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A B S T R A C T

Background

Lung cancer is the leading cause of cancer-related death in the United States. Nearly 50% of
patients with stages I and II non-small cell lung cancer (NSCLC) will die from recurrent disease
despite surgical resection. No reliable clinical or molecular predictors are currently available for
identifying those at high risk for developing recurrent disease. As a consequence, it is not
possible to select those high-risk patients for more aggressive therapies and assign less
aggressive treatments to patients at low risk for recurrence.

Methods and Findings

In this study, we applied a meta-analysis of datasets from seven different microarray studies
on NSCLC for differentially expressed genes related to survival time (under 2 y and over 5 y). A
consensus set of 4,905 genes from these studies was selected, and systematic bias adjustment
in the datasets was performed by distance-weighted discrimination (DWD). We identified a
gene expression signature consisting of 64 genes that is highly predictive of which stage I lung
cancer patients may benefit from more aggressive therapy. Kaplan-Meier analysis of the overall
survival of stage I NSCLC patients with the 64-gene expression signature demonstrated that the
high- and low-risk groups are significantly different in their overall survival. Of the 64 genes, 11
are related to cancer metastasis (APC, CDH8, IL8RB, LY6D, PCDHGA12, DSP, NID, ENPP2, CCR2,
CASP8, and CASP10) and eight are involved in apoptosis (CASP8, CASP10, PIK3R1, BCL2, SON,
INHA, PSEN1, and BIK).

Conclusions

Our results indicate that gene expression signatures from several datasets can be reconciled.
The resulting signature is useful in predicting survival of stage I NSCLC and might be useful in
informing treatment decisions.

The Editors’ Summary of this article follows the references.
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Introduction

Lung cancer is the leading cause of cancer death for both
men and women in the US [1]. The high mortality among
patients with lung cancer is mainly due to the absence of an
effective screening strategy to identify lung cancer at an early
stage [2]. Thus, only ;25% of patients presenting with lung
cancer are in a sufficiently early stage to be amenable to
effective surgical treatment. Patients with stage I or II non-
small cell lung cancer (NSCLC) have ;70% five-year survival
after surgery alone compared to less than a 5% five-year
survival for advanced lung cancer (stages IIIB and IV) [3].
Even with surgical resection, almost half of those with stage I
or II disease eventually die from recurrences.

Treatment choices for patients with NSCLC depend on the
stage at which the cancer is diagnosed. Patients diagnosed
with stage I NSCLC usually receive surgical resection only [4].
Patients with stage IA (T1N0M0) undergo resection and are
rarely treated with adjuvant chemotherapy. Patients with
resected stage IB–III (any T any N M0 except T1N0M0)
NSCLC show improved survival when given adjuvant chemo-
therapy [4].

No reliable clinical or molecular predictors of recurrent
disease are currently available. Because of heterogeneity in
recurrence rates among patients with the same stage of
cancer, it is critical to isolate a reliable molecular signature in
tumors that could be used to identify those who are likely to
develop recurrent disease and would thus benefit from
adjuvant therapy. Moreover, identification of genes and
molecular pathways critical for development of metastasis
could lead to advances in therapeutics.

Several studies based on microarray technology have been
performed to determine genetic profiles predictive of
survival in NSCLC and to develop genomic approaches for
stratifying risk [5–8]. However, the identified survival-related
genes lacked consistency among these studies, likely due to
limited patient samples, disease heterogeneity, and/or tech-
nical factors such as differences in microarray platforms and
specimen processing. In this study, we conducted a meta-
analysis of seven datasets to search for differentially ex-
pressed genes related to survival time (under 2 years, i.e.,
short-term survival and over 5 years, i.e., long-term survival).
The data analyzed include our own previously unpublished
dataset.

Methods

Data Collection
Samples from Washington University. Thirty-six patients

who underwent resection of stage IB NSCLC at Washington
University School of Medicine (WUSM; St. Louis, Missouri,
United States) were recruited for this study. These samples
are referred to as dataset 1. Informed consent was obtained
from the patients for tissue procurement prior to surgery
and their medical records were maintained according to
institutional guidelines and in conformance with HIPPA
regulations. The overall survival data on all patients were
censored on the date of the last follow-up visit or death from
causes other than lung cancer. Tumor tissues were processed
by the Human Tissue Bank and the Gene Chip Facility at
WUSM according to standard operating procedures and
protocols.

Briefly, frozen tissue samples at �808C were pulverized
and total cellular RNA was collected from each flash-frozen
sample using TRIzol RNA isolation reagent (Invitrogen
[http://www.invitrogen.com]). Total RNA was processed with
a Qiagen (http://www.qiagen.com) RNeasy Mini kit. In vitro
transcription-based RNA amplification was then performed
on at least 8 lg of total RNA from each sample.
Complementary DNA was synthesized using the T7-(dT)24
primer: 59-GGCCAGTGAATTGTAATACGACT-CACTA-
TAGGGAGGCGG-(dT)24–39. The cDNA was processed using
phase-lock gel (Fisher [http: / /www.fishersci .com;
#E0032005101]) phenol/chloroform extraction. Next, in vitro
transcriptional labeling with biotin was performed using the
Enzo Bioarray Kit (Affymetrix [http://www.affymetrix.com;
#900182]). The resulting cRNA was processed again using
the Qiagen RNeasy Mini kit. Labeled cRNA was hybridized
to HG_U95Av2 (Affymetrix) arrays according to
manufacturer’s instructions.
The raw fluorescence intensity data within CEL files were

preprocessed with Robust Multichip Average (RMA) algo-
rithm [9], as implemented with R packages from Bioconduc-
tor (http://www.bioconductor.org). This algorithm analyzes
the microarray data in three steps: a background adjustment,
quantile normalization, and finally summation of the probe
intensities for each probe set using a log scale linear additive
model for the log transform of (background corrected,
normalized) PM intensities.
Samples from Mayo Clinic. Eighteen patients with stage I

squamous cell carcinoma (SCC) were selected from the
patients diagnosed with lung cancer from 1997 to 2001 who
underwent resection at Mayo Clinic, Rochester, Minnesota,
United States. These samples are referred to as dataset 2. All
enrolled patients and use of their tissues in the study were
approved by the institutional review board of Mayo Clinic.
The resected tumors were flash-frozen to �80 8C within 30
min after the tissues were surgically removed. The RNA
isolation, cRNA synthesis, and microarray hybridization were
performed as described by Sun et al. [6]. The raw fluorescence
intensity data within CEL files were also preprocessed with
the RMA algorithm.
Samples from other groups. Dataset 3 was from Beer et al.

