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Abstract: Construction and demolition waste (DW) generation information has been recognized as a
tool for providing useful information for waste management. Recently, numerous researchers have
actively utilized artificial intelligence technology to establish accurate waste generation information.
This study investigated the development of machine learning predictive models that can achieve
predictive performance on small datasets composed of categorical variables. To this end, the random
forest (RF) and gradient boosting machine (GBM) algorithms were adopted. To develop the models,
690 building datasets were established using data preprocessing and standardization. Hyperpa-
rameter tuning was performed to develop the RF and GBM models. The model performances were
evaluated using the leave-one-out cross-validation technique. The study demonstrated that, for small
datasets comprising mainly categorical variables, the bagging technique (RF) predictions were more
stable and accurate than those of the boosting technique (GBM). However, GBM models demon-
strated excellent predictive performance in some DW predictive models. Furthermore, the RF and
GBM predictive models demonstrated significantly differing performance across different types of
DW. Certain RF and GBM models demonstrated relatively low predictive performance. However, the
remaining predictive models all demonstrated excellent predictive performance at R2 values > 0.6,
and R values > 0.8. Such differences are mainly because of the characteristics of features applied to
model development; we expect the application of additional features to improve the performance
of the predictive models. The 11 DW predictive models developed in this study will be useful for
establishing detailed DW management strategies.

Keywords: waste management; demolition waste; predictive model; bagging technique;
boosting technique

1. Introduction

Waste management has become a critical issue due to rapid urban growth [1,2]. Ac-
cording to recent statistics, 2.01 billion tons of municipal solid waste (MSW) was generated
in 2016; reports also predict that 3.40 billion tons of waste will be generated annually by
2050 [3]. In particular, construction and demolition (C&D) waste generation is steadily
increasing [4–6], and 70–90% of C&D waste generation can be attributed to demolition
activities [7,8]. For example, construction activities are responsible for 90% of the C&D
waste generation in the United States; moreover, such activities account for 74% of the
C&D waste generation in China [6–8]. C&D waste is mainly generated from such activities
as construction, demolition, and refurbishment, which are detrimental to the environment
because they generate considerable quantities of waste and greenhouse gases [9]. Therefore,
systems or solutions for effectively and appropriately managing C&D waste are necessary
for sustainable growth and development in the construction industry.
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A key requirement for sustainable growth in C&D-related industries is to achieve the
maximum economic and environmental values expected during building demolition [10].
To this end, accurate information on the amount of waste generation is necessary, as
basic data for predicting the bulk of waste, the economic scale, and the environmental
impact [6,11]. Therefore, information on the amount of C&D waste generation is perceived
to be useful in informing the management of waste for relevant industry personnel (clients,
architects, engineers, contractors, planners, etc.) [12].

Predicting C&D waste is a difficult task because it depends on the technical, cultural,
and geometric variables of buildings. ML can be useful for explaining or understand-
ing these variables by combining them; as such, its use in the construction industry has
continued to increase [13]. Therefore, recently, numerous researchers have used artifi-
cial intelligence (AI) technology to establish accurate waste generation information; the
unique characteristics of AI algorithms (data input, learning, and prediction) are con-
sidered state-of-the-art models for reliable waste generation prediction [14]. Various AI
algorithms—including artificial neural networks (ANN), adaptive neuro-fuzzy inference
systems (ANFIS), support vector machines (SVM), linear regression analysis (LR), and
decision trees (DT)—have been applied as machine learning (ML) methods for the pre-
diction of MSW and C&D waste generation. However, application of such AI systems
requires big data, and insufficient data can be a major obstacle to the predictive perfor-
mance of AI models [15]. Most existing studies, using such methods as ANN [10,16,17],
SVM [16,18,19], and LR [16,20–22], are based on big data consisting of continuous variables;
in other data environments (categorical variables, small datasets, etc.), the waste prediction
performance seen in existing studies cannot be guaranteed [23], because predictive models
using ML algorithms based on small datasets cannot be free of statistical bias [24] and
high variance [25]. To overcome this limitation of applying AI systems, predictive models
must be developed by applying ML algorithms suitable for small datasets composed of
categorical variables. A recent study [26] demonstrated that DT-based algorithms exhibit
excellent predictive performance for small datasets composed of categorical variables. Such
results are expected to help DT-based ML algorithms improve the predictive performance
of models for small datasets composed of categorical variables.

