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ABSTRACT
Solutions of monoclonal antibodies (mAbs) can show increased viscosity at high concentration, which 
can be a disadvantage during protein purification, filling, and administration. The viscosity is determined 
by protein-protein-interactions, which are influenced by the antibody’s sequence as well as solution 
conditions, like pH, buffer type, or the presence of salts and other excipients. To predict viscosity, 
experimental parameters, like the diffusion interaction parameter (kD), or computational tools harnessing 
information derived from primary sequence, are often used, but a reliable predictive tool is still missing. 
We present a modeling approach employing artificial neural networks (ANNs) using experimental factors 
combined with simulation-derived parameters plus viscosity data from 27 highly concentrated (180 mg/ 
mL) mAbs. These ANNs can be used to predict if mAbs exhibit problematic viscosity at distinct concen-
trations or to model viscosity-concentration-curves.
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Introduction

Therapeutic monoclonal antibodies (mAbs) are now com-
monly used as a treatment for a broad variety of diseases, 
including cancer, immune-mediated disorders, or infectious 
diseases.1 They are typically administered via intravenous infu-
sion, which requires the drug product (DP) to be administered 
by a healthcare professional in a clinical setting. For patients 
with chronic diseases, the need for repeated drug infusions is 
inconvenient and time-consuming, which puts the success of 
the intended therapy at risk. Subcutaneous (s.c.) injection 
allows patients to self-administer mAb DPs by use of pre- 
filled syringes, auto-injectors or other delivery devices, which 
often increases quality of life and compliance for patients with 
chronic conditions. There are, however, certain limitations 
with s.c. administration. By general consensus, a single injec-
tion volume should be limited to < 2 mL, determined by the 
available subcutaneous space and sensation of tolerable pain by 
the patient,2 although investigation of injection volumes 
>2.5 mL has been suggested.3

Although mAbs typically have a high specificity, they also 
require considerable therapeutic dosages. This consequently 
often results in high concentrations exceeding 100 mg/mL 
protein in solutions for s.c. administration. With increasing 
protein concentration, inter-molecular distances reduce and 
protein-protein-interactions (PPIs) do not increase linearly 
but exponentially, influencing or determining mAbs’ solubi-
lity, aggregation, and also viscosity.4,5 PPIs are affected by a 
mAb’s sequence and resulting three-dimensional structure 
with charged or hydrophobic patches. Solution conditions 
can influence PPIs by modulating the size of charged patches 
via pH, shielding of charged patches via short-ranged electro-
static interaction using salts, buffer substances, amino acids, or 

other charged excipients.6–8 Arginine is a common excipient 
tested for viscosity reduction, its dual mode of action being 
both the shielding of charged as well as of hydrophobic 
patches.9 Of 34 US Food and Drug Administration (FDA)- 
approved DPs with high mAb concentration, 17 use salts or 
amino acids as excipients, likely with the aim to reduce PPIs 
and thus lower mAb solution viscosity.10 More explorative 
excipients with demonstrated potential for viscosity reduction 
are poly-l-glutamic acid,11 caffeine,12 hydrophobic salts,13 or 
amino acid derivates,14 but no application in commercialized 
drug products exists due to lack of approval as excipients for 
parenteral administration or concerns on toxicity.

Highly viscous solutions can be a major roadblock in the 
development of an mAb DP. Disadvantages are high costs,4 

due to high loss and low recovery in purification, difficult 
manufacturing or filling,15 and ultimately issues during pro-
duct administration due to the need for high injection forces 
and slow administration with potential sensation of pain. In 
general, solutions with a dynamic viscosity above 15–20 mPa*s 
may be considered problematic.16,17 The desire to develop 
a high concentration formulation may not be apparent 
a priori for a new molecule; it may appear also as 
a consequence of the need for unexpectedly high doses or 
change of target route of administration. Phase 1 clinical trials 
are usually started with lower concentrated (<50 mg/mL pro-
tein) formulations and high protein concentrations are only 
explored in later phases once safe and efficacious dose levels 
are established. To evaluate Chemistry, manufacturing and 
control (CMC) issues related to DP later in development 
when dose ranges are established, it is essential to forecast 
the viscosity of a new molecule during an early development 
stage.
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For high concentration mAb solutions, extensive work has 
been done in the past two decades to understand the factors 
resulting in high viscosity.17–24 Based on this body of knowl-
edge, some themes emerge: 1) Reversible self-association is led 
by Fab-Fab or Fab-Fc interactions and not by Fc-Fc interac-
tions; 2) The differences in solution viscosity are mainly driven 
by changes in the complementarity-determining region (CDR) 
of different mAbs; 3) Both hydrophobic and electrostatic inter-
actions contribute to self-association in the form of surface 
patches; and 4) The size and anisotropy of these patches 
influences the extent of self-association.

