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Toward the Autism Motor 
Signature: Gesture patterns  
during smart tablet gameplay 
identify children with autism
Anna Anzulewicz1,2, Krzysztof Sobota2 & Jonathan T. Delafield-Butt3

Autism is a developmental disorder evident from infancy. Yet, its clinical identification requires expert 
diagnostic training. New evidence indicates disruption to motor timing and integration may underpin 
the disorder, providing a potential new computational marker for its early identification. In this study, 
we employed smart tablet computers with touch-sensitive screens and embedded inertial movement 
sensors to record the movement kinematics and gesture forces made by 37 children 3–6 years old with 
autism and 45 age- and gender-matched children developing typically. Machine learning analysis of the 
children’s motor patterns identified autism with up to 93% accuracy. Analysis revealed these patterns 
consisted of greater forces at contact and with a different distribution of forces within a gesture, and 
gesture kinematics were faster and larger, with more distal use of space. These data support the notion 
disruption to movement is core feature of autism, and demonstrate autism can be computationally 
assessed by fun, smart device gameplay.

Autism spectrum disorder (ASD) is a childhood neurodevelopmental disorder. Its global prevalence is estimated 
at 1 in 160 children1. The European and North American prevalence of autism is estimated to be 1 in 68 children2. 
In the UK, ca. 700,000 individuals live with autism3 and the aggregate cost of healthcare and support is £27.5 
billion annually4.

The cause of ASD is not well understood and its aetiology is complex, involving both genetic and environmen-
tal factors5,6. It is generally recognised the most effective clinical route to treatment is its early identification and 
consequent early therapeutic intervention7,8. Early diagnosis can also afford the family and caregivers opportunity 
to adjust, and in some cases can trigger the resources required for professional care and treatment. Such provi-
sion can produce significant health and economic benefit, offering the best chance for lifelong improvement and 
relative independence9,10.

Yet, although early diagnosis and intervention appears to offer the best chance for significant health improve-
ment and economic gain, diagnosis of autism remains complex and often difficult to obtain. It currently relies on 
specialist medical expertise with diagnostic instrumentation that depends on interpretative coding of child obser-
vations, parent interviews, and manual testing. These instruments are time consuming and clinically demanding. 
Medical diagnosis can be withheld for many years due to wait-list times or uncertainty in clinical diagnostic fit.

Recent identification of motor disturbance in young children who develop ASD presents a new target for 
the development of early assessment methodologies11. ASD is typically considered a social and emotional dis-
order. Therefore, current diagnostic instruments directly address social and emotional aspects of the syndrome. 
However, motor control underpins social engagement, emotional expression, and cognitive development12–17, and 
children with ASD exhibit a clear deficit in movement observable from birth18 and evident throughout life19–25. 
This motor perspective on autism is beginning to gain some significant clinical and research interest11,26,27.

Disruption of normal movement patterns first identified by Kanner28 is a cardinal feature of ASD and 
is becoming increasingly recognised as a likely primary deficit in ASD aetiology11. Repetitive movements 
and restricted interests are core diagnostic criteria in professional clinical practice in both the United States 
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(DSM-V29) and Europe (ICD-1030). However, more subtle motor disturbances, which are not included in the 
diagnostic classifications, are frequently observed in individuals with ASD31–34.

Individual motor kinematics of purposeful movement in tasks as varied as simple horizontal arm swings19, 
reaching to grasp35,36 or touch37, handwriting38, body posture shifts39, and gait40 are disturbed. These studies 
employed laboratory-based optical motion capture methods to demonstrate a reliable disruption to action kin-
ematics in children and adults with autism. And although results may differ in terms of the precise nature of 
the disruption, for e.g. arm velocity is increased in the adult arm swing19, but decreased during the children’s 
reach41–43, all studies identify a disturbance to movement during prospective, goal-directed motor control11. The 
presentation of this disturbance may be dependent on developmental progress and on the nature of the task, as 
above. Some studies indicate autism motor disturbance may be coupled to intelligence44–46. Postural adjustments 
during load-shift tasks39 and during gait23 are also affected. And efficient prospective organisation of movements 
in a series, or chain, is thwarted21. Perceptual awareness of others’ motor intentions conveyed in body movement 
or eye gaze is also disrupted47,48.

A recent meta-analysis of the motor literature in autism revealed substantial motor coordination deficits per-
vasive across ASD diagnoses34. Sensorimotor timing and integration appears to be a consistent deficit, although 
the nature of this disruption and its effect on autism as a disorder of sensory, motor and cognitive prediction 
requires more work to better elucidate11,33,49. Nevertheless, disruptions to motor timing and coordination can 
thwart an individual’s intentions14. Such a subtle, but fundamental disruption to motor agency can create distress 
and isolation, and consequent autistic social and emotional compensations11,50. Prospective, feed-forward mech-
anisms of motor timing are a fundamental feature disrupted in autism51.