This study investigated the performance of predictive models of demolition waste
(DW) generation by applying representative DT-based ML algorithms (RF and GBM) as a
method to improve the predictive performance of AI models for small datasets composed
of categorical variables. To this end, this study (1) built a dataset of information on the
amount of generation of 10 types of DW, including the structure, region, purpose of use,
wall materials, roof materials, and area variables. (2) To improve the performance of the
predictive models, preprocessing was performed by eliminating outliers and normalizing
the raw data. (3) Hyperparameters for each algorithm were tuned, and based on (1) and
(2), GBM (boosting technique) and RF (bagging technique) algorithms—representative
ensemble models based on DT—were applied to derive 10 types of waste generation
models and one predictive model for total waste generation, covering all waste types.
(4) Considering the characteristics of the data, leave-one-out cross-validation (LOOCV)
was applied to verify and evaluate the predictive models. The performance of the models
was evaluated using Pearson’s correlation coefficient (R), root mean square error (RMSE),
coefficient of determination (R2), and mean absolute error (MAE) metrics. (5) Finally, the
ensemble technique suitable for small datasets composed mainly of categorical variables
was discussed by comparatively analyzing the predictive performance of the boosting
technique and the bagging technique. This study sought to propose ensemble models that
effectively improve the performance of predictive models for small datasets consisting
mainly of categorical variables, and to discuss further research directions for improving
predictive performance in limited data environments.
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2. Description of Artificial Intelligence in Predicting DW Generation in This Study

In this section, we explore the principles and properties of random forest (RF) and
gradient boosting machine (GBM) algorithms along with the properties of ensembles.
Moreover, we explore LOOCV techniques applied for the performance evaluation of
models based on small datasets mainly comprising categorical variables used in this study.

2.1. Ensemble Model

Ensemble learning (EL) methods involve combining and building various learning
algorithms. This allows ensemble learning algorithms (ELA) to obtain better predictive
performance and improved generalization compared to a single learning algorithm [27,28].
Ensemble methods are especially useful when the amount of training data is small. This
is because ensemble algorithms (EAs) can reduce the risk of selecting a poor classifier
through votes by individual classifiers [29]. Various ensemble techniques have been
developed so far, among which bagging and boosting are representative of decision tree
(DT)-based ELAs [30,31]. As presented in Figure 1, bagging (also known as bootstrap
aggregation [32]) generates numerous bootstraps from the given training data, and an
independent predictive model is generated for each bootstrap. Thus, bagging can improve
the stability and accuracy of machine learning algorithms (MLA) [33]. Recently, RF has
been widely utilized as a bagging method for MLA; Cha et al. and Nguyen et al. [23,34]
demonstrated high predictive performance in applying RF to predict waste generation.
Boosting, on the other hand, is a technique in which numerous classifiers are generated
from early samples, and weak classifiers are collected to generate strong classifiers. As seen
in Figure 1, bagging is an independence-based learner training system, while boosting is
an iterative and dependence-based system. Boosting is a continuous process of generating
classifiers reinforced by weights from weak classifiers from previous stages, which helps
reduce the bias and variance of datasets [32]. GBM is representative of boosting DT-based
algorithms. Johnson et al. [35] and Kontokosta et al. [36] applied GBM to predict the
amount of MSW generation.
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2.2. Gradient Boosting Machine and Random Forest

GBM, as one of the most robust machine learning (ML) algorithms, is widely applied
in engineering fields [37] and is a boosting technique. GBM may be deemed a numerical
optimization algorithm aimed at finding an additive model that minimizes the loss function.
To this end, GBM iteratively adds a new DT (weak classifier in Figure 2), which can reduce
the loss function as much as possible at each stage. In other words, at each step, a new DT
is fitted to the current residual and added to the previous model to update the residual. As
presented in Figure 2, GBM is an iterative and dependence-based algorithm; as it iteratively
performs these processes, it increasingly reinforces the classifier by the number of iterations
specified by the user. GBM algorithms based on this boosting principle are effective in
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reducing bias and variance in predictive models [38]. Such characteristics of GBM are
deemed useful in solving issues of bias and variance in predictive model results that occur
when ML algorithms are applied to small datasets. Therefore, this study utilized GBM
to predict demolition waste (DW) generation in a small-dataset environment consisting
mainly of categorical variables.