[5] and includes 67 stage I primary lung adenocarcinomas
(ADCs) (http://dot.ped.med.umich.edu:2000/ourimage/pub/
Lung/index.html). Dataset 4 was from Bhattacharjee et al.
[10] and includes 72 stage I lung ADCs (http://www.broad.mit.
edu/mpr/lung/). Dataset 5 was from Borczuk et al. [8] and
includes one squamous and three ADCs (http://hora.cpmc.
columbia.edu/dept/pulmonary/5ResearchPages/Laboratories/
powell%20supp1.htm). Dataset 6 was from Gerald et al.
(unpublished data) and includes 63 stage I lung ADCs. Dataset
7 was from Bild et al. [11] and includes 33 squamous cell
carcinomas and 31 ADCs (GEO accession number GSE3141).
The raw data within the CEL files of these datasets were also
preprocessed with the RMA algorithm.
All the samples used in our data analyses are listed in Table

S1. Details of the clinical information for the subjects in each
dataset are described in Table 1.

Data Processing
Gene matching. Because several different microarray plat-

forms were used in these datasets, the probe sets should be
matched to identical genes. The batch query tool provided by
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Affymetrix (https://www.affymetrix.com/analysis/netaffx/
batch_query.affx) was used for matching probe sets among
datasets 1 to 7 [12]. Based on the latest UniGene clusters
annotation provided by the manufacturer (NCBI Build 35.1),
there were a total of 4,905 genes on all the five Affymetrix
microarray systems HG_U95Av2, Hu6800, Hu133A,
HG_U133AB, and Hu133plus2.

Distance-weighted discrimination. Systematic differences
from different datasets were remarkable, which would
compromise the integrity of the data from different
laboratories. To integrate the gene expression data from
datasets 1 to 5, the distance-weighted discrimination (DWD)
method (https://genome.unc.edu/pubsup/dwd/index.html) [13]
was used to identify and adjust systematic differences that
were present within these microarray datasets. The DWD
method corrects for systematic biases across microarray
batches by finding a separating hyperplane between the two
batches and adjusting the data by projecting the different
batches on the DWD plane, finding the batch mean, and then
subtracting out the DWD plane multiplied by this mean [13].
All of the 197 samples from the five datasets were broken into
two sub-branches, each of which was composed of samples
from all of the five datasets (Figure S1). Poolability tests were
performed to examine if these DWD-transformed gene
expression data from different resources were poolable [14].
We randomly reshuffled data resources and generated 100
replicates of simulated data. We then compared the number
of p-values below certain thresholds with the expected counts
obtained by simulations that take into account the distribu-
tions of the DWD-transformed gene expression data and
sample size in our study.

Data Analysis
To preselect survival-related genes, ANOVA analysis was

applied to 88 patients in datasets 1 to 5 who died within 2
years or survived beyond 5 years after surgery. Empirical p-
values for each gene were obtained through 10,000
permutation tests. Genes with significant survival effects (p
, 0.01) were selected for Cox proportional hazards
regression analyses. Multivariate Cox proportional hazards
regression analyses (adjusted for age, gender, cancer
subtype, and cancer stage) with 10,000 bootstrap resampling

were performed for each survival-related gene using all of
197 samples in datasets 1 to 5. The proportional hazards
assumption for variables such as age, sex, cancer subtype,
and cancer stage was investigated by examining the scaled
Schoenfeld residuals. Sex and cancer stage generally
displayed a significant deviation from this assumption.
Therefore, these two variables were taken as strata and
others as covariates in our Cox proportional hazards model.
The plot of global p-values obtained by testing the propor-
tional hazards assumption for all survival-related genes
showed that the model used in our survival analysis was
statistically warranted (Figure S2). The genes were ranked
according to the bootstrap frequencies of p , 0.01 for their
expression in regression models.
To identify a gene signature predictive of survival outcome,

survival analyses were performed on all 197 samples in
datasets 1 to 5. Partial Cox regression was performed to
construct predictive components, and time-dependent ROC
curve analysis was applied to evaluate the results [15]. The risk
scores were calculated by a linear combination of the gene
expression values for the selected genes, weighted by their
estimated regression coefficients. All the samples were
classified into high or low risk groups according to the risk
scores. To choose an appropriate subset of genes for a
common signature, we performed a forward selection
procedure: (1) increase one gene each time based on the
rank of genes that were identified in the above bootstrap
analyses; (2) perform the partial Cox regression analysis and
obtain the prediction accuracy using the chosen subset of
genes; and (3) repeat steps 1 and 2 until the prediction
accuracy is maximized. Kaplan-Meier survival plots, Mantel-
Haenszel log rank tests, and time-dependent ROC analysis
were implemented to assess the classification models accord-
ing to the risk scores.
Hierarchical clustering based on a centered Pearson

correlation coefficient algorithm and an average linkage
method were used to show the expression patterns of
survival-related genes in datasets 1 to 5.
All of the data analyses were implemented using the R

statistical package [16]. A more detailed description of the
data analyses is provided (Protocol S1).

Table 1. Clinical Summary of Patients in the Analyzed Datasets

Characteristics Measurements Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6 Dataset 7

Total samples n 36 18 67 4 72 63 64

Mean age (range) Years 66 (48–81) 70 (59–80) 64 (41–85) 76 (61–88) 64 (33–88) 65 (40–82) ND

Sex Male 20 10 25 2 29 27 ND

Female 16 8 42 2 43 36 ND

Mean follow-up (days) Total overall survival 1,369 1,301 1,310 303 1,403 1,387 1,139

Total alive 1,570 1,813 1,430 303 1,805 1,441 1,414

Total dead 665 660 924 ND 901 1,064 785

Stage IA 0 7 44 1 33 25 30

IB 36 11 23 3 39 38 27

Histological type ADC 14 0 67 3 72 63 31

SCC 18 18 0 1 0 0 33

Other 4 0 0 0 0 0 0

ND, no data
doi:10.1371/journal.pmed.0030467.t001

PLoS Medicine | www.plosmedicine.org December 2006 | Volume 3 | Issue 12 | e4672231

