	
, with �h ¼ 1=L

P
i hi. For the inter-

mediate case of a¼ 2, equation (6) reduces to the long-range

elastic string expected to describe, for example, planar crack
fronts propagating along disordered weak planes between solid
blocks27,28, contact lines of liquids spreading on solid surfaces29

and low-angle grain boundaries in plastically deforming
crystals30. Furthermore, aZ3 belongs to the qEW class,
whereas a¼ 1 is expected to follow mean-field dynamics. The
crackling noise signal is given by VðtÞ ¼

P
i viðtÞ, where

vi¼ y(Fi), with y the Heaviside step function. For additional
details, see Methods.

As expected, hs(T) i scales with T according to equation (1)
(see Supplementary Fig. S1 and Supplementary Note 2). We find
three different values of g, that is, g¼ 2.0±0.01 for ar1,
g¼ 1.79±0.01 for a¼ 2 and g¼ 1.56±0.01 for aZ3. These
values are in agreement with earlier results, either directly or via
scaling relations12,16,27,31. Fitting equation (5) to the hV(t | T) i
data for various a and different ranges of T in the scaling
regime reproduces well these g-exponents (Fig. 2a,b; see also
Supplementary Figs S2–S5 and Supplementary Notes 3 and 4).
The avalanche shapes exhibit an asymmetry, with the
a-parameter evolving continuously from � 0.01±0.02 (for the
infinite range model) to 0.081±0.015 (for the qEW equation), as
the interaction range is reduced (Fig. 2c; see also Supplementary
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Figure 1 | Space-time activity plots reveal broken time-reversal

symmetry in avalanche dynamics. Examples of space-time activity of

typical large avalanches for three cases: (a) the qEW equation with local

elasticity, (b) the crack line model with non-local elasticity (a¼ 2) and

(c) the mean-field infinite range model. Notice the clear time-irreversible

nature of the spatio-temporal avalanche structure in (a), and the

reversible character in (c).
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Figure 2 | The average avalanche shapes from interface depinning

models. (a) hV(t/T) i/hV(t/T) imax from the interface depinning

simulations for different elastic kernels, ranging from the infinite range

model (a¼0, black symbols) to the local qEW equation (red symbols). The

avalanche shapes corresponding to a¼ 1, 2 and 3 are shown with blue,

green and indigo symbols, respectively. Different symbols correspond to

different duration ranges of the avalanches. Statistical error bars are

negligible (not shown). The lines are fit to the data according to

equation (5). (b) shows the asymmetry corrections to the average

avalanche shapes, that is, hV(t/T) i/hV(t/T) imax� [4(t/T)(1� t/T)]g� 1.

Scatter of the data points corresponds to the magnitude of the statistical

fluctuations. The asymmetric parts of equation (5) are shown with lines,

with the best-fit parameters given in the legend. (c) shows the evolution of

the asymmetry parameter a with a. The error bars are estimated from the

scatter (s.d.) of the best-fit a-values obtained for different duration ranges

within the scaling regime.
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Fig. S6 and Supplementary Note 5). The corresponding skewness
(computed by interpreting hV(t | T) i as a probability density17) of
the avalanches exhibits a similar evolution with a (Supplementary
Fig. S7, Supplementary Note 6). Thus, avalanches whose
dynamics is governed by interaction kernels that are not fully
non-local are temporally asymmetric, as illustrated by the time-
irreversible nature of the corresponding space-time activity
patterns (Fig. 1).

Planar crack front propagation experiments. Finally, we con-
sider data from planar crack front propagation experiments9,32, as
an example of an experimental system with non-mean-field
avalanche dynamics, see Methods for details. The scaling of the
average size of the avalanches of crack front propagation as a
function of their duration is shown in Fig. 3b. In the scaling
regime, these are characterized by g¼ 1.67±0.15, in agreement
with the 1d non-local elasticity depinning model with a¼ 2
(refs 27,28), see also Supplementary Fig. S8. The average
avalanche shape is shown in Fig. 3a. Owing to the non-
negligible statistical fluctuations present in the data, it is not
possible to detect the small asymmetry predicted by the crack line
model: thus, we choose to fit the leading-order behaviour,
equation (4), to the data (see also Supplementary Fig. S9). This
leads to g¼ 1.74±0.08, in agreement with the g-value obtained
from the fit to the shape obtained from the crack line model27,28.
Notice also that the experimental shape clearly differs from both
the mean-field inverted parabola and the shape expected for the
local qEW equation.