Thus, it would appear measures of prospective motor timing could provide a means to assess young children 
for autism, if such motor markers could be identified. However, research studies typically employ optical motion 
tracking, which is an expensive, laboratory-based system that requires expert technical operation. On the other 
hand, clinical assessment of motor function is typically carried out by interpreter-coded surveys, such as the 
M-ABC31 or Mullen Scales52, and lack precise quantification of the motor signature. More accessible and more 
precise computational measures of motor performance for clinical assessment and research are needed.

Recently, new technological developments have miniaturised inertial motion sensors, gyroscopes and mag-
netometers and integrated these into mobile consumer microelectronics. They are now ubiquitous in smart 
phones, tablets, and in wearable devices such as smart watches and wristbands. These new devices provide 
unprecedented access to motor information about the user that can be used for improved medical assessment, for 
example to predict Parkinson’s disease onset53. However, these new technologies have not yet been employed to 
assess motor control in children with autism.

In this study, we reasoned the new inertial sensors in smart tablet devices and touch screen sensor technolo-
gies were sufficient to capture detailed information about children’s motor patterns. The attractive nature of tablet 
gameplay appeared to overcome limitations of experimental motion tracking paradigms that require the subject 
to perform pre-set tasks wearing reflective markers inside strange, unexpected university laboratories – all under 
the watchful gaze of curious scientists. Such demands are difficult for individuals with autism and can affect 
performance, calling into question the validity of data made in these situations54. On the other hand, children are 
attracted to tablet screens and engage with them playfully of their own accord. Further, tablet devices are portable 
and can be brought into the home, clinic, or classroom. Altogether, development of tablet-based assessment pre-
sents an ecologically valid paradigm equipped with high precision sensors that can assess the child in attractive, 
paradigmatic gameplay scenarios.

We decided to test whether or not we could identify autism-specific motor patterns in the gameplay of chil-
dren as they engaged with a smart tablet computer (iPad mini) under natural conditions and with minimal 
instructions. We reasoned this would provide more reliable information on the child’s spontaneous motor behav-
iour than currently available, and allow analysis of the nature of the motor disturbance by accurate measure of the 
child’s spontaneous, kinematic pattern of purposeful, goal-directed movements in gameplay. To do so, we adapted 
two commercially available games for children with code to capture the inertial sensor data and touch-screen data 
as the children played (Fig. 1). We then set out to computationally identify movement patterns generated by the 
children that reliably differentiated children with autism from typically developing children.

Thus, the aims of the study were: (1) To determine whether or not motor information could differentiate chil-
dren with autism from children developing typically; and (2) to determine the kinds of movements responsible 
for differentiating between children with autism and children developing typically. We reasoned such identifica-
tion of an ecologically valid autism motor signature and its characterisation could then be used in future research 
to identify younger children at risk for autism, but not yet diagnosed.

In the first game, called Sharing, the main gameplay encouraged the child to slice a piece of food by tapping 
on it, and then distribute the resulting pieces individually to each of four cartoon characters. On completion, the 
characters made a joyful exclamation before the game re-set and new piece of food was put on display for shar-
ing. Distractor elements were also present that allowed for play outside this main task, such as turning lights on 
and off or tickling a bird who would then sing. In the second game, a choice of outlines of toys and animals was 
presented, and the selected image then placed on a clean canvas for colouring. A spinning wheel was offered with 
choices for colour selection, after which any touch or gesture served to colour or draw on the picture, leaving the 
outline always intact. This game, Creativity, allowed free play with no rules. Children were given the option to 
re-set the image with a new one and a clean canvas.

Altogether, 82 children were assessed: 37 children aged 4 years 5 months (standard deviation 11 months) 
clinically diagnosed with Childhood Autism (ICD-10 2010 Edition)30 were included in the autism group of the 
study, and 45 children 4 years 7 months (standard deviation 11 months) were included in the control group of the 
study. An iPad mini was placed directly in front of the children on a table so that any movement information from 
the device’s sensors were the result of forces made from touch, and not gross movement of the device (Fig. 2A). 
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Two sources of information were obtained, from the touch screen and from the inertial sensors (tri-axial accel-
erometer, gyroscope, magnetometer) (Fig. 2B,C). 262 ‘features’ obtained by simple calculation of the raw sensor 
data (Supplemental Table 1) were then analysed first by machine learning algorithms in order to produce a com-
putational model that could differentiate data patterns within ASD and Control groups. Data were then analysed 
by the Kolmogorov-Smirnov (KS) test. This is the first study to employ smart device serious games to study the 
motor patterns of children with autism spectrum disorder.

Results
Machine Learning Identification of an Autism-specific Action Pattern. Three machine learning 
algorithms were employed using 10 repetitions of a 10-fold cross-validation. Each algorithm differentiated indi-
viduals within the autism group from the control group using the 262 features derived from the touch screen and 
inertial sensors with accuracy up to 0.93 (Table 1). Data from Creativity gameplay produced greater predictive 
accuracy than those from Sharing gameplay. The most effective algorithm was the Regularized Greedy Forest55 
with age and gender data excluded. Thus, analyses of the Creativity gameplay by RGF2 analysis produced the best 
predictive scores with an area under the Receiver-Operator Characteristics curve (AUC) of up to 0.93 (Fig. 3) and 
sensitivity and specificity up to, for example, 83% with 85% specificity (Table 2).