Gene Expression Profiles and Lung Cancer



Table 2. Genes Related to Survival

Expression Gene Function p-Value

Overexpressed in low-risk patients ABI2 Cell migration 0.0023

APCa Cell adhesion 0.0037

ARHGEF1a Cell proliferation 0.0031

BCL2a Antiapoptosis 0.0002

BNIP1 Antiapoptosis 0.0004

C21orf33 Cell wall 0.0080

CASP10a Induction of apoptosis 0.0082

CASP8a Regulation of apoptosis 0.0070

CDH8a Cell adhesion 0.0007

CHRNA2 Signal transduction 0.0100

DPH2L1 Cell proliferation 0.0049

DTNAa Signal transduction 0.0003

DYRK1A Transferase activity 0.0019

ENPP2a Cell motility, chemotaxis 0.0036

GOLGA1a Golgi autoantigen 0.0079

GPLD1 Cell matrix adhesion 0.0037

IL8RBa Cell motility, chemotaxis 0.0090

ITGB3 Cell matrix adhesion 0.0052

ITSN1a Calcium ion binding 0.0010

LST1 Immune response 0.0090

MAPK14 MAP kinase activity 0.0081

NIFUN Metal ion binding 0.0066

NNT Electron transport 0.0070

NTRK3a Cell differentiation 0.0048

PPOXa Electron transport 0.0030

PTGER3 Cell death 0.0080

RAB28a GTPase activity 0.0044

RAD9A Regulation of cell cycle 0.0075

RAE1a Cytoskeleton 0.0021

RBPMS RNA processing 0.0070

SELL Cell motility 0.0060

SLC15A1 Oligopeptide transport 0.0080

SLC17A4 Sodium ion transport 0.0100

SONa Antiapoptosis 0.0027

SUOX Metal ion binding 0.0070

TIAL1 Induction of apoptosis 0.0060

UBE2I Ubiquitin cycle 0.0040

CCR2a C-C chemokine receptor activity 0.0001

CDC2L5 Positive regulation of cell proliferation 0.0044

CUGBP2 Nuclear mRNA splicing, via spliceosome 0.0045

DBH Catecholamine biosynthesis 0.0031

FLT3 Positive regulation of cell proliferation 0.0067

FUCA1a Carbohydrate metabolism 0.0026

GALGT Carbohydrate metabolism 0.0014

GCS1 Carbohydrate metabolism 0.0044

GGCX c-glutamyl carboxylase activity 0.0034

GLG1 Fibroblast growth factor binding 0.0100

GM2A Sphingolipid catabolism 0.0100

GNAT2a G protein-coupled receptor protein signaling pathway 0.0027

GNRH1 Negative regulation of cell proliferation 0.0083

GTF2I Transcription factor activity 0.0042

INSR Epidermal growth factor receptor activity 0.0070

MAP4K1a MAP kinase kinase kinase kinase activity 0.0060

MAPK10 MAP kinase kinase activity 0.0090

MEF2Ca Transcription factor activity 0.0032

MLLT10a Transcription factor activity 0.0016

NFATC3 Transcription factor activity 0.0090

NR1H4a Transcription factor activity 0.0000

PBPa Serine-type endopeptidase inhibitor activity 0.0059

PIGCa Transferase activity, transfers glycosyl groups 0.0100

PIK3R1a Phosphatidylinositol 3-kinase activity 0.0050

PKNOX1a Transcription factor activity 0.0031

PRKACAa cAMP-dependent protein kinase activity 0.0001

RPS14 Structural constituent of ribosome 0.0073

SAA4 Lipid transporter activity 0.0044

SLC35B1 UDP-galactose transporter activity 0.0080

SNX1a Intracellular protein transport 0.0055

SSR2 Cotranslational protein-membrane targeting 0.0046

SUPT4H1 Positive regulation of transcription 0.0003

PLoS Medicine | www.plosmedicine.org December 2006 | Volume 3 | Issue 12 | e4672232

Gene Expression Profiles and Lung Cancer



Quantitative RT-PCR Analysis

Using the samples from dataset 1, the relative expressions
of nine randomly selected genes associated with survival
were determined by quantitative RT-PCR (QRT-PCR)
analysis as described in a previous report [17]. Primers for
the QRT-PCR analysis (Table S2) were designed using

Primer Express software version 2.0 (Applied Biosystems
[http://www.appliedbiosystems.com]). Amplification of each
target DNA was performed with SYBR Green master mix in
Bio-Rad (http://www.bio-rad.com) Single Color Real-Time
PCR Detection System according to the protocols provided.
The control gene b-actin and the target genes amplified with

Table 2. Continued.

Expression Gene Function p-Value

TMED9 Intracellular protein transport 0.0059

TMSB4Xa Regulation of actin cytoskeleton 0.0027

TRA2Aa Nuclear mRNA splicing, via spliceosome 0.0000

ZNFN1A1a Regulation of transcription, DNA-dependent 0.0002

Overexpressed in high-risk patients ABCA2 ATPase activity 0.0024

ABCC1a Response to drug 0.0001

ADAM17a Cell-cell signaling 0.0020

BLMa DNA repair 0.0100

C4orf10 0.0071

CHERPa Neurogenesis 0.0013

CRABP1a Signal transduction 0.0100

HMGB2 DNA repair 0.0090

INHAa induction of apoptosis 0.0083

LY6Da Cell adhesion 0.0100

NIDa Cell matrix adhesion 0.0009

NOTCH3a Cell differentiation 0.0011

PCDHGA12a Cell adhesion 0.0023

PFN2a Actin cytoskeleton 0.0074

PSEN1a Antiapoptosis 0.0013

RIF1 ATPase activity 0.0085

SEMA3F Extracellular space 0.0100

SH3GL2 Transferase activity 0.0100

SMC1L1a Chromatin binding 0.0036

STC1a Cell division 0.0090

SUMO1 Ubiquitin cycle 0.0048

TLK1 Cell cycle 0.0068

TOP3B DNA modification 0.0033

UBE3A Ubiquitin cycle 0.0039

UGP2 Kinase activity 0.0059

ZWINTASa Cell cycle 0.0019

ARL4Aa Small GTPase-mediated signal transduction 0.0012

BIKa Induction of apoptosis 0.0040

CBX3 Regulation of transcription, DNA-dependent 0.0090

DSPa Cell-cell adherens junction 0.0020

ETV6 Transcription factor activity 0.0088

FBN2a Extracellular matrix structural constituent 0.0083

GABRA3 c-aminobutyric acid signaling pathway 0.0045

GLI2a Transcription factor activity 0.0085

HNRPDa Regulation of transcription, DNA-dependent 0.0031

IRS1a Insulin receptor binding 0.0072

LARS2a Leucine-tRNA ligase activity 0.0020

LHCGR Lutropin-choriogonadotropic hormone receptor activity 0.0039

OLFM1 Latrotoxin receptor activity 0.0100

PLEC1a Structural constituent of cytoskeleton 0.0030

PPP2R4 Phosphatase activator activity 0.0026

PYGLa Glycogen metabolism 0.0025

SLC2A1a Carbohydrate transport 0.0024

SLC7A1a Basic amino acid transporter activity 0.0016

SMARCA3a Chromatin modification 0.0066

TFAM DNA-dependent DNA replication 0.0014

UPK2a Membrane organization and biogenesis 0.0055

VARS2 Translational elongation 0.0072

VGLL1a Transcription regulator activity 0.0032

ZNF154a Regulation of transcription, DNA-dependent 0.0044

ZNF410a Regulation of transcription, DNA-dependent 0.0004

aIncluded in group of 64 genes chosen for calculating risk scores of overall survival.
doi:10.1371/journal.pmed.0030467.t002
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equal efficiencies. To assess whether two amplicons have the
same efficiency, the variation of DCT (CT,target – CT,b-actin,
where CT is cycle number at which the fluorescence signal
exceeds background) with template dilution was evaluated

[18]. The fold change of gene expression in long-term
survival patients relative to short-term survival patients was
calculated as 2–DDCT (DDCT ¼ DCT long – DCT short). ANOVA
was performed to determine differences among the groups.

