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Abstract

Naturalistic stimuli offer promising avenues for investigating brain function across the rich, 

realistic spectrum of human experiences. Functional magnetic resonance imaging (fMRI) studies 

of brain activity during naturalistic paradigms have provided new information about dynamic 

neural processing in ecologically valid contexts. Yet, the complex, uncontrolled nature of such 

stimuli – and the resulting mixture of neuronal and physiological responses embedded within the 

fMRI signals – present challenges with respect to data analysis and interpretation. In this brief 

commentary, we discuss methods and open challenges in naturalistic fMRI investigations, with a 

focus on extracting and interpreting stimulus-induced fMRI signals.

1. Introduction

An important challenge in neuroscience is to understand how the brain processes 

information in dynamic, naturalistic settings. Most current knowledge about brain function 

comes from the use of classical task paradigms (Kanwisher et al., 1997; Raichle et al., 

2001), and although these methods have provided tremendous insight, they are artificial by 

nature. In contrast, naturalistic stimuli – though highly complex and less well controlled – 

may be better suited to probe the inherent richness of human experiences. Indeed, one 

exciting advantage of naturalistic stimuli over classical paradigms is the ability to explore 

context-dependent neural processes across different timescales.

However, a key question is: how can we best map between these measured fMRI signals and 

the multiple cognitive and affective processes that emerge in response to these complex, 

naturalistic stimuli? Below, we discuss two main challenges in this end eavor: first, how can 
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we best extract stimulus-related neural dynamics from other intrinsic and noise contributions 

to fMRI signals? And second, assuming one can successfully extract fMRI signals that are 

driven by naturalistic stimuli, how can we go about resolving the multiple ongoing neural 

(and non-neural) processes embedded in these fluctuations? We focus on the use of dynamic 

naturalistic stimuli – such as listening to a story or watching a movie – during fMRI.

2. Extracting stimulus-driven fMRI signals

As a narrative or movie unfolds, it engages the brain in a neural dynamic trajectory shaped 

by both low-level and higher-order features of the naturalistic stimulus. In addition to 

quantifying fMRI signal levels that correspond to certain derived stimulus features (Bartels 

and Zeki, 2004; Russ and Leopold, 2015), there is a wealth of dynamic analysis techniques 

that may be fruitfully applied to naturalistic paradigms. For example, time-varying 

correlations (Lindquist et al., 2014; Sakoglu et al., 2010; Allen et al., 2014), time-frequency 

analysis (Chang and Glover, 2010), autoregressive models (Liegeois et al., 2019), 

multivariate patterns (Chang et al., 2019), low-dimensional trajectories (Venkatesh et al., 

2019), and co-activation patterns (Liu and Duyn, 2013) may be applied to examine the 

temporal evolution of regional or network properties. However, when applied to individual 

fMRI scans (as with resting-state data), the resulting ‘dynamics’ not only reflect stimulus-

induced neural processes, but also intrinsic activity and any non-neural fluctuations that 

were not suppressed during pre-processing.

Analyses based on inter-subject or inter-scan paradigms (Glerean et al., 2012; Hasson et al., 

2004; Haxby et al., 2011; Hejnar et al., 2007; Simony et al., 2016) may be well suited for 

addressing this issue. In contrast with the stimulus-free resting state, naturalistic stimuli can 

drive reliable neural responses across different subjects. Early fMRI studies of naturalistic 

stimuli introduced inter-subject correlation (ISC), which quantifies the across-subject 

reliability of stimulus-driven responses within regions of interest (Hasson et al., 2004). 

Building upon ISC, the idea of inter-subject functional correlation (ISFC) was recently 

introduced (Simony et al., 2016), where inter-regional correlations are calculated between 

fMRI signals of different subjects experiencing the same continuous naturalistic stimulus 

(Fig. 1A and B). Here, ISFC dramatically increased the specificity to stimulus-induced inter-

regional correlation (Simony et al., 2016), revealing reproducible dynamics of the default-

mode network during a continuous auditory narrative (Fig. 1C). As with ISC, the 

improvement arises from suppressing intrinsic, task-unrelated neural dynamics (e.g., 

attentional variations) as well as artifacts (e.g., respiratory rate; head movement (Van Dijk et 

al., 2012; Power et al., 2012)) that can influence network correlation patterns within a brain 

(Fig. 2A and B) but are less likely to be correlated across subjects (but see Fig. 2C–E). On 

the other hand, IS(F)C does not detect potentially interesting individual differences in neural 

activity.