In early development, multiple candidates are often avail-
able only in small quantities and need to be tested in pre- 
formulation studies for their stability and solubility. 
A substantial amount of work has been done recently to use 
experimental data from low concentration experiments to 
predict the viscosity behavior of high concentration solutions 
(Table 1). Prior to Roberts and colleagues report, experimental 
data of colloidal interactions,28 the diffusion interaction para-
meter (kD) and the second virial coefficient (A2), were found 
to at least qualitatively predict mAbs with potentially high 
viscosity (i.e., problematic mAbs), but in this report, the pre-
dictions fail in many cases. Most reports also include only 
a low number of samples and describe the relationship 
between the experimental data and the viscosity linearly. The 
complexity of the origin of the solution viscosity at high mAb 
concentrations draws into question the validity of using low 
concentration experimental data as a predictive tool and sug-
gests that a non-linear modeling approach may be more 
appropriate.

Experimental approaches used to forecast viscosity beha-
vior of antibodies have recently been complemented by in 
silico methods, which aim to identify decisive molecular 

descriptors like solvent exposure, local charge, hydrophobic 
effects, and surface patches. Publications that use computa-
tional approaches are listed in Table 2. One of the most 
promising models to predict viscosity uses a spatial charge 
map (SCM) to develop a score that can predict mAbs with 
high viscosity.31 The principle of SCM was used further in an 
approach testing machine learning to predict mAb solution 
viscosity.38,39

The technique of machine learning aims at identifying 
certain patterns or descriptors that may be connected to 
a specific characteristic of the protein or its behavior in solu-
tion. Usually, large data sets are separated in each one training 
and validation subset. The training subset is then screened and 
patterns identified, a process known as feature extraction. 
These learnings are afterward applied in the confirmation of 
the model using the validation subset. Artificial neural net-
works (ANNs) are a subclass of machine learning, also known 
as deep learning, and use unstructured data sets. Similar to 
normal machine learning, the data set is divided into a training 
and a validation subset, but ANNs do not aim at identifying 
patterns. Instead, they use hidden layers, similar to the human 
brain, to establish a model.40 An ANN with input of the amino 
acid composition of antibodies as only in silico data was used 
to predict kD, apparent melting temperature and onset tem-
perature of aggregation (Tagg).35 The models showed strong 
correlations, and a similar approach may be used for viscosity.

Our work describes the use of an ANN to model the 
viscosity of solutions of mAbs. We measured the viscosity of 
27 mAbs of IgG1 or IgG2 subtype in a concentration range 
from 30 to 180 mg/mL in histidine-HCl buffer at pH 6. 
Histidine-HCl, a common buffer for mAbs, is used in > 80% 
of formulations of highly concentrated approved mAb DPs.10 

The isoelectric point (pI) of the mAbs used in our study is in 

Table 1. Selection of studies describing factors derived from experimental data correlation with solution viscosity.

First 
author, year Test material and conditions for viscosity

Experimental parameters used 
(analytical technique) Correlations to viscosity (model, conclusions)

Yadav, 201125 4 IgG1 at 125 mg/mL in diverse buffers at pH 
4–10 plus NaCl

kD (DLS), Zeta potential, structure by 
circular dichroism

kD and Zeta potential utile as a qualitative high throughput 
screening tool for high concentration viscosity behavior

Saito, 201126 3 IgG1 at 150 mg/mL in diverse buffers at pH 
5–8 plus NaCl

kD (DLS), B2 (AUC-SE) kD and B2 show a qualitative relationship with viscosity 
behavior and aggregation

Connolly, 
201227

29 IgG1 and IgG4 at 175 mg/mL, four solvent 
conditions at pH 5–6

kD (DLS), Zeta potential, Effective 
antibody charge (zone 
electrophoresis)

kD and B2 show a linear correlation (R ≥0.8) with viscosity. 
Effective charge shows no linear correlation (R ≤0.6) with 
viscosity.

Neergaard, 
201320

3 IgG1 and IgG4 at 200 mg/mL in diverse 
buffers at pH 4–9 plus NaCl

kD (DLS), Zeta potential for effective 
pI; Calculated values: Net charge 
and theoretical pI

kD (if negative) and net charge (if low at pI) indicate 
potential high viscosity. Zeta potential predicts pH of 
maximum viscosity

Binabaji, 
201519

1 IgG1 at max 269 mg/mL, pH 5–7 in diverse 
buffers; plus excipients sucrose, proline, 
arginine-HCl, NaCl

Net protein charge and zeta potential 
by (electrophoretic light scattering); 
B2, B3 (osmotic pressure data)

B3 shows a strong linear correlation (R2=0.97) with the 
viscosity parameter from the Mooney equation

Woldeyes, 
201928

4 mAbs at 1–150 mg/mL, pH 5–8 in diverse 
buffers, plus NaCl

A2 (SLS), Sq=0 (SLS), kD (DLS), Hq=0 

(DLS/SLS)
kD and A2, determined at low mAb concentration, are often 

not qualitative predictive of viscosity at high 
concentration. PPI are complex especially at high 
concentration and influence viscosity in nonlinear 
fashion.