Figure 1. Validation Analyses of Gene Expression Profiling

(A) QRT-PCR validations of several candidate survival-related genes. Bars represent fold changes for the selected genes with differential expression
between long- (.5 y) and short-term survival (,2 y) patients. Positive fold change represents up-regulated, and negative fold change represents down-
regulated in short-term survival patients. * p � 0.05; ** p � 0.01; *** p � 0.005.
(B and C) Immunostaining analysis of CRABP1 and ABCC1 expression in long- and short- term survival lung cancer patients. Low magnification (B) and
403 (C). Positive CRABP1 immunoreactivity was observed in cytoplasm of an acinar ADC (lower left photomicrographs of B and C) from short-term
survival patients, and no CRABP1 reactivity was seen in a lung ADC from a long-term survival patient (upper left). Strong ABCC1 membranous staining
(lower right) in tumor cells from short-term survival patients was observed, and weak ABCC1 reactivity was seen in a lung ADC from a long-term survival
patient (upper right).
(D) Distribution of CRABP1 and ABCC1 protein levels in short- and long-term survival patients.
doi:10.1371/journal.pmed.0030467.g001
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A p-value of less than 0.05 was considered to indicate
statistical significance.

Tissue Microarray
Lung tissues of 60 stage I NSCLC patients (including 12

patients dead by 2 years after surgical resection and 48 alive
for more than 5 years) were collected during surgery between
1985 and 1999 at the Arthur James Cancer Hospital of the
Ohio State University Medical School (Columbus, Ohio,
United States). All tissues were fixed in formalin and
embedded in paraffin. A patient tissue microarray was
constructed from these tissues for examination of CRABP1
and ABCC1 immunoreactivity in short- and long-term survival
patients. All antibodies were antigen-retrieved in a vegetable
steamer with TRS, pH 6.1 (Dako [http://www.dako.com]),
staining was performed on a Dako autostainer, and all primary
incubations were for 1 h at room temperature. For CRABP1
(Abcam [http://www.abcam.com, #Ab2816], dilution 1:1000),
detection kit used was LSABþ (Dako). For ABCC1 (AXXORA
[http://www.axxora.com, ALX-801–007-C125], dilution 1:50),
the detection kit used was Vectastain Elite (Vector Labs [http://
www.vectorlabs.com]). The immunohistochemical staining
images were scanned using an ImageScope (Aperio [http://
www.aperio.com]). The percentage of positive cancer cells was
scored on a semiquantitative scale as 0 (0%), 1 (1%–25%), 2
(25%–50%), 3 (50%–75%), and 4 (75%–100%). Intensity was
scored as 1 (weak), 2 (intermediate), and 3 (strong). Results
were calculated by multiplying the score of percentage of
positive cells (P) by the intensity (I). The maximum score was
12. Two investigators did the evaluation of immunostaining
results independently. Student’s t-test was used in statistical
analyses.

Results

Differentially Expressed Genes Associated with Survival
Tables 2 and S3 list the genes related to overall survival in

the combined data (p , 0.01). As shown in Table 2, we
observed relatively consistent changes for both genes whose
expression in low-risk patients is higher than in high-risk
patients and genes whose expression in high-risk patients is
higher than in low-risk patients. Since we did not use data
from normal paired lungs in these analyses, it is not clear
whether these genes are all overexpressed in both low-risk
and high-risk patients. Therefore, there are at least four
possibilities of gene-expression patterns: (1) one group of
genes overexpressed in low-risk patients and another group
of genes overexpressed in high-risk patients; (2) one group of
genes overexpressed in high-risk patients and another group
of genes underexpressed in high-risk patients; (3) one group
of genes overexpressed in low-risk patients and another

Figure 2. Survival Analyses of Stage I NSCLC

(A) Kaplan-Meier survival curves for patients with stage IA and with IB
NSCLC.
(B) Kaplan-Meier survival curves for stage IA and IB patients defined by
having positive (high-risk) or negative (low-risk) risk scores of overall
survival. The risk scores were estimated with seven principle components
based on the model built by 64 survival-related genes identified in five
datasets.
(C) Area under the ROC curve for survival models based on stage
information or expression data, respectively.
doi:10.1371/journal.pmed.0030467.g002
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group of genes underexpressed in low-risk patients; or (4) a
mixture of all three scenarios. In order to clarify this issue, we
have begun to systematically acquire microarray information
from all paired normal lungs in an attempt to determine
possible expression patterns of these survival-related genes by
comparing normal gene expression levels between low-risk
and high-risk patients. The results from this ongoing study
will be included a future publication.

Most of these genes are related to cell adhesion, cell
motility, cell proliferation, and apoptosis. Notably, several
genes have been reported to be associated with cancer
survival (APC, IRS1, SLC2A1, BCL2, ABCC1, FLT3, RAD9A,
Inhibin A, NTRK3, CASP8, and CASP10). The APC gene plays a
role in NSCLC, and high APC promoter methylation is
significantly associated with poor survival in NSCLC [19].
IRS1 is a high-risk classifier gene associated with cancer death
within 12 months [8]. In another study, BCL2 was observed to
be up-regulated in a group of long-term survival patients
with NSCLC [20]. ABCC1 expression levels have been shown
to be an independent predictor for disease-free survival in
adult acute myeloid leukemia [21]. Acute myeloid leukemia
patients with FLT3 mutations tend to have poor prognoses
[22]. In addition, RAD9A, which is involved in DNA repair,
was found to be increased in radioresistant cells over
radiosensitive cells [23]. Inhibin A was found to be overex-
pressed in two cases of primary clear cell renal cell
carcinoma (2/16 [13%]) and three cases of metastatic clear
cell renal cell carcinoma (3/5 [60%]) [24]. The expression of
CASP8 and CASP10 was frequently decreased at the mRNA
and protein levels in lung cancer progression [25]. We found
that the genes encoding these two caspases were up-regulated
in long-term survival patients. High NTRK3 mRNA expres-
sion generally presages longer survival [26]. Four survival
genes (TMSB4X, INHA, FUCA1, and STC1) were previously
identified by the cross-validation procedure in dataset 3 [5].
Not surprisingly, several genes were reported to be involved
in cancer progression, survival, or cancer subtypes in the
original reports. For example, ATP2B1, AKAP12, TNFAIP6,
RGS16, HSPA8, RPS3, ADM, and P2RX5 are survival-associ-
ated genes [8]. MUC1 may play a role in progression and
invasiveness of colorectal carcinomas [27]. Finally AGT, XBP1,
and PODXL are overexpressed in ADC compared with SCC
[28].