It is noteworthy classification of autism-specific gameplay was produced by analysis of simple computations 
(features) of the form and pattern of motor engagement with the device, without attention to concerns of higher 
cognitive function. Children with autism produced a particular motor pattern during gameplay that was signifi-
cantly different from those produced by children developing typically, giving identification of a motor signature 
associated with childhood autism.

Figure 1. The two serious tablet games employed for data capture. (A) ‘Sharing’ where the main gameplay 
involved touching the fruit (centre forward), which sliced it into four equal pieces, then sliding each piece to a 
child’s plate. When all four children had a slice of fruit, they would jump for joy for 3 seconds before the fruit 
was replaced with another food, and the children would return to their neutral position. (B) ‘Creativity’ where 
the children were free to choose an object or animal shape, then trace the shape before colouring it in freely, 
choosing a colour from the colour wheel. When the children were satisfied, they could choose a new shape by 
selecting the return button in the top right-hand corner.

Figure 2. The child’s purposeful movements were sensed by the touch screen and the inertial sensors inside 
the tablet.  (A) A child engaged in drawing and colouring with the Creativity game, one of two games. The 
tablet was set on the table in front of the child, any movements recorded by the device’s sensors were the result of 
gameplay gestures. Features were computed from these gestures using (B) touch screen data to measure gesture 
action patterns and (C) inertial data to measure displacements of the device resulting from the impact and 
contact forces of the gestures.
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The Autism Motor Signature. In order to understand the nature of this motor signature, we analysed all 
features using a Kolmogorov-Smirnov (KS) test. We give attention to those features with the greatest KS distance 
as a best approximation of those that contributed significantly to the differentiation. Thus, we focus on the ten 
features from each game with the greatest KS distance (Table 3; Fig. 4).

In the case of the Sharing game, all ten features were derived from simple computations of the inertial sensor 
data. Inertial data measure the forces resulting from impact of the finger onto the screen and therefore into the 
device and its sensor, as well as the forces put into the device from variances in pressure as the finger moved across 
it. In the case of the Sharing game, finger swipe action kinematics and form features derived from the touch 
screen data were not included, suggesting that a prominent component of the ASD motor signature is increased 
force at the point of impact.

In the case of the Creativity game, four features from the inertial sensor data and six features from the touch 
screen data were the most salient, indicating a significant difference both in the forces put into the device and in 
the action patterns of the gestures made across the screen. The latter consisted of kinematic features and measures 
of the final form of a gesture. Thus, both the forces put into the screen and the movement across the screen were 
important contributors to the autism-specific motor signature in gameplay.

Altogether, these data demonstrate the following characteristics of the autism motor signature produced in 
gameplay:

Algorithm Sharing Food Creativity Average

ET (5000 trees) 0.785 (σ  =  0.016) 0.893 (σ  =  0.01) 0.881 (σ  =  0.01)

RF (5000 trees) 0.802 (σ  =  0.017) 0.892 (σ  =  0.006) 0.885 (σ  =  0.006)

RGF (500 trees, L2 =  sL2 =  1.0, 
square loss) 0.835 (σ  =  0.017) 0.921 (σ  =  0.012) 0.927 (σ  =  0.011)

RGF2 0.848 (σ  =  0.025) 0.926 (σ  =  0.013) 0.932 (σ  =  0.016)

Table 1.  AUC mean (and standard deviation) determined by 10 repetitions of 10-fold cross-validation. The 
last column (Average) denotes AUC obtained by taking a mean of predictions of both games for each child.

Figure 3. Receiver operating characteristic curves (ROC) of the RGF2 models. For higher classification 
thresholds (moving to the left on the plot; higher specificity, lower sensitivity) Creativity is the best performer. 
The plot was obtained by aggregating all predictions from 10 repetitions of 10-fold cross-validation (740 
observations).
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Greater Impact Force and Gesture Pressure in Autism. The inertial data indicate children with autism 
engaged in gameplay with greater force of impact than those developing typically. Accelerometer read-
ings that measured impact force were higher for the autism group than controls (AccelerationRMS_y and 
AccelerationMagnitudeMax; Table 3; Fig. 4). Further, while the latter is a measure of absolute impact force irre-
spective of the vector direction, the former feature indicates greater forces along the y-axis derived from forces of 
the finger moving laterally.

Patterns of Impact Force and Gesture Pressure Differ Between Groups. Further elucidation of the impact force 
and gesture pressure differences were obtained from the gyroscope data. Nine of the most salient features from 
the Sharing game and one from the Creativity game were produced by the gyroscope (RotationCorrelation_1_2, 
AttitudeStdDev_y, AttitudeMean_y, RotationCorrelation_0_1, AttitudeRMS_x, AttitudeZeroCrossRate_x, 
RotationMean_z, RotationMeanMagnitude, RotationMin_z; Table 3; Fig. 4). Gyroscope data result from angular 
force vectors put into the device at the point of contact or during the gesture. Altogether, these data demonstrate 
children with autism applied a significantly different distribution of forces into the device during gameplay than 
the typically developing children did.