Pathak, 202129 3 mAbs at max 90 mg/mL, pH 5.8–6.8 in 
diverse buffers; plus excipients arginine- 
HCl, NaCl, sorbitol, sucrose, polysorbate 80

B2 (SLS), hydrated protein molecular 
volume (simulation)

The Huggins coefficient (kH), derived from viscosity, can 
serve as a measure of PPIs in relation to the increase of 
solution viscosity, it can be used to identify solution 
conditions minimizing the increment of viscosity increase 
with protein concentration.

The table contains a selection of studies in chronological order which describe for monoclonal antibodies the correlation of factors derived from experimental data with 
their solution viscosity. 

Abbreviations in table: kD = Diffusion interaction parameter; DLS = Dynamic light scattering; B2/A2 = Second virial coefficient; AUC-SE = Analytical ultracentrifugation – 
sedimentation equilibrium; pI = isoelectric point; B3 = Third virial coefficient; Sq=0 = Zero-q limit static structure factor; Hq=0 = hydrodynamic factor; SLS = Static light 
scattering; PPIs = Protein-protein-interactions
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the 6.8–9.5 range, resulting in an overall net positive charge of 
all mAbs at the formulation pH 6. A large set of experimental- 
derived and computational data is fed into the ANN with the 
goal to model viscosity. The data set includes input parameters 
from colloidal stability assessment, kD and A2, as well as 
apparent surface hydrophobicity, measured by hydrophobic 
interaction chromatography (HIC). As computational data, 
the mAbs’ pI and Fv-charge, calculated from the primary 
sequence, are used. Parameters derived from in silico model-
ing, such as hydrophobic and charged patch sizes, are also 
included.

We show that such ANNs can be used to not only make 
categorical predictions of problematic or unproblematic 
mAbs, meaning to predict whether viscosity is above 
a certain threshold at a specific protein concentration, but 
can also serve to calculate viscosity curves.

Results

To evaluate the impact of various input parameters on the 
predictive power of ANNs, different models were created 
containing the data of mAbs 1–25 (Table S1, Figure 1), in 

which either only experimental inputs (retention time in 
HIC; kD, A2), or only computational (pI and Fv-charge) and 
in silico-derived inputs (patch sizes and numbers), or all avail-
able inputs were fed into the modeling. Each model was 
created by splitting the input data into a training and 
a validation set, which contained the information from rando-
mized mAbs for each new ANN model. The training sets 
contained data, input variables, and viscosity descriptors, of 
18–20 mAbs. The validation sets contained as data only the 
input variables of the remaining 7–5 mAbs, with the goal to 
predict their viscosity descriptors. These viscosity descriptors 
are derived from the linearization of the viscosity- 
concentration-curves of each mAb, the intercept A and the 
slope B.

The quality of the created models was evaluated by plotting 
the predicted values of either viscosity descriptor, A or B, 
against the respective descriptor obtained from the experimen-
tal data and assessing the linearity of these values. The R2 

values of the created models show the interdependency of 
validation and training set (Table 3), as in several cases the 
quality of one set is excellent (R2 > 0.99) while the second set is 
less good (R2 < 0.95). This interdependency of the models may 

Table 2. Selection of studies describing computational models for prediction of mAb solution viscosity.

First 
author, year Materials In silico parameters used (analytical technique) Correlations to viscosity

Sharma, 
201430

14 IgG1 in 200 mM arginine buffer pH 
5.5

Descriptors calculated solely from sequence 
information. These were Fv net charge, Fv charge 
symmetry parameter and Fv hydrophobicity

Principal components regression was used to obtain 
a model predicting mAb viscosity at 180 mg/mL 
from the 3 sequence derived descriptors 
(Pearsons R = 0.8)

Li, 201421 3 IgG1κ, 4 IgG1λ, 2 IgG2κ and 2 IgG4κ 
in a histidine-HCl pH 5.8 
formulation including excipients

Molecular descriptors calculated from the Fv region. 
These are sequence-based aggregation 
propensity (Waltz) and Fv pI

Linear Regression model predicting relative viscosity 
of mAbs at 150 mg/mL using the molecular 
descriptors normalized by number of residues in 
the Fv region (R2 = 0.93)

Agrawal, 
201631

3 sets of mAbs used
(1) 5 IgG1κ, 1 IgG1λ at pH 5.8
(2) 3 IgG1κ, 4 IgG1λ at pH 5.8
(3) 6 IgG1κ at pH 6.0

Homology modeling of Fv to obtain negative 
surface patches. 
Creation of a spatial charge map

SCM scores are compared to viscosity data at 
150 mg/mL, a threshold score is set at which 
mAbs can be considered problematic

Tomar, 201732 5 IgG1κ, 4 IgG1λ, 4 IgG2κ and 3 IgG4κ 
in a histidine-HCl pH 5.8 
formulation including excipients

Full length homology modeling of mAbs, then 
computational obtaining of the Vh-charge, Vl- 
charge, hinge-charge and hydrophobic solvent 
accessible surface area

Equation obtained by stepwise linear regression that 
combines net charge on Vh domain, net charge 
on the hinge region, net charge on the Vl domain 
and the solvent accessible hydrophobic surface 
area, to predict the slope parameter 
B (R2 = 0.885).