Validation of Selected Genes
To validate the microarray gene expression results from

the meta-analysis, the relative expression of nine genes
associated with overall survival (CRABP1, BLM, ABCC1,
SLC2A1, TNFSF4, BCL2, LST1, STC1, and LARS2) was
determined by QRT-PCR analysis on the samples from
dataset 1. We confirmed the expression results for all these
nine genes except BCL2 (p � 0.05) (Figure 1A).

The patient tissue microarray of 60 completely independ-
ent patients was interrogated for CRABP1 and ABCC1 to
determine if mRNA changes were correlated with increased
protein expression in lung ADCs from patients with short-

term survival. CRABP1 staining was observed in the
cytoplasm of tumor cells in most lung tumor tissues (Figure
1B and 1C). CRABP1 exhibited stronger staining in tissues of
short-term survival patients than in those of long-term
survival patients (Figures 1B, 1C, and S3), the scores for
short- and long-term survival were 8.8 6 3.1(mean 6 SD,
same hereafter) and 4.9 6 2.8 (p , 0.0001), respectively. In
short-term survival patients, 80% and 20% of the samples
had scores of 8 or higher and 4 or lower in CRABP1
immunostaining, respectively; in contrast, in long-term
survival patients, 34% and 59% of the samples had scores
of 8 or higher and 4 or lower, respectively (Figure 1D).
Similar trends were also observed in mRNA levels in our
samples (see Figure 1A). ABCC1 showed either membranous
or cytoplasmic staining in tumor cells of tissues of both short-
and long-term survival NSCLC patients (Figures 1B, 1C, and
S3). A significant increase in scores of ABCC1-positive
staining was also present in tissues of short-term survival
patients; the scores in tissues of short-term and long-term
survival patients were 10 6 2.3 and 6.6 6 3.1 (p ¼ 0.002),
respectively. In short-term survival patients, 91% and 9% of
the samples had ABCC1 immunostaining scores of 8 or
higher and 4 or lower, respectively; in long-term survival
patients, 45% and 48% of the samples had scores 8 or higher
and 4 or lower, respectively. The results indicate that
expression of these two proteins is consistent with the results
from both microarray and RT-PCR analyses. Higher protein
levels of CRABP1 and ABCC1 tend to increase risk of short
survival of stage I NSCLC patients.

Identification of a Gene Expression Signature for Survival
Next, we determined if a subset of the genes related to

overall survival can be used to predict survival of patients with
stage I NSCLC. Risk scores were derived from survival
analyses of all 197 samples in datasets 1 to 5 with the partial
Cox regression. Kaplan-Meier survival analyses were per-
formed after the samples were classified into high- and low-
risk groups according to the risk scores. As shown in Figure
2A, Kaplan-Meier survival curves indicated poorer survival in
stage IB than in stage IA NSCLC (p ¼ 0.032). To determine
whether gene expression profiles could accurately predict
overall survival, the risk scores calculated by the 64 genes
(listed in Table 2) were used to classify all of the samples from
datasets 1 to 5 into two groups as high and low risk groups.
Kaplan-Meier analysis using expression profiles demonstrated
that the high and low-risk groups were significantly different
in their overall survival (p , 0.001) (Figure 2B). A comparison
of Figure 2A and 2B clearly shows that the gene expression
signature has higher classification power than the staging
method. The former has a larger area between the two risk
groups and a smaller p-value from the Mantel-Haenszel log
rank test. Figure 2C shows the time-dependent area under the
ROC curves based on the stage information or the estimated
risk scores of the patients. We observed that the Cox model
with gene expression data gave the better predictive perform-
ance with the areas under the ROC curve close to 80%. The

Figure 3. Gene Expression Patterns of 64 Top Survival Genes for 197 NSCLC Patients from Datasets 1 to 5

Patients were generally classified into two groups (short-term versus long-term survival) with distinct expression patterns. The first column on the left
represents patient status: 0, alive; 1, dead; the second column on the left represents follow-up time (days).
doi:10.1371/journal.pmed.0030467.g003
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Cox model with stage information, in contrast, resulted in
areas under the curve below 60%.

Patients with a postoperative survival of at least 5 years
and those who died within 2 years after resection were
selected for estimating the predictive power of Kaplan-
Meier survival analysis using expression profiles. According
to the risk scores by the partial Cox regression approach, 77

of the 88 patients were classified correctly (87% accuracy)

(Table S4). Gene expression patterns were determined using

hierarchical clustering of the 197 NSCLC samples against

the 64 top survival-related genes (Figure 3). Short- and long-

term survival NSCLC patients had distinct expression

patterns among the 64 genes that were used for establishing

Figure 4. Comparison of the Prediction Accuracy of Lung Cancer Survival Using Our 64-Gene Signature and a Different 50-Gene Signature

(A and B) Kaplan-Meier survival curves for dataset 6 under our 64-gene signature (A) and the 50-gene signature from Beer et al. [5] (B). Scores were
estimated using two principle components.
(C and D) Kaplan-Meier survival curves for dataset 7 using our 64-gene signature (C) and the 50-gene signature from Beer et al. [5] (D). Scores were
estimated using eight principle components.
doi:10.1371/journal.pmed.0030467.g004
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a gene expression signature predictive of stage I NSCLC
survival.

Confirmation of the Gene Expression Signature in
Independent Datasets

The robustness of the 64-gene expression signature in
predicting survival in lung cancer was further tested with
oligonucleotide gene expression data obtained from two
completely independent datasets—dataset 6 (63 stage I lung
ADC including nine long-term survival patients and five
short-term survivors) and dataset 7 (64 stage I lung ADC and
SCC, including eight long-term survival patients and twelve
short-term survivors). When we examined the risk assignment
of the samples in these two datasets using the risk scores
based on our 64-gene signature, high- and low-risk groups
were observed that differed significantly in survival in
datasets 6 and 7. One of 14 individuals was classified
incorrectly (93% accuracy) using the 64-gene signature in
dataset 6 (p , 0.001; Figure 4A). In dataset 7, we correctly
classified all 20 patients who survived for at least 5 years or
died within 2 years using the 64-gene signature (p , 0.001;
Figure 4C). We also examined the risk assignment of the
samples in these two datasets using the risk scores based on
the 50-gene signature reported by Beer et al. [5]. Classifica-
tion was less accurate with this gene signature: three patients
who lived for more than 5 years in dataset 6 were classified
into the low-risk group according the risk scores calculated
by our gene signature, but all of these patients were classified
into the high-risk group under the Beer et al. [5] gene
signature (Figure 4A and 4B). Also, in dataset 7 one patient
surviving for more than 2,476 days was classified into the
high-risk group under the Beer et al. [5] gene signature
(Figure 4D).