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 4 of 16 
 

 

as it iteratively performs these processes, it increasingly reinforces the classifier by the 
number of iterations specified by the user. GBM algorithms based on this boosting prin-
ciple are effective in reducing bias and variance in predictive models [38]. Such character-
istics of GBM are deemed useful in solving issues of bias and variance in predictive model 
results that occur when ML algorithms are applied to small datasets. Therefore, this study 
utilized GBM to predict demolition waste (DW) generation in a small-dataset environ-
ment consisting mainly of categorical variables. 

 
Figure 2. Comparison of the structure and workflows of the gradient boosting machine (GBM) and random forest (RF) 
algorithms. 

RF is considered among the 10 best classifiers [39]. RF, a representative DT-based 
algorithm, is a bagging-based ensemble technique that generates bootstrap sampling (Fig-
ure 2). RF builds numerous subsets (bootstrap sampling) from the training data and trains 
the same algorithm several times. The resulting prediction is determined as the mean of 
all predictions of the submodels. As the number of trees increases, RF can avoid overfit-
ting and be less affected by outliers. Moreover, even when the class is imbalanced, it has 
superior predictive power over other ML algorithms [33]. Considering these strengths, 
the application of RF in the data environment utilized in this study (small datasets com-
posed mainly of categorical variables) is also expected to be useful for predicting DW gen-
eration. 

2.3. Leave-One-Out Cross-Validation (LOOCV) 
K-fold and leave-one-out cross-validation (LOOCV) are widely used to evaluate the 

performance of classification algorithms. For large amounts of data, k-fold cross-valida-
tion (CV) should be applied to assess the accuracy of the classification model [40]. LOOCV 
is a special case of k-fold CV, in which the number of folds is equal to the number of 
instances (as shown in Figure 3). That is, LOOCV uses all samples in the dataset as the test 
and training data. The benefit of using so many fitted and evaluated models is a more 
robust estimate of model performance, as each row of data is given an opportunity to 
represent the entirety of the test dataset [23]. Therefore, when the number of instances in 
either a dataset or a class value is small, LOOCV must be applied to verify the accuracy 
of the classification algorithm [41]. These characteristics of LOOCV were considered in 
this study when selecting it as the CV method for the performance evaluation of the pre-
dictive models. 

Figure 2. Comparison of the structure and workflows of the gradient boosting machine (GBM) and random forest
(RF) algorithms.

RF is considered among the 10 best classifiers [39]. RF, a representative DT-based algo-
rithm, is a bagging-based ensemble technique that generates bootstrap sampling (Figure 2).
RF builds numerous subsets (bootstrap sampling) from the training data and trains the
same algorithm several times. The resulting prediction is determined as the mean of all
predictions of the submodels. As the number of trees increases, RF can avoid overfitting
and be less affected by outliers. Moreover, even when the class is imbalanced, it has
superior predictive power over other ML algorithms [33]. Considering these strengths, the
application of RF in the data environment utilized in this study (small datasets composed
mainly of categorical variables) is also expected to be useful for predicting DW generation.

2.3. Leave-One-Out Cross-Validation (LOOCV)

K-fold and leave-one-out cross-validation (LOOCV) are widely used to evaluate the
performance of classification algorithms. For large amounts of data, k-fold cross-validation
(CV) should be applied to assess the accuracy of the classification model [40]. LOOCV
is a special case of k-fold CV, in which the number of folds is equal to the number of
instances (as shown in Figure 3). That is, LOOCV uses all samples in the dataset as the
test and training data. The benefit of using so many fitted and evaluated models is a more
robust estimate of model performance, as each row of data is given an opportunity to
represent the entirety of the test dataset [23]. Therefore, when the number of instances in
either a dataset or a class value is small, LOOCV must be applied to verify the accuracy
of the classification algorithm [41]. These characteristics of LOOCV were considered in
this study when selecting it as the CV method for the performance evaluation of the
predictive models.
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3. Materials and Methods
3.1. Data Source of Demolition Waste Generation (DWG) Data

This study utilized existing raw data [23,26,42] to develop predictive models for
demolition waste (DW) generation. Raw data pertaining to the urban regeneration project
districts in Daegu (35.88◦ N latitude, 128.61◦ E longitude) and Busan (35.87◦ N latitude,
128.63◦ E longitude) in the southern part of Korea were obtained. Therefore, the target
buildings surveyed mainly included low-rise detached houses. Table 1 lists the statuses of
the buildings whose raw data were used in this study.