Faster Gestures in Autism. Mean gesture velocity during Creativity gameplay was greater in the autism group 
than in controls (Velocity; Table 3; Fig. 4).

Sensitivity [%] Specificity [%]

Sharing Food (0.50) 0.81 0.67

Sharing Food (0.55) 0.76 0.73

Creativity (0.50) 0.83 0.85

Creativity (0.55) 0.80 0.88

Table 2.  Sensitivity and specificity of RGF2 for the Sharing Food and Creativity games with thresholds 
selected at 0.50 and 0.55 to show the performance of models more intuitively. Selecting a lower threshold 
(here 0.5) corresponds to moving to the right on the ROC curve, thus raising sensitivity, while decreasing 
specificity.

KS distance 
ranking

Inertial (I) or 
Touch (T) Feature name Description

Creativity

1 I AccelZeroCrossing_x Accelerometer x-axis (longitudinal) value sign (+ /− ) change count.

2 T Velocity Mean gesture velocity.

3 I Accel RMS_y Root mean square of accelerometer y-axis (lateral) values.

4 T AvgGestArea Mean area occupied by a gesture, computed as the area occupied by 
a minimal adaptive polygon fitted to the gesture.

5 I RotationZeroCrossing_z Gyroscope z-axis (vertical) value sign (+ /− ) change count.

6 T GesturesHeightStdDev Standard deviation of height (x-axis in landscape) values.

7 T GesturesHeightMax Maximum value of height (x-axis in landscape).

8 I AccelerationMagnitudeMax Maximum accelerometer value irrespective of axis.

9 I AvgGesturesHeight Mean height (x-axis in landscape) value.

10 T GestureDurationMin Minimum duration of a touch gesture.

Sharing

1 I AccelZeroCrossing_x Accelerometer x-axis (longitudinal) value sign (+ /− ) change count.

2 I RotationCorrelation_1_2 Pearson product-moment correlation coefficient between gyroscope 
y- and z-axis rotation values.

3 I AttitudeStdDev_y Standard deviation of the gyroscope static y-axis values.

4 I AttitudeMean_y Mean of the gyroscope static y-axis values.

5 I RotationCorrelation_0_1 Pearson product-moment correlation coefficient between gyroscope 
x- and y-axis rotation values.

6 I AttitudeRMS_x Room mean square of the gyroscope static x-axis values.

7 I AttitudeZeroCrossRate_x Frequency of the sign (+ /− ) change of gyroscope x-axis.

8 I RotationMean_z Mean value of the gyroscope z-axis rotation.

9 I RotationMeanMagnitude Mean value of the norm of the gyroscope rotation.

10 I RotationMin_z Minimum value of the gyroscope z-axis rotation.

Table 3.  Features with the greatest Kolmogorov-Smirnov distance between Autism and Control groups for 
the Creativity and Sharing games. Boxplots of data from these features are presented in Fig. 5.
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Larger, More Distal Gestures in Autism. The mean area occupied by a gesture was greater in the autism 
group than in controls (AvgGestArea; Table 3; Fig. 4). Unexpectedly, the gestures were also located more dis-
tally in the autism group than in controls, with greater variation (GesturesHeightMax, AvgGesturesHeight, 
GesturesHeightStdDev; Table 3; Fig. 4).

Faster Screen Taps in Autism. The minimum duration of a screen tap was shorter in the autism group than in the 
control group (GestureDurationMin; Table 3; Fig. 4), indicating faster, rapid taps.

Discussion
Motor patterns related to autism can be identified by machine learning from iPad gameplay in children between 
three and six years old. This motor signature appears to be predominantly derived from differences in pressure 
going into the device as well as differences in gesture kinematics and form. Importantly, of the two games, the 
more effective one involved only free-style colouring with no specific gameplay pattern. This confirms motor 
pattern, and not differences in attention to particular elements of gameplay, is a significant differentiating factor.

Nevertheless, while motor patterns appear the significant factor, other elements such as restricted attention 
to particular game elements may play a role in the motor patterns performed. For example, selecting and moving 
to different game elements may lead to different movement kinematics. This would particularly affect data that 
involves spatial and temporal gestural aspects, i.e. touch screen features. However, such behavioural differences 
are unlikely to affect the force related parameters that result from regulation of gesture contact, i.e inertial sensor 
features. Importantly, it is these latter features that provided the majority of the most salient features for differen-
tiation between groups, supporting the notion fundamental disruption to motor pattern is the more important 
differentiator.

Further, these data reveal new insight into the nature of the motor disturbance. Forces put into the device 
on contact differentiated between children with ASD and typically developing ones. The children with autism 
displayed greater force at impact and a different pattern of force put into the device during gestures than their typ-
ically developing peers. This is likely caused by maintaining greater velocity at contact with consequent increased 
impact force, supporting the notion that prospective guidance of goal-directed movement is disrupted in ASD11, 
causing over- and under-compensations over the course of a movement, for e.g. reaching to touch the screen or 
moving the finger across the screen.