Discussion

In this study, we combined several lung cancer gene
expression studies based on Affymetrix microarray platforms
into a single, homogeneous dataset by using the DWD
method. The increased sample size was intended to reduce
false positives and increase statistical power in detecting
survival-related genes. This improved dataset enabled us to

identify a gene expression signature consisting of 64 genes
that can accurately predict which stage I lung cancer patients
may experience poor survival following resection.
In general, the pathologic diagnosis used to classify a lung

tumor is combined with the stage of the cancer to predict
patient survival and direct therapy [29]. Unfortunately,
current methods of classification and staging are not
completely reliable or sufficiently precise [2], and no reliable
markers exist to predict the presence of micrometastasis or
outcome in patients with resected NSCLC. It is not unusual
for patients with lung cancers of identical histology, differ-
entiation, location, and stage to have major differences in
survival or response to therapy [29]. Some patients diagnosed
with stage I NSCLC survive after surgery for some time,
whereas others do not. This prognostic variability makes the
results of this study important. Patients whose early-stage
tumors contain signatures predicting short survival times
would benefit from the aggressive therapies currently given
only to those with later-stage cancers.
In this study, we included cancer subtypes as a factor in the

ANOVA model to choose survival-related genes, and we
adjusted cancer subtypes in the multivariate Cox propor-
tional hazards regression analyses. Therefore, the gene
expression signatures identified in the current study should
be suitable for both lung ADC and SCC. This generalization
of our gene signatures was also demonstrated in two
independent large datasets—dataset 6 (63 stage I lung ADC
including nine long-term and five short-term survival
patients) and dataset 7 (64 stage I lung ADC and SCC,
including eight long-term and 12 short-term survival
patients). Our gene signatures can accurately predict patient
survivals in these two datasets with mixed stage I lung cancer
subtypes. To our knowledge, such signatures have not been
convincingly reported previously, and we propose that they
should be used to inform the clinical management of lung
cancer patients.
Our survival gene signatures consist of genes that are

involved in cancer metastasis such as cell adhesion (APC,
CDH8, DSP, LY6D, PCDHGA12, and NID), cell motility (IL8RB,
ENPP2, and CCR2), and inflammation and immune response
(CASP8 and CASP10). In addition, seven of the genes are
related to apoptosis (INHA, PSEN1, CASP8, CASP10, PIK3R1,
BCL2, and BIK) and another five are related to transport
mechanisms (ABCC1, ITSN1, CRABP1, SLC2A1, and ZWIN-
TAS). Nine of the signature genes were previously identified
as lung cancer survival factors (Table 3), and 29 genes have
been associated with survival in other cancer types including
breast carcinoma, brain cancer, and gastric cancer (Table 4).
ABCC1 and SLC2A1 are particularly attractive biomarkers

for survival in NSCLC. The protein encoded by ABCC1 is a
member of the superfamily of ATP-binding cassette trans-
porters. ATP-binding cassette proteins transport various
molecules across extra- and intracellular membranes. This
full transporter is a member of the multidrug resistance-
associated protein subfamily, and it functions as a multi-
specific organic anion transporter, with oxidized glutathione,
cysteinyl leukotrienes, and activated aflatoxin B1 as sub-
strates. This protein also transports glucuronides and sulfate
conjugates of steroid hormones and bile salts. ABCC1
overexpression is associated with DNA aneuploid carcinom-
atous cells in NSCLC [30]. SLC2A1 is a major glucose
transporter, which is an integral membrane glycoprotein

Table 3. The Signature Genes of Survival Identified in Our Meta-
Analysis Overlap Those in Previous Studies of Lung Cancer
Survival

Gene Methods of Analysis References

APC Hypermethylation, quantitative fluorogenic RT-PCR [19]

BCL2 Hemotoxylin-eosin staining [39]

Meta-analysis [40]

FBN2 RT-PCR and methylation-specific PCR [41]

TMSB4X Microarray [5]

FUCA1 Microarray [5]

STC1 Microarray [5]

SLC2A1 Immunohistochemical analysis [33]

Immunohistochemical analysis [42]

Microarray [5]

INHA Microarray [5]

ABCC1 Review [43]

doi:10.1371/journal.pmed.0030467.t003
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involved in transporting glucose into most cells. Increased

glucose transport in malignant cells has been associated with

increased, deregulated expression of glucose transporter

proteins that is characterized by the overexpression of

SLC2A1 [31]. Differential expression levels of SLC2A1 have

been observed between ADC and SCC [32], and over-

expression of SLC2A1 in stage I NSCLC resulted in poor

survival in another experiment [33]. Thus, these two genes
could be targets of cancer therapy and prevention.
The survival-related genes identified in previous micro-

array studies of lung cancer patients failed to show
consistency between studies, likely due to small patient
sample numbers [34], and their predictive power was limited
when tested in independent datasets. One solution to this
problem is to integrate datasets from multiple studies to

Table 4. The Signature Genes of Survival Identified in Our Meta-Analysis Are Also Involved in Survival of Other Cancer Types

Gene Cancer Type Measure Survival Time (y) Class 1 (n) Class 2 (n) t-Test p-Valuea Reference

CRABP1 Brain Survival 3 Alive (13) Dead (56) �2.907 0.005 [44]

Brain Survival 3 Alive (9) Dead (20) �2.107 0.045 [45]

BLM Breast carcinoma Disease-free survival 5 No disease (196) Relapse (79) �4.363 ,0.001 [46]

ABCC1 Gastric cancer Survival 3 Alive (23) Dead (40) �3.033 0.005 [47]

Brain Survival 3 Alive (13) Dead (56) �2.806 0.009 [44]

Breast carcinoma Disease-free survival 5 No disease (180) Relapse (93) �2.857 0.005 [48]

SLC2A1 Breast carcinoma Disease-free survival 5 No disease (196) Relapse (79) �3.409 ,0.001 [46]

BCL2 Breast carcinoma Disease-free survival 5 No disease (196) Relapse (79) 4.243 ,0.001 [46]

Breast carcinoma Relapse-free survival 5 No disease (11) Relapse (35) 3.022 0.007 [49]

LST1 Breast carcinoma Disease-free survival 5 No disease (180) Relapse (93) 3.568 ,0.001 [48]

Breast carcinoma Metastases 5 Negative (51) positive (46) 2.806 0.006 [50]

STC1 Brain Survival 3 Alive (9) Dead (20) �3.762 ,0.001 [45]

Brain Survival 3 Alive (13) Dead (56) �3.634 ,0.001 [44]

CDH8 Brain Survival 3 Alive (13) Dead (56) 4.139 ,0.001 [44]