Apgar, 202033 40 variants of an IgG1 mAb in 
histidine-HCl pH 5.8 with sucrose

Used the scoring models developed by Agrawal,31 

Sharma,30 Tomar32 and a simple correlation to Fv 
charge

Correlation of the concentration at which the mAbs 
show a viscosity of 20 mPa*s with Fv-charge 
(R = 0.709), SCM-score (R = 0.695), Sharma-score 
(R = −0.716) and Tomar-score (R = −0.702)

Lai, 202134 27 FDA approved mAbs (21 IgG1, 4 
IgG2, and 2 IgG4) in histidine-HCl 
buffer pH 6.0

4 previously developed models were used, from 
Sharma,35 Li,21 SCM by Agrawal31 and the 
Therapeutic Antibody Profiler developabilty 
tool.36 A decision tree model using machine 
learning was also created.

The SCM model predicted the high viscosity mAbs 
correct but had 8 false positives. The linear 
viscosity prediction models by Sharma and Li had 
r values of 0.64 and 0.40 respectively. The 
developability tool only flagged one high 
viscosity mAb correctly while giving false positive 
for 5 low viscosity mAbs. The decision tree model 
predicted 26/27 mAbs correctly.

Thorsteinson, 
202137

2 published datasets were used. The 
first contained 38 IgG1 mAbs,33 

the second contained 21 FDA 
approved IgG1 mAbs

Fv charge (ens_charge_Fv) based on the forcefield 
average over 100 confirmations of Fv homology 
model

Linear correlation of ens_charge_Fv to the mAb 
concentration where viscosity crosses the 20 
mPa*s threshold (R2 = 0.52). Then classification 
decision with 84% accuracy

Lai, 202238 18 IgG1 and 2 IgG4 in histidine-HCl 
buffer pH 6.0

35 different molecular properties were used to 
create predictive models

Multiple classification models (linear regression, 
decision tree, k-nearest neighbor or support 
vector machine models) using one-feature or two 
feature combinations predicting high or low 
viscosity (>30 mPa*s at 150 mg/mL) with the best 
models showing an accuracy of R2 = 0.86

The table contains a selection of studies in chronological order which describe for monoclonal antibodies the correlation of factors derived from computational data or 
in silico modeling with their solution viscosity. Abbreviations in table: Fv = Fragment variable; pI = Isoelectric point; SCM = Spatial charge map; Vh = variable heavy; 
Vl = variable light
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originate in the amount of data, i.e., the number of mAbs, used 
in this study. The predictive power of the ANN depends on the 
amount and the range of viscosity behaviors featured by the 
mAbs in both the training and validation set. Ideally both sets 
should include well-behaved as well as problematic mAbs to 
cover the whole range of viscosity behaviors. This would 
ensure an effective training of the model with the first set 
and prevent the ANN from creating an overfitted model with 
the second set. With a total of 25 mAbs used for training and 
validation, the data set is substantial. Nevertheless, the number 
of problematic mAbs, which are likely the ones the model 
learns from most, is still limited. An uneven distribution 
between the two sets can thus influence their interdependency. 
This effect should decrease with an increasing size of available 
data, especially if more data of problematic mAbs are added.

Comparing the quality of the different models with regard 
to the input variables, the highest quality of model was 
achieved for the ANN in which all input variables (experimen-
tal and computational plus in silico) were used. This model has 
the lowest R2 > 0.92 (intercept A of training set). The ANN 
using only computational and in silico-derived inputs achieves 
a minimally lower “worst” R2 of > 0.90 (slope B of training set). 
Finally, the ANN containing only experimental data achieves 

the lowest R2 of > 0.75, which is comparable to results pub-
lished using linear correlations of kD to viscosity (see Table 1 
for references) and better than a linear correlation of A2 and 
kD to the intercept and slope parameter done for this data set 
(Figure S1).

The slope parameter B describes the steepness of the 
viscosity curve, so the exponential increase of viscosity 
with the protein concentration, which is important to 
describe potentially problematic mAbs. Such problematic 
mAbs may show a moderate viscosity at low protein con-
centration, but experience a substantial increase of viscosity 
above values usually regarded as acceptable (e.g., 15–20 
mPa*s) for drug products. The hyperbolic nature of the 
viscosity curve is common, yet for problematic mAbs the 
acceptable threshold value may be reached already at inter-
mediate protein concentration, potentially disqualifying 
them from achieving the necessary dose in a volume of 1– 
2 mL. We decided to use the ANN with all input variables 
in the following, as it provided the best prediction for the 
slope B.