Discussion
We have shown how the average avalanche shape of systems
exhibiting crackling noise depends on the universality class of the
avalanche dynamics. It is a fundamental fingerprint of an
avalanching system and extrapolates when tuning elastic inter-
actions between an inverted parabola for mean-field systems and
a shape close to a semicircle for the 1d short-range interface. The
broken time-reversal symmetry in the avalanche dynamics
emerging from the spatially localized interactions is manifested
as a temporal asymmetry in the avalanche shape evolving with the
interaction range (see also Supplementary Discussion). Thus,
such asymmetries should be looked for in experimental data in
systems where the interactions mediating the avalanche dynamics
are not fully non-local. These include, for example, domain wall
dynamics in magnetic thin films33 and fluid invasion into
disordered media34,35.

Methods
Numerical simulations of interface depinning models. We simulate the inter-
face depinning model, equation (6) with periodic boundary conditions. The parallel
dynamics of the interface is defined in discrete time t by setting the local velocity
vi(t)�hi(tþ 1)� hi(t)¼ y(Fi), where y is the Heaviside step function. The interface
is driven with a quasistatic constant velocity drive, where avalanches are triggered
by increasing Fext just enough to make exactly one interface element unstable (that
is, Fi40 for some i) whenever the previous avalanche has ended. Thus, avalanches
can be defined unambiguously without thresholding28. During an avalanche, Fext is
decreased at a rate proportional to the instantaneous avalanche velocity,
_Fext ¼ � k=L

P
i viðtÞ. k is a parameter analogous to the demagnetizing factor for

ferromagnetic domain walls36 or to the elastic stiffness of the specimen-machine
system in a mechanical loading experiment37 and controls the cut-off of the
avalanche distribution, with the cut-off size s0 obeying s0 � k� 1=sk . The crackling
noise signal of interest is given by VðtÞ ¼

P
i viðtÞ. To compute the average

avalanche shapes, we collect a large ensemble of avalanches from various duration
ranges. For T in the scaling regime, the average shapes corresponding to the various
duration ranges fall onto a single curve after normalizing with the maximum
amplitude, hV(t | T) imax. The simulations are performed in large system sizes
(L¼ 8,192¼ 213 for aZ3, L¼ 32,768¼ 215 for a¼ 2, L¼ 131,078¼ 217 for a¼ 1
and L¼ 8,388,608¼ 223 for the infinite range model), and by using sufficiently
small k-values such that the avalanche cut-off s0 � k� 1=sk is large. Examples of the
crackling noise signals VðtÞ ¼

P
i viðtÞ obtained from the model for different

interaction ranges are shown in Fig. 4.

Planar crack front propagation experiments. To extract the average avalanche
shape for the planar crack propagation experiments, slow creep motion of a planar
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crack front propagating along the heterogeneous weak plane of a transparent poly
(methyl methacrylate) block, made of two sintered rough Plexiglas plates (of
dimensions (27, 14 and 1) cm for the top and (30, 12 and 0.4) cm for the bottom
plate, respectively) is studied8,9,32. We imposed a constant normal displacement d
to the bottom plate while the upper one is fixed, resulting in a quasi-mode I creep
growth of the crack, see Fig. 5a. The interfacial fracture front was observed in a
small central region (to avoid boundary effects) corresponding to around 4.48 mm
and 6.72 mm in the direction of propagation and along the front, respectively. The
propagation of the crack front is monitored optically by using a camera with a high
frame rate compared with the average crack front velocity, recording typically
20,000 images of 2,000� 3,000 pixels with a pixel size of r¼ 2.24 mm at a rate
ranging from 1 to 60 fps. From these images, we define the local velocity v along the
crack front by measuring the waiting time (wt) the front has spent at a given
position (x,y) and setting v(x,y)¼ r/wt(x,y) (ref. 9), see Fig. 5b. We consider here
the ‘global’ velocity of the crack front V(t), computed (that is, spatially averaged
from the local velocities) at a length scale of dx¼ 200mm, larger than the
correlation length of 100 mm of the local velocities32, leading to more than 30
different and independent crackling noise signals V(t) for each creep test (since the
lateral size of the imaging area divided by dx is (6720 mm)/(200 mm)¼ 33.6). Five
different creep experiments with low average crack front velocities V¼hV(t) it (V
ranging from 0.017 mm s� 1 to 1.13 mm s� 1) are considered, resulting in more than
150 crackling noise signals containing in total more than 4,000 bursts or
avalanches. An example of a signal V(t) is shown in Fig. 5c.