ENPP2 Breast carcinoma Disease-free survival 5 No Disease (180) Relapse (93) 2.742 0.007 [48]

ITSN1 Brain Survival 3 Alive (13) Dead (56) 2.351 0.033 [44]

Breast carcinoma Disease-free survival 5 No Disease (180) Relapse (93) 2.753 0.007 [48]

PBP Brain Survival 3 Alive (13) Dead (56) 3.328 0.003 [44]

Medulloblastoma Survival 5 Alive (21) Dead (18) 3.505 0.001 [51]

Breast carcinoma Disease-free survival 5 No disease (180) Relapse (93) 3.019 0.003 [48]

Breast carcinoma Metastases 5 Negative (51) Positive (46) 2.273 0.025 [50]

Breast Ductal Carcinoma Survival 5 Alive (70) Dead (28) 2.072 0.043 [52]

PIK3R1 Brain Survival 3 Alive (13) Dead (56) 3.42 0.002 [44]

Brain Survival 3 Alive (9) Dead (20) 2.249 0.033 [45]

Breast carcinoma Disease-free survival 5 No disease (196) Relapse (79) 2.871 0.005 [46]

Breast carcinoma Disease-free survival 5 No disease (180) Relapse (93) 2.711 0.007 [48]

DSP Breast carcinoma Metastases 5 Negative (51) Positive (46) �3.338 0.001 [50]

Breast ductal carcinoma Survival 5 Alive (70) Dead (28) �2.038 0.045 [52]

CHERP Brain Survival 3 Alive (9) Dead (20) �3.075 0.007 [45]

Brain Survival 3 Alive (13) Dead (56) �2.429 0.029 [44]

SLC7A1 Breast carcinoma Disease-free survival 5 No disease (196) Relapse (79) �3.476 ,0.001 [46]

Breast carcinoma Disease-free survival 5 No disease (180) Relapse (93) �2.72 0.007 [48]

Breast carcinoma Metastases 5 Negative (51) Positive (46) �3.263 0.002 [50]

HNRPD Brain Survival 3 Alive (13) Dead (56) �2.158 0.038 [44]

IRS1 Clear cell renal cell carcinoma Survival 3 Alive (7) Dead (33) �3.316 0.004 [53]

Brain Survival 3 Alive (13) Dead (56) �4.539 ,0.001 [44]

CASP10 Brain Survival 3 Alive (13) Dead (56) 3.269 0.004 [44]

ARHGEF1 Breast carcinoma Disease-free survival 5 No disease (180) Relapse (93) 2.634 0.009 [48]

PRKACA Diffuse large B cell lymphoma Survival 5 Alive (86) Dead (121) 3.387 ,0.001 [54]

PYGL Brain Survival 3 Alive (13) Dead (56) �4.539 ,0.001 [44]

GLI2 Gastric cancer Survival 3 Alive (23) Dead (40) �2.731 0.009 [47]

ZWINTAS Breast carcinoma Disease-free survival 5 No disease (196) Relapse (79) �5.985 ,0.001 [46]

Breast carcinoma Disease-free survival 5 No disease (180) Relapse (93) �2.825 0.005 [48]

Breast carcinoma Metastases 5 Negative (51) positive (46) �3.248 0.002 [50]

PLEC1 Clear cell renal cell carcinoma Survival 3 Alive (7) Dead (33) �3.316 0.004 [53]

VGLL1 Breast carcinoma Disease-free survival 5 No disease (196) Relapse (79) �3.202 0.002 [46]

Breast carcinoma Metastases 5 Negative (51) positive (46) �2.327 0.023 [50]

Breast carcinoma Relapse-free survival 5 No Disease (11) Relapse (35) �2.144 0.043 [49]

LY6D Brain Survival 3 Alive (13) Dead (56) �3.13 0.006 [44]

APC Brain Survival 3 Alive (13) Dead (56) 3.402 0.002 [44]

Brain Survival 3 Alive (9) Dead (20) 2.337 0.032 [45]

SMC1L1 Breast carcinoma Disease-free survival 5 No disease (180) Relapse (93) �3.843 ,0.001 [48]

Breast carcinoma Disease-free survival 5 No disease (196) Relapse (79) �3.374 ,0.001 [46]

IL8RB Breast carcinoma Disease-free survival 5 No disease (180) Relapse (93) 2.064 0.04 [48]

ap-Value indicates significance for t-test of difference in gene expression between two classes of patients.
doi:10.1371/journal.pmed.0030467.t004
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increase the sample size. Another problem is systematic biases
due to different handling procedures in clinical studies,
especially when samples/tumors are collected and processed
at different institutions, using different microarray print
batches, platforms, or array hybridization protocols. To
integrate microarray datasets with different origins, distri-
bution transformation methods, such as DWD, can be helpful.
This method has been used previously to combine datasets
from different batches into a single homogeneous dataset in
head and neck SCC and breast carcinoma studies [35–38]. In
our data analyses, we chose WUSM dataset as the reference
batch, used the same mean and variance as reference, and
then combined other datasets one by one. The hierarchical
cluster analysis using the original nontransformed data
classified the samples into five distinct groups according to
data source rather than disease status (Figure S1A), demon-
strating large systematic biases among the five studies. After
DWD adjustment, however, all 197 samples from the five
datasets were clustered into two sub-branches according to
disease status rather than data source, each of which was
composed of samples from all five datasets (Figure S1B). The
batch differences disappeared; in this sense the samples from
different datasets mixed well. Figure S4 also shows the effect
of DWD adjustment using datasets 1 and 3. Principal
component directions of adjusted data are markedly different
from those of the raw data. We also performed poolability
tests to examine if these DWD-transformed gene expression
data from different resources are poolable. The results
showed that the number of p-values falling in the tail in our
data is similar to those in simulated data (Table S5).
Therefore, the gene expression data from different resources
are poolable after the DWD transformation, and thus can be
combined for survival analysis. These results imply that the
systematic biases were largely removed after DWD adjust-
ment and thus the results from the integrated data should be
robust.

Time to death due to cancer varies substantially among
lung cancer patients. Studying censored survival time may be
more informative than treating it as a binary or categorical
variable. We applied multivariate Cox proportional hazards
models with bootstrap resampling technology to the analysis
of these censored survival data from different resource.
Kaplan-Meier analysis using gene expression profiles demon-
strated a significantly worse overall survival for high-risk
patients compared to low-risk patients (Figure 2B), and using
the 64-gene signature, we predicted the actual overall survival
with greater than 85% accuracy. This new tool will help
clinicians assess a patient’s risk profile and to prescribe a
course of treatment tailored to that profile. A patient whose
cancer signature indicates that it is unlikely to metastasize
would be spared the debilitating side effects of aggressive
anticancer therapies, whereas a patient with an early but
particularly aggressive tumor would be a candidate for
aggressive treatment not usually given to early-stage patients,
and thus experience improved survival.