This finding is in line with results from optical motion tracking experiments of goal-directed tasks, which 
demonstrate individuals with autism make greater subsecond moment-by-moment adjustments to the progres-
sion of a movement toward its goal than neurotypical individuals do19,24,56. For example, in a simple arm swing 
task, the amplitude of the jerk (rate of change of acceleration) was significantly greater in autism, as was the swing 
peak velocity19. Similarly, in a grasp-and-place task, children with ASD made multiple corrective movements 
over its course and had higher velocities at the movement terminus57. The grasp itself requires precise main-
tenance of force into the object, with enough force to maintain the grasp and without under- or over-exertion. 
Reach-to-grasp kinematics and grasp force patterns are significantly different in autism45, with greater grasp force 
and more variable performance58. Continuous and regular under- and over-exertion of movement in autism is 
evident. In our paradigm, these create differences in the magnitude and variance of force put into the device, 
which are recorded as acceleration and rotation signals. We provide a novel means and identify for the first time 
the significance of contact force as an important feature of the autism motor signature.

Figure 4. Boxplots of the ten features with the greatest Kolmogorov-Smirnov distance between Autism 
and Control groups for the Creativity and Sharing games. Descriptions of these features are given in Table 3. 
Boxplots show median values (horizontal line), interquartile range (box outline), minimum and maximum 
values of the upper and lower quartiles (whiskers) and outliers (circles).



www.nature.com/scientificreports/

7Scientific RepoRts | 6:31107 | DOI: 10.1038/srep31107

These findings support the notion of a core deficit in autism of the prospective control of movement11, or 
motor agency14, evident in a growing body of data on disruption to anticipatory, or feed-forward mechanism of 
goal-directed action in autism44,45,59. Further, disruption to perception of others’ motor goals and their affective 
salience (vitality form) is also disrupted in autism47,48,60, suggesting a core deficit in autism in sensorimotor timing 
and integration. Visuomotor resonance that affords perception-action coupling, as well as social understanding of 
the motor intentions of others may be disturbed61.

Such disruptions may have an aetiological root in basic brainstem sensorimotor information process-
ing11 affecting the consequent dynamic of social engagement from birth11,50,62. Brainstem growth is affected in 
autism63–65, and these disruptions likely give rise to structural and functional errors, especially of the inferior olive 
responsible for the fast, subsecond control of skilled movement66. Evidence indicates brainstem white matter tract 
connectivity associates with autism severity and motor control efficiency67. Downstream developmental conse-
quences of an early brainstem disruption may lead to autistic socio-emotional and cognitive compensations11,68. 
Alternatively, proprioceptive feedback that allows online guidance of movement may be disrupted, creating reso-
nance and control errors24. While the neurobiological source of the disruption requires more work to resolve, the 
particular autism motor signature appears in our data here to be a sensitive marker for children with the disorder.

The motor disturbance is first evident at birth by retrospective video analysis18, but its prognostic, or diag-
nostic value has not yet been realised. Atypical object exploration by young infants who are at-risk of ASD or 
later diagnosed with ASD appears to support a motor deficit model69,70. And retrospective parent reports on 
oral-motor behaviour do predict autism71, but measures of motor performance in infancy for prospective predic-
tion of autism have not been forthcoming. Similarly, the pattern of social eye gaze in early infancy can be signif-
icantly different for those who develop autism72, but measurement of these differences is not sufficient to predict 
autism and early behavioural markers remain elusive.

Thus, although some considerable effort has been made toward discovery of biomarkers, these have not been 
forthcoming. The heterogeneity of the disorder and its complex aetiology have meant standard biological indica-
tors have proved elusive5,6,73. Given its complex aetiological picture, we propose the search for markers as purely 
biological entities (genes, molecules, metabolites, neuroanatomy) may be misplaced and that, instead, computa-
tional bio-behavioural markers, such as those we have identified here, may prove more effective in robust, early 
identification of autism than traditional methods.

To this end, this study presents new methodology for the computational identification of autism. But in order 
to realise the goal of a computational bio-behavioural marker for autism, the specificity of this motor signature 
requires further testing to eliminate potential confounders. The motor signature we identify here may overlap 
with other developmental disorders, such as developmental coordination disorder or attention deficit hyperac-
tivity disorder. These disorders have some common motor features with autism31,74,75, although they also exhibit 
distinct differences76. Further study is needed to resolve the detail of these patterns.

An ambition of this work is to develop an accessible, attractive serious gameplay paradigm that can be com-
mercialised as an economic, labour-free addition to the current diagnostic toolbox, or as a screening device 
for health and educational services, or concerned parents. The present study is a first proof-of-concept in this 
development. The paradigm employed here tests children already diagnosed with ASD against children with no 
concern for ASD. Although this is not the ultimate clinical question, because children with typical development 
are rarely a cause for concern and are therefore rarely referred to clinics for evaluation, it provides an essential first 
step in this direction. The ultimate clinical question is whether or not motor patterns can differentiate ASD from 
other disorders that are not ASD, i.e. between two children both exhibiting symptoms that could be perceived 
as ASD-like. This question – sensitive differentiation between ASD and ASD-like clinical presentation – will the 
subject of future study.