During a creep test, the average crack front velocity decreases slowly. However,
the time intervals studied here are short enough to consider the average crack front
velocity constant within such time windows. Avalanches are defined as a
continuous occurrence of V(t) above its average value V¼hV(t) it. We have
verified that by choosing another threshold values in a reasonable interval around
V does not influence the extracted results. The average value is subtracted from
V(t) to define the avalanche size (that is, the integral of V(t)�V) and shape. As the
different experiments have a different average velocity, we consider the rescaled
avalanche durations T0 ¼T/TV, where the time scale TV is given by TV¼ r/V. Also,
very short and very long avalanches might affect the scaling behaviour as well as
the avalanche shape, owing to a poor resolution and a lack of statistics, respectively.
Therefore, we consider only avalanches that last longer than T¼ 25 dt, (the
temporal resolution dt varying between 1/60 s up to 1 s for the various experiments

performed). In the inset of Supplementary Fig. S8, we show the probability density
functions P(T 0) of the normalized durations for all avalanches extracted and for
such a subset, that is, P(T 0|T425). We can observe an exponential cut-off for large
duration T 042.5, which provides the upper limit for the scaling range we will
consider, leading finally to the study of slightly more than 1,500 avalanches. A
power-law fit to the avalanche size s as a function of the normalized durations T 0

for those avalanches yields an exponent g¼ 1.67±0.15 (as shown in Fig. 3b, and in
the Supplementary Fig. S8), in good agreement within error bars with the 1d
depinning model with a¼ 2 (ref. 27). We finally normalize the amplitudes of
those avalanches by T 0g� 1 and compute their average shape hV(t | T 0) i. The
resulting average avalanche shape normalized by the maximum amplitude,
hV(t | T 0) i/hV(t | T 0) imax, is shown in Fig. 3a.

Finally, we discuss the effect of the limited statistics available from the
experiments. In order to estimate the amount of statistics required to observe the
predicted asymmetry, we estimate the statistical error bars dN(V/Vmax) of the
average avalanche shapes averaged over N avalanches as dNðV=VmaxÞ ¼
d1ðV=VmaxÞ=

ffiffiffiffi
N
p

, where d1(V/Vmax)E1 is the fluctuation magnitude of an
individual avalanche. As the typical difference between the normalized avalanche
shape of the depinning model with a¼ 2 and the corresponding symmetrical shape
is roughly 0.005 or less (see Fig. 2c), the error bars have to be smaller than that to
be able to distinguish the asymmetry from the data. Setting dN(V/Vmax)¼ 0.005
corresponds to N¼ 40,000, which should be interpreted as a lower limit. Thus, we
estimate the order of magnitude of the number of avalanches N required to make
conclusions regarding the asymmetry to be of the order of N¼ 105, that is, two
orders of magnitude more than the number of avalanches we have at our disposal
from the experiments. Indeed, this can also be seen from the data: in
Supplementary Fig. S9 we show again the experimental average avalanche shape,
along with a fit of equation (4). The inset displays their difference, showing clearly
that the very small correction to the symmetric shape predicted by the crack line
model is hidden by statistical noise.
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