Of all available data, mAbs 26 and 27 were not used in ANN 
model creation, but were kept separately for additional verifi-
cation tests.

Table 3. Quality of ANN models created with various input parameters.

Inputs

Viscosity parameter

Training set Validation set

Experimental In silico R2 RMSE SSE R2 RMSE SSE

x x A (intercept) 0.9213 0.0267 0.0142 0.9999 0.0014 0.0000
x x B (slope) 0.9980 0.0003 0.0000 0.9380 0.0013 0.0000
- x A 0.9420 0.0265 0.0147 1.0000 0.0006 0.0000
- x B 0.9003 0.0017 0.0001 1.0000 0.0000 0.0000
x - A 0.7476 0.0574 0.0693 0.7532 0.0396 0.0078
x - B 0.8964 0.0016 0.0001 0.9824 0.0009 0.0000

Comparison of models created using different inputs predicting either the intercept (A) or slope (B) of the concentration-dependent viscosity curve for the mAbs. “x” 
indicates that a specific set of inputs was used for the model, while ”-“ indicates that the set of input parameters was not used. Experimental inputs refer to HIC 
retention time, kD and A2, while in silico includes the data from the surface patch analysis which is the information of size, score, and count of positive, negative, and 
hydrophobic surface patches. Computational data Fv-charge and pI was included regardless of the selected inputs. The quality parameters of the models shown were 
obtained from plotting the values of A or B that were calculated from the measured viscosity against the predicted values of the respective models. 

R2 = Coefficient of determination; RMSE = Root-mean-square error; SSE = Standard square error.

Figure 1. Artificial neural network (ANN) model scheme describing the input variables and setup of the ANN. Experimental inputs in blue, computational inputs derived 
from amino acid sequence in yellow, in silico simulation-derived input in orange. Inputs are combined in one layer with four hidden nodes with tanh activation 
functions and target determining viscosity descriptors, the intercept A or slope B.
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Categorical classification

Models for categorical classification were created by training the 
models on whether the mAbs show a viscosity above a threshold 
of 15 mPa*s at a certain concentration. This was done for 
concentrations of 120, 150, and 180 mg/mL, where of the 25 
mAbs used in the model creation at 120 mg/mL 3 mAbs, at 
150 mg/mL 6 mAbs and at 180 mg/mL 15 mAbs exhibited 
a viscosity of above 15 mPa*s. The confusion matrices of these 
models are shown in Table 4. It is apparent that both the training 
sets and validation sets contained problematic (viscosity ≥ 15 
mPa*s) and unproblematic (viscosity < 15 mPa*s) mAbs. The 
models created have excellent predictive power regardless of the 
inputs used, with all of them exhibiting a misclassification rate of 
0 (Table S3). To further evaluate the predictive power of these 
models, two mAbs, which were neither used in the training nor 
validation sets, were chosen for verification. mAb 26 shows 
unproblematic behavior at 120 and 150 mg/mL, but exceeds 
15 mPa*s at 180 mg/mL, which was correctly predicted by our 
models (No/No/Yes). mAb 27 shows no problematic behavior at 
either of the concentrations, which was again correctly predicted 
by our models (No/No/No).

Viscosity curve prediction

To obtain more extensive information of mAbs’ viscosity 
behavior, the full concentration-dependent viscosity curves 
were predicted, or more specifically, the intercept (A) and 
slope (B) of the linearized exponential function. Using the 
predicted values for A and B obtained from the predictive 
models with both experimental and in silico inputs, theoretical 
viscosity curves can be constructed and compared to the actual 
measured values, examples of such comparison are in Figure 2 
A-D, where four mAbs with different viscosity behavior were 
chosen as a representative sample. The full predicted concen-
tration-dependent viscosity curves for all mAbs used in this 
study are shown in Figure S2. Despite not exactly matching the 
actual values, the predicted values are very close and the pre-
dicted curve reflects the actual concentration-dependent visc-
osity behavior in a similar fashion. The percentage and 
absolute differences of predicted compared to measured visc-
osities of all mAbs are presented in Figure 3. Calculated aver-
age differences across all 27 mAbs between predicted and 
measured viscosity values are in Table 5. The average absolute 
difference, calculated to measured, is between 0.1 and 4.1 

Table 4. Confusion matrix classification predictions.

Problematic at 120 mg/mL No Yes Problematic at 150 mg/mL No Yes Problematic at 180 mg/mL No Yes

No 18 (4) 0 (0) No 16 (3) 0 (0) No 8 (2) 0 (0)
Yes 0 (0) 2 (1) Yes 0 (0) 4 (2) Yes 0 (0) 12 (3)

Confusion matrices of the categorical models using experimental and in-silico data as inputs. Results of the validation sets are in brackets. Correct predictions are 
counted in the cells were the horizontal and vertical description is the same (No/No and Yes/Yes). False-positive and false-negative predictions are counted in the 
cells were the horizontal and vertical descriptions is different (No/Yes and Yes/No). The threshold to categorize a mAb as problematic was set to be >15 mPa*s for 
each selected concentration.