In terms of limitations of the present study, we were unable to exclude intelligence as a potential confounder, 
since our groups were not controlled by intelligence quotient. However, most of the children who participated in 
the study were classified by their clinicians as average (N =  29) and high functioning (N =  4). Only four children 
were classified as low functioning, of which only two finished the study and contributed to the final data. For this 
reason, the potential for a confounding effect by differences in intelligence between groups is diminished.

Further, our study design employed subject recruitment from particular institution, giving this study a picture 
of the performance profile of a subgroup of children on the autism spectrum. Thus, this proof-of-concept study 
does not necessarily reflect the full population-wide variance in autism spectrum disorder gameplay patterns, but 
may be specific to those kinds of children recruited into those clinics. This inherent selection bias in our autism 
group may have facilitated machine learning differential power. Future work is required to test whether these 
algorithms remain predictive for the general population, or if they require re-training. Finally, machine learning 
algorithms are sensitive to the sample size. Thus, future studies to establish a generalized serious game assessment 
of autism need to include wider recruitment parameters and larger numbers.

Only one other study has successfully employed machine learning for identification of autism-specific motor 
patterns, by analysis of optical motion capture data of children in a reach-grasp-place paradigm42. This study 
achieved an accuracy of 96%, but employed a lower sample size (N =  30), Support Vector Machine approach, 
and a leave-one-out cross-validation that altogether render this methodology prone to over-fitting. In our study, 
we worked to reduce over-fitting with larger subject numbers (N =  82), a Regularized Greedy Forest approach, 
and 10 repetitions of a 10-fold cross-validation procedure. Nevertheless, the fact that two different paradigms 
(experimental and serious game) employing two different data capture methodologies (optical and smart device) 
achieved similar result through machine learning demonstrates the significance of motor measures as a likely best 
possible target for an early bio-behavioural marker of autism.

In conclusion, we have shown here that smart tablet technology offers an attractive, new paradigm for clinical 
autism assessment and bio-behavioural research of pre-school children, enabling engaging, ecological testing of 
children’s motor behaviour in a fun, accessible format fit for precise computational analysis of neuropsychological 
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function. Further development of this smart gaming paradigm can ultimately lead to improved functional assess-
ment of a child’s particular individual characteristics, rather than categorisation by neuropsychiatric systems of 
diagnosis that may be too broad for clinical or therapeutic utility77. The technology has the potential to be coupled 
to other psychometric tests adapted into bespoke gameplay, and may employ the sensors in novel ways, such as 
tests of social intelligence or emotional reaction detected by the face-forward camera, or by coupling in gameplay 
with sensorised toys78,79.

In sum, we show that children with autism can be identified with up to 93% accuracy by computational analy-
sis of their motor pattern in iPad gameplay. This differential power is based on simple computations of the device’s 
sensor data (inertial sensors and touch screen) that altogether describe an individual’s motor signature as they 
touch, tap, swipe, or move the finger across the device. Disturbance of gesture force patterns appear significant 
contributors to the autism motor signature and provide new insight into the nature of the motor deficit as a 
disorder of prospective, anticipatory motor guidance. These data support the notion that motor differences are 
a significant, possibly a core component of autism spectrum disorder expression. Future work is now required 
to substantiate this first study with a larger, more generalised population and to test the algorithms for strength 
of differentiation between ASD and other development psychopathologies. Improved knowledge of the autism 
motor signature can then be applied to younger children, and those children who do not yet have a diagnosis of 
autism. In sum, machine learning identification of autism spectrum disorder by motor analysis of serious tablet 
gameplay appears a promising new methodology for early detection of autism, enabling computational assess-
ment of a putative bio-behavioural marker in an enjoyable, ecological, accessible serious game paradigm.

Method
Participants. 37 children aged 3 to 6 years old (mean 4 years 5 months, standard deviation 11 months) clini-
cally diagnosed with Childhood Autism (ICD-10 2010 Edition; World Health Organisation, 2011) were included 
in the ‘Autism’ group of the study. Of these, 12 were female. 45 children age-matched (mean 4 years 7 months, 
standard deviation 11 months) and gender matched (13 female) typically developing children were included in 
the ‘Control’ group of the study. All participants had normal or corrected-to-normal vision and no other sensory 
or motor deficits. Those children who could not follow simple instruction were excluded.

Children in the ‘Autism’ group were recruited at specialist therapeutic centres and selected by clinicians. 
Diagnosis was obtained by medical practitioners working within the specialist clinics. Of the 37 children diag-
nosed with Childhood Autism, 30 were uncomplicated, one was considered ‘high functioning’, two were diag-
nosed with Asperger’s Syndrome, and four were considered co-morbid with ‘intellectual impairment’, of which 
two completed the study and contributed to the final data. Children in the ‘Control’ group were recruited at 
standard kindergartens.