Table 1. Building status of raw data used in this study.

Structure Type Number of Buildings Total Floor Area (m2)

RC 147 56,929
Masonry 352 33,291

Wood 285 22,750
Total 784 112,970

Raw data were collected through investigations of the main members, areas, number
of floors, structures, material types (i.e., mortar, concrete, block, brick, timber, slate, roofing
tile, ceramic and glass, metal, or soil), characteristics, and sizes of the buildings prior to
dismantling. These investigations were conducted using teams of two individuals, where
one focused on measurements and the other focused on recording the data. The raw data
included information on the amount of generation (kg/m2) of 10 types of DW (mortar,
concrete, block, brick, timber, slate, roofing tile, ceramic and glass, metal, and soil) from
784 buildings. For each building, information is included on six types of construction
characteristics (gross floor area, region, building structure, building use, wall material,
and roofing material), which correspond to input variables that affect DW generation.
The unit of DW generation data used in this study is kg/m2, in accordance with the
following equation:

DWGRi o f buildingk=
∑ Aij o f building
GFA o f buildingk

(1)

where DWGR is the demolition waste generation rate (kg/m2), Aij is the amount of waste
material j with properties i (kg), and GFA is the gross floor area (m2) of building k.

3.2. Data Preprocessing and Preparing Datasets for Prediction Models

Preprocessing data are necessary to reduce the impact of data distortion or outliers
and include cutting, adding, and transforming training datasets [43,44]. A stable dataset
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construction is required to improve the performance of the predictive model. Therefore,
this study performed data outlier elimination and standardization of data to reduce the
impact of data distortion and outliers resulting from the large variation in the collected
raw data. In this study, the interquartile range method was used to eliminate outliers
in the screening of data for use in the models, in accordance with Equation (2). After
outlier removal, 690 out of the 784 building samples were used to develop the RF and GBM
predictive models in this study.

Q1 − 1.5 × IQR < selecting data < Q3 + 1.5 × IQR, (2)

where IQR is the interquartile range and the value of IQR is Q3 minus Q1, Q1 being the
25th percentile, and Q3 the 75th percentile (Q represents quartile).

Standardization was performed to reduce the impact of data outliers on model per-
formance and to build datasets of the same scales and units. Data standardization was
conducted using Equation (3), in which the average of the data was xaverage and the standard
deviation was σstandard deviation.

xstandardization =
xelement − xaverage

σstandard deviation
(3)

3.3. Characteristics and Composition of Variables

Table 2 presents explanations of the data used in this study. Six independent variables
and one dependent variable (DW generation) were used to develop the RF and GBM predic-
tive models. The independent variables consist of nominal variables (region, use, structure,
wall material, and roofing material) and one numeric variable (GFA). As shown in Table 2,
the values converted into scales were utilized as input variables for the nominal variables.

Table 2. Input and output variables used to develop the models in this study.

Variables
Type Variables Description Unit or Scale of Variables

Independent
variables

Region
Nominal variable;
Areas where DW has occurred;
Three region variables (Region A, B, C)

Region A is 1
Region B is 2
Region C is 3

Building use

Nominal variable;
Usage of building where DW has occurred;
Three usage variables (residential-only,
commercial and residential, commercial-only)

Residential-only is 1
Commercial and Residential is 2
Commercial-only is 3

Building structure
Nominal variable;
Structure of building where DW has occurred;
Three structure variables (reinforced concrete, masonry, wooden)

Reinforced concrete is 1
Masonry is 2
Wooden is 3

Wall material

Nominal variable;
Main wall material of building where DW has occurred;
Four wall material variables (reinforced concrete wall,
brick wall, block wall, wall made of soil)

Reinforced concrete wall is 1
Brick wall is 2
Block wall is 3
Wall made of soil is 4

Roofing material

Nominal variable;
Main roofing material of building where DW has occurred;
Four roofing material variables (slab, slab and roofing tile, roof
with asbestos, roofing tile)