Figure 2. Examples for predicted viscosity curves. The predicted viscosity obtained from models using both experimental and in silico inputs versus the measured 
viscosity of selected mAbs; red crosses indicate the measured values, the black line was drawn using the predicted values for the slope (b) and intercept (a) inserted into 
the formula y = A * e (B * x), blue squares indicate the predicted viscosities at the same concentrations as the measured viscosities, the dashed line indicates the 
viscosity threshold for problematic mAbs at 15 mPa*s A) is mAb 13 (used in validation set) B) is mAb 2 (used in training set) C) is mAb 17 (used validation set) D) is mAb 
24 (used in training set) E) is mAb 26 (used as verification mAb) F) is mAb 27 (used as verification mAb). Viscosity curves for all mAbs are in Figure S2.
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Figure 3. Difference of predicted viscosity values compared to measured viscosity values at the same protein concentration. The percentage (%) of difference is 
presented in A with squared points and the absolute difference (mPa*s) is presented in B with bars.

Table 5. Comparison of predicted and measured viscosity.

Average difference between predicted and measured viscosity values at different protein concentration

Concentration [mg/mL] 180 150 120 90 60 30

Absolute difference [mPa*s] ± 4.1 ± 2.0 ± 1.6 ± 0.8 ± 0.3 ± 0.1
Relative difference [%] 12.2 15.5 25.0 26.2 14.0 8.2

Includes data from all mAbs in this study. Predicted values for viscosities were calculated using equation 2 and using the predicted values for intercept A and slope 
B from the model using all input variables. To get an accurate comparison the values of the concentrations for each mAb were taken from the actual measurements 
as shown in Table S2.
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mPa*s, with a gradual increase of difference with increasing 
protein concentration. The relative difference % are between 
8.2–26.2%, but follow a curved function, with the highest 
differences at concentrations of 90–120 mg/mL and decreasing 
difference with decreasing and increasing protein 
concentration.

For verification of the model, mAb 26 and 27 were again 
used; Figure 2 E and F show the predicted viscosity curves for 
both mAbs. While the course of the predicted curve for mAb 
27 (Figure 2 F) seems very similar to the measured values, the 
predicted curve for mAb 26 (Figure 2 E) does not correctly 
reflect the steepness of the measured curve above 150 mg/mL.

Discussion

Prediction or forecasting of the viscosity behavior of mAbs at 
higher concentration is highly relevant for the pharmaceutical 
industry due to a growing interest in subcutaneously injected, 
and thus often highly concentrated, DPs and the potential 
implications of a late-phase discovery of a candidate’s unsuit-
ability for this route of administration. Because only limited 
amounts of protein are usually available for testing during 
early development, typically data from colloidal stability mea-
surements at low concentration, usually < 10 mg/mL, are used, 
indicating attractive or repulsive PPI often in the form of A2 or 
kD, to correlate with viscosity at high concentration. Due to 
the complexity of molecular interactions, such linear, direct 
correlations of colloidal stability descriptors often have a low 
predictive power, and may thus eventually be limited to solu-
tion conditions of strong attractive PPI,24 in line with historic 
publications (Table 1) and our own data (Figure S1).

Further descriptors of PPI can be added based on sequence 
analyses (e.g., pI, net charge) as well as in silico modeling (e.g., 
size, charge, location of charged or hydrophobic patches). Both 
types of data have the advantage of being relatively easily 
accessible and do not require material and laboratory work. 
With increasing scope of input data also more sophisticated 
data analysis tools may be required. A common approach 
described in literature for the prediction of viscosity34 and 
aggregation,38 solubility,41 or oxidation propensity of certain 
residues42 is machine learning, which aims at identifying dis-
tinctive features determining the degree of a trait of interest. 
A recent publication applying machine learning uses data from 
molecular modeling of 27 mAbs, specifically the Fv-charge and 
an SCM, as well as viscosity data obtained for protein concen-
trations up to 200 mg/mL in histidine-HCl pH 6.0.34 The set 
includes mostly mAbs of isotype IgG 1 (21 molecules), but also 
IgG 2 (4 molecules) and IgG 4 (2 molecules), and uses 
a threshold of 30 mPa*s for definition of high or low viscosity. 
The machine learning approach using a decision tree model 
identifies certain features determining high viscosity, namely 
the net charge in the mAbs and the amino acid composition in 
the Fv. The viscosity categorization, below or above threshold, 
of most mAbs can be correctly predicted, but viscosity curves 
are not predicted.