Supporting Information

Figure S1. Hierarchical Clustering Analysis of Five Datasets

Analyses are shown for the raw data (A) and the DWD source and
batch-adjusted data (B). Green, dataset 1 (WUSM); purple, dataset 2
(Mayo Clinic); blue, dataset 3 (Beer et al. [5]); red, dataset 4
(Bhattacharjee et al. [10]); yellow, dataset 5 (Borczuk et al. [8]).

Found at doi:10.1371/journal.pmed.0030467.sg001 (65 KB PDF).

Figure S2. Global p-Values from Tests of the Proportional Hazards
Assumption for All Survival-Related Genes

Only two of 165 tests obtained global p , 0.05, indicating that
proportional hazards models are statistically warranted for the
survival analyses.

Found at doi:10.1371/journal.pmed.0030467.sg002 (72 KB PDF).

Figure S3. The Immunostaining Images of Lung Cancer Patient
Tissue Microarray

The sections from short-term survival lung cancer patients are shown
in box.

Found at doi:10.1371/journal.pmed.0030467.sg003 (1.3 MB PDF).

Figure S4. Principle Component Directions

Directions are given for the raw data (A) and the DWD source- and
batch-adjusted data (B). Red, dataset 1 (WUSM); blue, dataset 3 (Beer
et al. [5]).

Found at doi:10.1371/journal.pmed.0030467.sg004 (513 KB PDF).

Protocol S1. Detailed Description of the Data Analyses

Found at doi:10.1371/journal.pmed.0030467.sd001 (84 KB DOC).

Table S1. Sample Information on Datasets Used in the Meta-Analysis

Found at doi:10.1371/journal.pmed.0030467.st001 (73 KB XLS).

Table S2. Oligonucleotide Primers and Probes Used for RT-PCR
Analysis

Found at doi:10.1371/journal.pmed.0030467.st002 (23 KB XLS).

Table S3. Detailed Information on Genes Related to Cancer Survival

Found at doi:10.1371/journal.pmed.0030467.st003 (32 KB XLS).

Table S4. Partial Cox Regression Classification of 197 stage I NSCLC
patient using 64 Survival-Related Genes

Found at doi:10.1371/journal.pmed.0030467.st004 (32 KB XLS).

Table S5. Comparison of the Distribution of p-Values from
Poolability Tests in the Real and Simulated Data

Found at doi:10.1371/journal.pmed.0030467.st005 (15 KB XLS).

Accession Numbers
Accession numbers for genes related to cancer survival in Table S3
can be found in Nucleotide (http://www.ncbi.nlm.nih.gov/entrez/
query.fcgi?db¼Nucleotide). The Gene Expression Omnibus (GEO
[http://www.ncbi.nlm.nih.gov/geo]) accession number for microarray
data from this study is GSE6253.
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Editors’ Summary

Background. Lung cancer is the commonest cause of cancer-related
death worldwide. Most cases are of a type called non-small cell lung
cancer (NSCLC) and are mainly caused by smoking. Like other cancers,
how NSCLC is treated depends on the ‘‘stage’’ at which it is detected.
Stage IA NSCLCs are small and confined to the lung and can be removed
surgically; patients with slightly larger stage IB tumors often receive
chemotherapy after surgery. In stage II NSCLC, cancer cells may be
present in lymph nodes near the tumor. Surgery plus chemotherapy is
the usual treatment for this stage and for some stage III NSCLCs.
However, in this stage, the tumor can be present throughout the chest
and surgery is not always possible. For such cases and in stage IV NSCLC,
where the tumor has spread throughout the body, patients are treated
with chemotherapy alone. The stage at which NSCLC is detected also
determines how well patients respond to treatment. Those who can be
treated surgically do much better than those who can’t. So, whereas only
2% of patients with stage IV lung cancer survive for 5 years after
diagnosis, about 70% of patients with stage I or II lung cancer live at least
this long.

Why Was This Study Done? Even stage I and II lung cancers often recur
and there is no accurate way to identify the patients in which this will
happen. If there was, these patients could be given aggressive
chemotherapy, so the search is on for a ‘‘molecular signature’’ to help
identify which NSCLCs are likely to recur. Unlike normal cells, cancer cells
divide uncontrollably and can move around the body. These behavioral
differences are caused by changes in their genetic material that alter
their patterns of RNA transcription and protein expression. In this study,
the researchers have investigated whether data from several microarray
studies (a technique used to catalog the genes expressed in cells) can be
pooled to construct a gene expression signature that predicts the
survival of patients with stage I NSCLC.

What Did the Researchers Do and Find? The researchers took the data
from seven independent microarray studies (including a new study of
their own) that recorded gene expression profiles related to survival time
(less than 2 years and greater than 5 years) for stage I NSCLC. Because
these studies had been done in different places with slightly different
techniques, the researchers applied a statistical tool called distance-

weighted discrimination to smooth out any systematic differences
among the studies before identifying 64 genes whose expression was
associated with survival. Most of these genes are involved in cell
adhesion, cell motility, cell proliferation, and cell death, all processes that
are altered in cancer cells. The researchers then developed a statistical
model that allowed them to use the gene expression and survival data to
calculate risk scores for nearly 200 patients in five of the datasets. When
they separated the patients into high and low risk groups on the basis of
these scores, the two groups were significantly different in terms of
survival time. Indeed, the gene expression signature was better at
predicting outcome than routine staging. Finally, the researchers
validated the gene expression signature by showing that it predicted
survival with more than 85% accuracy in two independent datasets.

What Do These Findings Mean? The 64 gene expression signature
identified here could help clinicians prepare treatment plans for patients
with stage I NSCLC. Because it accurately predicts survival in patients
with adenocarcinoma or squamous cell cancer (the two major subtypes
of NSCLC), it potentially indicates which of these patients should receive
aggressive chemotherapy and which can be spared this unpleasant
treatment. Previous attempts to establish gene expression signatures to
predict outcome have used data from small groups of patients and have
failed when tested in additional patients. In contrast, this new signature
seems to be generalizable. Nevertheless, its ability to predict outcomes
must be confirmed in further studies before it is routinely adopted by
oncologists for treatment planning.

Additional Information. Please access these Web sites via the online
version of this summary at http://dx.doi.org/10.1371/journal.pmed.
0030467.
� US National Cancer Institute information on lung cancer for patients

and health professionals.
� MedlinePlus encyclopedia entries on small-cell and non-small-cell lung

cancer.
� Cancer Research UK, information on patients about all aspects of lung

cancer.
� Wikipedia pages on DNA microarrays and expression profiling (note

that Wikipedia is a free online encyclopedia that anyone can edit).
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