Slab is 1
Slab and roofing tile is 2
Roof with asbestos is 3
Roofing tile is 4

Gross floor area (GFA) Numeric variable m2

Dependent
variable Waste generation Numeric variable kg/m2

3.4. Application of Machine Learning Techniques

The RF and GBM algorithms were selected to develop predictive models for DW
generation for datasets with small samples and were composed mainly of categorical
variables. In this study, RF and GBM algorithms were applied to develop 10 models for
10 types of DW, and one model for total DW generation including all 10 types of DW. The
RandomForestClassifier [45] and GradientBoostingClassifier [46] packages were used to
develop predictive models for DW generation. For optimal performance and evaluation
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upon application of the algorithm, parameters were tuned for the RF and GBM algorithms,
including n_estimators (the number of trees to be grown). The parameters were tuned to
maximize each model’s prediction accuracy on the dataset. The optimal settings were
determined using the LOOCV process. Explanations of the hyperparameters applied to
develop the RF and GBM models in this study are presented in Table 3.

Table 3. Hyperparameters tuned in RF and GBM algorithms.

Algorithm Parameter Definition Applied Value or Reference

RF

criterion Quality measurement of a split Mean squared error
n_estimators The number of trees in the forest 500
min_samples_split The minimum number of samples required to split an internal node 2
min_samples_leaf The minimum number of samples required to be at a leaf node 1
max_depth The maximum depth of the tree Maximum possible

GBM

criterion Quality measurement of a split Mean squared error
n_estimators The number of boosting stages 500
min_samples_split The minimum number of samples required to split an internal node 2
loss Least squares Least squares
learning rate Amount of learning 0.1
subsample Rate of sampling data to control overfitting 1.0

3.5. Model Validation

The LOOCV validation technique was used to validate the models. Because LOOCV
puts all samples through tests, it has the advantage of achieving stable results when
targeting small datasets compared to the validation set approach, which is an existing
cross-validation method (10-fold or k-fold) [23,47]. Several techniques that can be used for
model performance evaluation are available. In this study, four statistical metrics (MAE,
RMSE, R2, and R) were utilized to verify the performance of the models. Definitions of the
performance evaluation metrics are presented in Equations (4)–(7).

MAE =
∑n

i=1|yi − xi|
n

(4)

RMSE =

√√√√ n

∑
i=1

(yi − xi)
2

n
(5)

R2 = 1− ∑n
i=1(yi − xi)

2

∑n
i=1(yi − xi)

2 (6)

R =
∑n

i=1(xi − xi)(yi − yi)√
∑n

i=1(xi − xi)
2
√

∑n
i=1(yi − yi)

2
(7)

where xi is the observed value of the generated DW amount, yi is the predicted value of
the generated DW amount, xi is the mean observed value of the generated DW amounts, yi
is the mean predicted value of the generated DW amount, and n is the number of samples.