In our approach, we use ANNs, which represent a subclass 
in machine learning, to predict the viscosity behavior of mAbs. 
The models can be used to predict a viscosity categorization, in 
our case above or below a threshold of 15 mPa*s, and to 

predict viscosity curves. Whilst the categorical classification 
is flawless, the models for viscosity curve prediction show 
a high power and good viscosity curve forecast. The use of 
a multitude of input variables, derived from experimental data 
as well as from calculations or in silico modeling, appears 
advantageous. However, the data set can be expanded and 
the model can be applied for predictions also if only selected 
input data are available. The experimental data added in our 
model (kD, A2, HIC) can be easily obtained with low effort 
and protein consumption, the instruments required for their 
generation are widely distributed across academia and indus-
try, and often these data are generated by default in early 
development phases of novel mAb candidates. Nevertheless, 
if only computational or in silico-derived inputs are available, 
the model can still be used for predictions. Potential applica-
tions are for example in candidate selection or early formula-
tion development studies. In summary, ANNs appear to be 
a powerful tool to precipitate the complexity of molecular 
interactions that determine mAb viscosity at high concentra-
tion. In the future, the predictions may be further improved by 
the expansion of the experimental data set as well as further 
fine-grained definition, such as by including the location of 
charged patches or hydrophobic patches or their proximity. 
The work presented here offers an example of how ANNs can 
be used to predict complex protein parameters or behavior, but 
it does not explain the cause of it. A general limit of ANN is 
their lack of understanding or quantification of exact relation-
ships. Nevertheless, as this brief report shows, their predictive 
power can be impressive and can be potentially improved.

Materials and methods

Monoclonal antibodies

All mAbs were obtained in-house from Lonza AG/Ltd. Double 
gene vectors containing the heavy and light chains were trans-
fected into CHOK1SV GS-KO cells and cultured under selection 
conditions as stable pooled cultures. Clarified supernatant was 
obtained by centrifugation followed by filter sterilization using 
0.22 µm filters. Protein A chromatography was used for mAb 
purification. All proteins were concentrated to final concentra-
tion of 10 mg/mL and buffer exchanged into the formulation 
buffer (20 mM histidine-HCl, pH 6.0) by tangential flow filtra-
tion. mAbs are of different subtypes IgG1 or IgG2 (Table S1).

Formulation buffer

All lab experiments described (HIC, dynamic light scattering 
(DLS), static light scattering (SLS), viscosity) were performed 
in the formulation buffer, 20 mM histidine-HCl, pH 6.0.

Protein concentration

For concentration determination, an Agilent Cary 60 UV- 
Spectrophotometer with a variable path length extension 
SoloVPE was used. For each measurement 30 µL of sample 
were loaded into a cuvette and measured at 280 nm using the 
appropriate specific extinction coefficient.
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Hydrophobic interaction chromatography

The hydrophobic surface properties of all mAbs were deter-
mined by HIC. Proteins were analyzed at 10 mg/mL in for-
mulation buffer, 5 µL were injected on a ProPac Hic-10 
column (ThermoScientific) and separated using a Waters 
HPLC system. The start condition of 95% mobile phase 
A (1 M ammonium sulfate in 20 mM sodium phosphate pH 
7.0) was linearly reduced over 39 min to 95% mobile phase 
B (20 mM sodium phosphate pH 7.0). Flow rate was set to 
1 mL/min at a column temperature of 24°C.

Dynamic and static light scattering

DLS and SLS measurements were performed on a DynaPro 
PlateReader III (with software Dynamics; Wyatt 
Technologies). Stock solutions of the antibodies were filtered 
through 0.22 µm PVDF filters (Millex GV) and serial dilutions 
with seven concentrations from 10 to 2 mg/mL protein with 
the formulation buffer were prepared. Samples were trans-
ferred to 384-well plates (Aurora) in triplicate and the plates 
were centrifuged at 750*g for 2 min to remove air bubbles. The 
temperature for the measurement was set at 25°C. Laser power 
was set to 20% and attenuation level to 0%, 20 acquisitions of 5 
s length were made for each well. Assessment of the diffusion 
interaction parameter kD (mL/g) was performed via dynamic 
light scattering (DLS). The mutual diffusion coefficient Dm 
(m2/s) was plotted against the protein concentration (g/mL) 
and kD was obtained from the slope of a linear fit. The second 
virial coefficient A2 (mol*mL/g) was obtained from SLS mea-
surements. Calibration of the plates was performed using 
Dextran (Sigma) with a predetermined molecular weight of 
36.9 ± 0.1 kDa. Solvent offsets were measured in triplicates for 
the formulation buffer. The reciprocal molecular weight (mol/ 
g) was plotted against the protein concentration (g/mL) and 
A2 was obtained from the slope of a linear fit.