A questionnaire regarding severity of autistic symptoms, level of intellectual and social functioning, and expe-
rience using mobile devices was carried out with the clinicians in the case of the ‘Autism’ group, and with teachers 
in the case of the ‘Control’ group. Any child whose clinician or teacher was uncertain about the child’s diagnosis 
or health was excluded.

Prior to the study, children’s parents gave written informed consent for their children’s participation. The 
experimental protocols employed were carried in out in accordance with the Declaration of Helsinki and 
approved by the University of Strathclyde Ethics Committee.

Materials. The study was performed on iPad mini tablet computers (Apple Inc.) running standard iOS ver-
sion 7.0. Two educational games designed by Duckie Deck Game Studio (www.duckiedeck.com) for children 
aged 2–5 years and commercially available were employed. These games were presented to the children within 
a bespoke app that organised the display of the games sequentially and with fixed time periods for each game. 
The app also locked the device into the game for the duration of the experiment, disabling the ‘home’ button. It 
included code for collecting the sensor and touch screen data (described below).

The two games were attractive and fun for children and engaged their gameplay without verbal instruction 
(Fig. 1). Animated cartoon characters responded to the child’s interactive gestures with simple changes of facial, 
gestural, and non-verbal vocal expression. Toys and objects within the gameplay environment were responsive to 
touch gestures and were either included in the main gameplay with responses from the principle characters, or 
were considered ‘distractors’ with only a localised response that did not affect the other gameplay elements, for 
e.g. birds, window shades, and light bulbs that responded to touch with a song, change of scene, or illumination, 
together with appropriate and playful sounds. The two games were as follows:

Sharing. The main gameplay consisted of dividing a piece of food, for e.g. an apple, and distributing it evenly 
among four children present on the screen. The game consisted of a series of these trials. The child’s task was 
identical in each trial, however the food object, which the child divided and shared, differed from trial to trial. 
Gameplay was simple and suitable for children 3–6 years old. The food was divided into four even portions 
with a simple touch, each piece could then be dragged and dropped onto the plate in front of each cartoon 
child, who gave a positive facial expression when the user did so. When the food was distributed evenly, all chil-
dren exclaimed, “Yipee!” and proceeded to munch the food in a delightful manner for 3 seconds. Then the trial 
repeated. If food was distributed unevenly, the children with a piece of food or a pile of pieces of food remained 
with a positive expression, but the children with empty plates frowned with a negative vocalisation, “Auh.” In 
this way children could play with dividing and sharing the food, to the delight or frustration of the characters. In 
addition, the game included a number of ‘distractor’ objects whose role was not involved in the main gameplay, 
but nevertheless presented enjoyable visual and acoustic responses.

http://www.duckiedeck.com
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Creativity. This game was open with minimal structure. It did not involve any specific ‘rules’ of engagement with 
objects and characters. Instead, the game involved a single round of outlining, then colouring a picture of a toy or 
animal. First, the child was asked to choose a shape from a set of objects on a scrolling slider, for e.g. a squirrel, a 
robot, a flower. A dotted outline of each element of the drawing then appeared, and a simple swipe near the out-
line filled in the line fully. This interactive pattern was repeated through each outline element until the drawing 
was complete. A colouring wheel then appeared and spun in the bottom right-hand corner of the screen, indicat-
ing a choice for selection. The child could then select a colour and any subsequent screen touch would paint that 
colour onto the picture. The toy or animal outline always remained unobstructed, but the child could paint and 
colour anywhere freely. A small button on the top right-hand side allowed the child to refresh the colouring page 
by selecting a new toy or animal. Thus, the user was enabled to engage in creative drawing and colouring at liberty 
until the game time was up.

Experimental Gameplay Protocol. Each participant was seated at a children’s table ca. 65 cm high and 
asked to play the games on an iPad mini placed on the table directly in front of him or her within 10 cm from the 
table’s edge (Fig. 2A). Each game consisted of a 2 minute training phase followed immediately by a single 5 minute 
test phase. The training phase included a series of guides that encouraged attention to the main gameplay using 
arrows and animation to demonstrate the gameplay patterns, for e.g. in Sharing the food would jump up and 
down until the child touched it, then arrows would indicate sliding the pieces to each child. In this way, the child 
engaged playfully to learn the principal game patterns and responses. Each training phase and test phase ended 
automatically after the time elapsed.

At the beginning of the training, an experimenter explained the aim of the game to a child verbally and using 
gestures on the game. The child was supported during this phase. In the test phase, the experimenter no longer 
interfered with the child’s gameplay. The child’s clinician or teacher was present during the experimental game-
play, and intervened only when challenging behaviours occurred. In these cases the data were omitted from the 
study.

All typically developing children and 35 of 37 of children with autism engaged in gameplay. 2 participants 
from in the Autism group did not focus on the application or resigned from gameplay during the experiment and 
their data were discarded.