4. Results and Discussions
4.1. Model Performance

Figure 4 presents the comparison results of the performance metrics in the 11 predictive
models for DW. According to the results of MAE and RMSE values in Figure 4, which
indicate the stability of predictive performance, the MAE values of the RF models in all 11
predictive models are lower than those of the GBM models. MAE values are slightly lower
in the 10 predictive models for each DW, and also in the total DW production predictive
model: the MAE value of the RF model (MAE: 193.7) is lower than that of the GBM model
(MAE: 206.2). According to the RMSE results, the GBM models (RMSE value of slate is 0.20,
and RMSE value of roofing tile is 34.02) for the slate and roofing tile DW predictive models
indicate slightly more stable predictive performance than achieved by the RF model (RMSE
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value of slate is 2.04, and RMSE value of roofing tile is 34.31). However, the RMSE values
of the remaining DW predictive models are lower in the RF model than in the GBM model.
The MAE and RMSE results demonstrate that, in the predictive models for small datasets
of categorical variables, RF algorithms generally have slightly more reliable predictive
performance than achieved by GBM algorithms. In other words, the bagging technique
appears to have a slightly better predictive performance in terms of stability over the
boosting technique.
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Figure 4 shows for each type of DW that RF predictive models (R2 values: 0.34–0.89;
R values: 0.73–0.95) are generally superior in terms of the accuracy of predictive perfor-
mance compared with GBM predictive models (R2 values: 0.22–0.84; R values: 0.71–0.92).
Furthermore, from Figure 5, it can be seen that the scatterplots of predicted and observed
values of the total DW predictive model conform more closely to ideal prediction lines in
the RF model than in the GBM model. However, GBM models demonstrate slightly better
predictive performance in terms of accuracy: the R2 and R values for slate are 0.48 and 0.78,
respectively, in the GBM model, and 0.46 and 0.77 in the RF model; R2 and R values for
roofing tiles are 0.37 and 0.75, respectively, in the GBM model, and 0.37 and 0.74 in the RF
model. Considering the models overall, the RF models are slightly superior in terms of
the accuracy of DW predictive models, and it is judged that the bagging technique will be
more useful than the boosting technique for developing accurate models for small datasets
composed of categorical variables.
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Meanwhile, the predictive performance based on the type of DW showed different
results. This difference can be attributed to the characteristics of the features applied to the
model development. In other words, it is expected that more stable performance results
can be obtained if the variables affecting waste generation with respect to waste type are
included, apart from the six variables used in this study. For instance, the features used in
this study (i.e., region, use, structure, GFA, WM, and RM) are considered to be appropriate
key features as input variables affecting the amount of soil generation. On the other hand,
the ceramic and glass predictive model with the lowest prediction performance requires
additional input variables (such as the external window area ratio), apart from the six
variables used in this study. Similar findings were also reported for MSW by Johnson
et al. [34], who applied the GBM algorithm to apply feature compositions differently and
developed predictive models for refuse, paper, and MGP (metal, glass, and plastic). Each
predictive model developed in that study showed different R2 and RMSE results depending
on the external or internal characteristics of the applied features.

4.2. Comparison of Predictive Models

Although all RF and GBM models developed in this study were derived from a small
dataset, the correlation between the actual and predicted values (R value) is 0.7 or higher,
demonstrating excellent predictive performance (Figure 4). However, while some DWs
(mortar, roofing tile, ceramic, and glass) have slightly lower R2 values (0.4 or lower), their
R values are all 0.7 or higher, and thus no issues are expected for the accuracy of the
predictive performance. However, these results suggest that it is necessary to include key
features considering the characteristics of buildings that affect the DWG for DW types
with low predictive performance. In addition, it is expected that this will help improve the
R2 value, because this value gradually increases as new variables are introduced into the
model [48,49].

Figures 6–8 present the comparison results of the observed and predicted DW models
using the RF and GMB algorithms; the results for all 11 RF and GBM models indicate
that the actual DW generation patterns are well simulated. The mean observed value
of the soil predictive model, which had the best predictive performance, is 21.8 kg/m2,
while the mean predicted value of the RF model (R value: 0.947) is 21.6 kg/m2, and
that of the GBM model (R value: 0.824) is 21.4 kg/m2. The mean observed value of the
ceramic and glass predictive model, which had the lowest predictive performance among
DW predictive models, is 5.3 kg/ m2, where the mean predicted value of the RF model
(R value: 0.729) is 5.4 kg/m2, and that of the GBM model (R value: 0.711) is 5.5 kg/m2.
The mean observed value of the total waste predictive model is 1171.2 kg/m2, while the
mean predicted value of the RF model (R value: 0.786) is 1169.9 kg/m2, and that of the
GBM model (R value: 0.762) is 1166.4 kg/m2. Other predictive models showed results in
which the predicted values of the RF and GBM models were close to the observed values.
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However, as seen in the MAE and RMSE results in Figure 4, the GBM models produced
some predicted values that were high compared with values produced by the RF models,
indicating that stable predictive performance is somewhat poor (Figures 6–8).

Figure 6. Comparison of the observed and predicted DW generation (kg/m2) with the estimated ML models using RF and
GBM for mortar, concrete, block, and brick.
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Figure 7. Comparison of the observed and predicted DW generation (kg/m2) with the estimated ML models using RF and
GBM for timber, slate, roofing tile, and ceramics & glass.
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Figure 8. Comparison of the observed and predicted DW generation (kg/m2) with the estimated ML models using RF and
GBM for metal, soil, and total waste.