Calculation of pI and Fv charge

The pI of the full mAbs was calculated from the amino acid 
sequence. To calculate the Fv charge, the variable heavy- and 
variable light chains of each antibody were analyzed with the 
prot pi protein tool (https://www.protpi.ch/Calculator/ 
ProteinTool). The two chains were each defined as a subunit 
of the entire protein. The set modifier for post-translational 
modifications was global disulfide bridges for the cysteine 
residues in the Fv. Charge was calculated at pH 6.0.

In silico modeling of Fv

Modeling of mAbs was performed using the software 
BioLuminate (version 3.80; Schrödinger, LLC, New York, 
NY). Homology modeling of the Fv region was done by use 
of the antibody prediction tool. Framework templates for iso-
types IgG 1 or IgG 2 were selected based on the highest 
composite score from the PDB database. The best CDR loop 
cluster was selected automatically. For modeling the standard 
presets of the software were kept, except the pH was set to 6.0 
to represent the experimental settings. The surface of the 

modeled mAb Fv-regions were analyzed with the protein sur-
face analyzer tool in the BioLuminate software, to obtain size 
(in Å2), count, score (sum of all contributing patch scores 
associated with this patch), and type (pos = positively charged; 
neg = negatively charged; hyd = hydrophobic) of the patches. 
The descriptors derived from modeling are thus “size pos/neg/ 
hyd Fv total”, “ count pos/neg/hyd Fv total”, and score pos/ 
neg/hyd Fv total.

Rheometry and viscosity descriptors

mAbs were concentrated to approximately 180 mg/mL using 
spin filters with a 30 kDa molecular weight cut off and then 
diluted to six concentrations from 180 to 30 mg/mL. 
Concentration-dependent viscosity data were generated using 
a VROC viscometer (Rheosense) equipped with the B05 chip. 
The measurement protocol used in this study measures each 
sample 10 times at a temperature of 25°C whilst applying an 
automatic shear rate. This shear rate is determined by the 
instrument’s software to produce a pressure inside the chip 
that results in the most precise measurement values for each 
sample. The shear rates applied were all significantly below the 
values where shear thinning in the samples would be observa-
ble. To obtain descriptive information of the concentration- 
dependent viscosity behavior of the mAb samples, the experi-
mentally measured viscosity data were processed according to 
previous work by Li21 and Tomar.32 Equation 1 is used to 
calculate the relative viscosity of the mAb samples. The visc-
osity of the formulation buffer was measured to be 0.92 mPa*s 
at 25°C. 

ηrel ¼
η
η0 

Equation 1: Relative viscosity; ηrel =relative viscosity; η0 =buf-
fer viscosity; η =sample viscosity

Equation 2 was used to describe the exponential viscosity 
behavior of mAb solutions. This equation can be linearized to 
obtain the intercept A and the slope B using the natural 
logarithm as in equation 3. 

ηrel ¼ A � eBc 

Equation 2: Exponential viscosity behavior; ηrel =relative visc-
osity; A =intercept; B =slope; c =mAb concentration 

ln ηrel ¼ ln Aþ Bc 

Equation 3: linearized viscosity behavior; ηrel =relative viscos-
ity; A =intercept; B =slope; c =mAb concentration

Data analyses and artificial neural network modeling

The ANN model creation follows the approach illustrated in 
Figure 1. All input parameters (experimental data, calculated 
values from sequence, in silico-derived data, and viscosity 
descriptors) are listed in Table S1. Each model is trained on 
a categorical response aiming to identify mAbs that show 
a viscosity value above the threshold value of 15 mPa*s at 
a distinct protein concentration. The ANNs are generated 
using software JMP v.16.0.0 (SAS Institute Inc.). The activation 
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function used for all nodes is the tan h-function, which trans-
forms values to be between −1 and 1. For all models, one 
hidden layer is sufficient with the number of nodes being 
four. To prevent the network from overfitting the model and 
in turn losing predictive power, the data is split into a training 
and a validation set. The method used is K-fold where the 
original data is split into K subsets. Each of the K sets is used to 
validate the model fit on the rest of the data, fitting a total of 
K models. The value of K was set to 5 for each model. Each 
model was created with a random seed (0). The model 
reported by the JMP software is based on the best log like-
lihood. The quality of the ANNs was determined using the 
coefficient of determination (R2), the standard square and the 
root-mean-square error for training and validation datasets.

Abbreviations

Abbreviation Meaning
A2, B2, B22 Second virial coefficient
ANN Artificial neural network
AUC-SE Analytical ultracentrifugation – sedimentation equilibrium
CDR Complementarity-determining region
CMC Chemistry, manufacturing and control
DLS Dynamic light scattering
DP Drug product
Fab Fragment antigen binding
Fc Fragment crystallizable
FDA U.S. Food and Drug Administration
Fv Fragment variable
HIC Hydrophobic interaction chromatography
kD Diffusion interaction parameter
mAb Monoclonal antibody
mPa*s Millipascal second
pI Isoelectric point
PPI Protein-protein-interaction
s.c. Subcutaneous
SLS Static light scattering
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