Data acquisition and pre-processing. Tablet gameplay enabled four different kinds of interaction: a ‘tap’ 
with a single digit, a simultaneous ‘multi-touch’ with two or more digits, a ‘touch movement’ across the screen 
once one or more finger were touching the screen, and finally the release of the digit or digits from the screen. For 
the sake of clarity, we name all classes of interaction, ‘gestures’. Touch data from gestures across the screen (Screen) 
and touch data from tablet’s inertial movement sensors (Inertial) (tri-axial gyroscope and tri-axial accelerometer) 
were collected (Fig. 2B,C). For acquisition of touch data, which included information about single-and-multi 
touch events, standard acquisition methods embedded in the iOS system were used. Data from sensors were 
acquired using iOS Core Motion framework at a rate of 10 Hz. Subsequently, data were transferred to cloud ser-
vices via web, using small compressed (gzip) packages with JavaScript Object Notation (JSON) data. In the cloud 
data were divided into types: Touch Data pertaining to the way in which a child made the gestures on the screen 
and Sensor Data obtained from the accelerometer and gyroscope. These data were stored in tables using NoSQL 
Microsoft Azure Table Storage technology. The iPad tablets were used only for data acquisition and temporary 
storage, with all subsequent data handling and computation performed within cloud services.

Feature extraction and selection. Two hundred sixty-two features were extracted from these data to give 
a comprehensive computational description of the child’s movements sensed by the device, and made in inter-
action with it (Supplemental Table 1). These features were obtained from the Screen (108 features) and Inertial 
(164 features) data. Of these features, 26 were highly correlated (r >  0.9), considered redundant, and reduced to a 
single feature. 247 features from device sensors and touch, together with information about child’s age and gender, 
were included in the final analysis.

Features were computed from consecutive sets of raw data using a dedicated, bespoke engine. Touch and iner-
tial sensor features were calculated for each gaming session. Touch data for each gaming session were aggregated 
and split into atomic gestures based on the start and end of any particular gestures. For every gesture, sets of vari-
ables were calculated. These features can be split into two major groups: (i) features of movements’ kinematics, for 
e.g. velocity and acceleration, and tap-based features, for e.g. the number of taps in a game. Inertial sensor values 
were computed across the game session irrespective of the touch data. The values for each feature for each game 
were then reduced to its mean and used as input for machine learning.

Machine Learning Data Analysis. The machine learning approach is shown diagrammatically in Fig. 5. 
Data were labelled accordingly to the child’s diagnostic group (Autism or Control) and age. Touch and inertial 
sensor features as well as labels were fed into machine learning algorithms. The models (described below) esti-
mated the probability that a particular child’s data belonged to one group or the other.

To build models able to predict group classification (ASD or Control), and to ensure reliable classification, a 
k-fold cross validation procedure was employed. This method was used to establish the predictive power of the 
model, i.e. how the result ought to generalise to an independent dataset. To increase the stability of the result, 
additional k repetitions of the process were performed. The full dataset of calculated features was split into k equal 
sized samples. From k subsamples one was chosen for the validation (test), and the rest (k −1) were used as the 
training dataset. Every sample was used exactly once as a validation (test) dataset. This process was performed k 
times (folds). During every iteration model was trained on the k-1 sample and then tested on the one sample left 
for the prediction. Results of the prediction were stored, to later establish the end-point model, which combines 
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the results from each fold. This process was repeated k times. In the end k × k samples were created and tested. 
Based on the prediction data gathered during both iterations (repetitions and folds), the Receiver Operating 
Characteristics (ROC) curve (Fig. 3) was generated, and the sensitivity (true positive rate) and specificity (true 
negative rate) (Table 2) were calculated.

Figure 5. The machine learning approach. 
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In this study, a 10-fold cross-validation procedure was performed on the data from each game. Furthermore, 
10 repetitions of the procedure were made to ensure stability of result. Area under the receiver operating charac-
teristic curve (AUC) was calculated. This measure does not require selection of a fixed classification threshold, 
i.e., it is able to simultaneously investigate performance over a range of thresholds [0, 1]. An AUC of 0.5 means a 
random classification and 1 indicates perfectly separated classes.

Algorithms that could be prone to overfitting on such a small dataset, like Gradient Boosting Machines or 
Support Vector Machines, were not used in the analysis. Taking into account that there were significantly more 
features than observations, and that many high (r >  0.9) linear correlations between features were found the main 
focus was put on decision-tree-based ensembles. Several algorithms were evaluated after appropriate parameter 
searches, namely ExtraTrees (ET)80, Random Forest (RF)81, and Regularized Greedy Forest (RGF)55. Additionally, 
a second run of the RGF was employed with information about child’s age and gender excluded from the analysis, 
RGF2. In all other cases, information about child’s age and gender were included as features in the analysis.

Finally, an approximation of the features that were most effective in differentiating ASD patterns from TD 
ones was performed using the Kolmogorov-Smirnov (KS) test. Those with the greatest KS distance between 
groups were examined.
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