4.3. Discussion, Limitations, and Future Work

AI models in previous studies [19,35,50] presented results for some DW types. Johnson
et al. [35] applied GBM algorithms to conduct research on refuse, paper, and MGP (metal,
glass, and plastic) predictive models. In this study, R2 results for refuse, paper, and MGP
spatial models, to which features of external groups were applied, demonstrated predictive
performances of 0.604, 0.628, and 0.428, respectively. The predictive performance of MSW
and paper predictive models, to which decision tree (DT) algorithms were applied in the
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study by Kannangara et al. [50], was 0.54 and 0.31, respectively. In the study by Kumar
et al. [19], the R2 of the plastic generation predictive model, to which the RF algorithm was
applied, demonstrated a predictive performance of 0.66. This study proposes predictive
models for the generation of 10 types of DW, and one for total waste generation, for small
datasets. In this study, the 11 RF and GBM models developed, despite targeting small
datasets, demonstrated excellent predictive performance with the correlation (R) of the
observed and predicted values at 0.73–0.95 (RF models) and 0.71–0.92 (GBM models),
respectively. R2 values also demonstrated excellent predictive performances of 0.6 or
higher, except for mortar, slate, roofing tile, ceramics, and glass. However, as AI models
depend on datasets of large sizes [15], a dataset size that is not sufficiently large is a
fundamental limitation of this study; obtaining datasets that are sufficiently large is a
significant challenge. This study also found significant differences in the performance
(MAE, RMSE, R2, R) of predictive models depending on the type of DW, and the R2

values for demolition waste materials such as slate, mortar, roofing tile, ceramic, and
glass were relatively low (≤0.5), demonstrating relatively low performance. Johnson
et al. [35] suggested that the development of optimal feature groups is also important for
improving the predictive performance of AI models by demonstrating that differences in
the composition and characteristics of features applied to AI models affect the results of
predictive performance. Based on this, it is deemed that further features must be developed
to improve the performance of predictive models for the types of DW that had relatively
low predictive performance in the present study.

5. Conclusions

This study investigated the development of AI models for DW generation suitable for
small datasets composed mainly of categorical variables. The DT-based ensemble model
was applied as an algorithm suitable for the datasets, with one selected algorithm being
the RF algorithm, which is representative of the bagging technique, and the other being
the GBM algorithm representative of the boosting technique. Data preprocessing was
performed to improve the stability and accuracy of the models, and the parameters were
tuned to fit the RF and GBM algorithms. The LOOCV technique was applied to verify
the developed RF and GBM models, and performance evaluation was conducted using
statistical metrics such as MAE, RMSE, R2, and R. Therefore, the consideration of AI models
developed in this study for small datasets composed mainly of categorical variables, along
with the RF and GBM predictive models developed for the generation of 10 types of DW
and one for total DW generation, is summarized as follows.

First, for small datasets composed mainly of categorical variables, the bagging tech-
nique (RF model) was found to be superior to the boosting technique (GBM model) in
terms of the stability and accuracy of predictive performance. However, the GBM model
demonstrated excellent predictive performance for certain types of DW (slate and roofing
tile). Therefore, the selection of appropriate RF and GBM algorithms, depending on the
type of DW, is necessary in developing DW prediction models for small datasets composed
mainly of categorical variables.

Second, 11 RF (R2 values: 0.22–0.84; R values: 0.71–0.92) and GBM (R2 values:
0.34–0.89; R values: 0.73–0.95) predictive models under identical conditions demonstrated
differences in performance according to the type of DW. This is considered to be due to the
characteristics of the features applied in developing the models. Therefore, it is expected
that the performance of predictive models will be improved in the future if features match-
ing the characteristics of DW with low predictive performance (mortar, slate, roofing tile,
ceramic, and glass, having R2 values ≤0.5) are added.

Finally, it is recommended that RF methods be applied to develop DW predictive
models for concrete, block, brick, timber, ceramic and glass, metals, soil, and total waste,
while applying GBM models for slate and roofing tiles, based on 11 predictive models
developed in this study. This study proposes predictive models for more types of DW than
included in the AI models of previous studies. The results of this study are anticipated
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to be useful tools for building demolition businesses to establish thorough and detailed
DW management strategies. For example, based on the predicted amount of waste to be
generated from the type of DW, a demolition company can place orders for the required
demolition equipment and transportation, which will be of use in minimizing excess costs
and personnel allocations.
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