3. Interpreting stimulus-driven fMRI signals

Once stimulus-driven fMRI signals are extracted, how can we then uncover the functional 

role(s) of localized activity or network patterns along different time scales? Furthermore, as 

certain naturalistic stimuli can powerfully elicit autonomic responses, how can such 
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dynamics be disentangled from those relating to cognition? We discuss these questions and 

potential avenues below.

3.1. Linking neural and cognitive dynamics

Fig. 1D demonstrates that measuring behavior can be crucial for uncovering the functional 

role of fMRI dynamics in naturalistic conditions, such as memory encoding (Simony et al., 

2016). For example, our more recent work (Brandman et al., 2019) measures multiple facets 

of cognitive function (such as episodic memory, emotional intensity, valence and surprise), 

which are modelled as the movie unfolds. This allowed us to track complex cognitive states 

across time, which was then correlated with ISFC fluctuations to elucidate the functional 

role of the DMN in each of these naturally induced cognitive states.

In addition, using different types of naturalistic stimuli, and comparing multiple approaches 

for measuring cognitive dynamics (including off-line questionnaires, on-line ratings 

(Brandman et al., 2019; Furman et al., 2007; Chen et al., 2016; Nummenmaa et al., 2012; 

Chen et al., 2017)) may help to uncover commonalities in neural mechanisms underlying 

cognitive functions that would be hard to discover using reductionist paradigms. An 

interesting question here is to what extent cognitive dynamics can be explained by localized 

fMRI activity, or from network co-activation dynamics.

Further, modeling naturalistic stimulus features (e.g., faces, language) may allow for 

disentangling their respective fMRI responses. While stimulus modeling presents 

challenges, several groups have successfully addressed this topic and uncovered new insights 

into neural representations (Bartels and Zeki, 2004; Russ and Leopold, 2015; Bartels et al., 

2008; Huth et al., 2016; Nishimoto et al., 2011). Finally, an emerging line of work involves 

selecting/designing naturalistic stimuli that may enhance detection of cognitive traits (e.g., 

paranoia (Finn et al., 2018)), link neural and social distance (Parkinson et al., 2018), and 

enhance compliance in pediatric studies (Vanderwal et al., 2015).

3.2. Temporal and spatial representation of naturalistic stimuli

Since natural stimuli are inherently embedded in time, the fMRI signal at any given moment 

may be shaped by varying amounts of past history and context. Timescales of meaningful 

neural dynamics can be probed by manipulating the temporal structure of naturalistic 

stimuli, and studies adopting such an approach have demonstrated that “temporal receptive 

windows” differ across the processing hierarchy (Hasson et al., 2008; Lerner et al., 2011; 

Honey et al., 2012; Murray et al., 2014), with sensory areas reflecting low-level stimulus 

features and high-order cognitive/perceptual areas having longer integration times. Such 

findings highlight one key advantage of naturalistic stimuli over resting-state fMRI – as the 

latter contains no reference to guide the selection of potentially relevant time scales – and 

also motivates the further development of data analysis methods that capture dynamic neural 

processing on multiple temporal scales.

Another exciting line of work, enabled by the growing availability of large datasets, is the 

use of deep neural networks (DNN) for modeling how naturalistic stimuli are translated into 

fMRI signals (encoding models), and for decoding cognitive states from fMRI signals. The 

layers of a trained DNN, for example, may capture a spectrum of lower-level to more 
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abstract spatial stimulus representations (e.g., from low-level visual features to categories), 

which may be interrogated in terms of their relation to neuroimaging data and hence 

contribute toward our understanding of neural representations of natural stimuli (Wen et al., 

2017; Grossman et al., 2018; Khaligh-Razavi et al., 2016). In that sense, DNN may be 

regarded as complementary to ISFC, with the latter perhaps more suitable for examining 

correlations between brain-activity patterns and stimulus features.

Currently, while DNN may succeed on specific tasks (e.g. face recognition) they are still far 

from exhibiting artificial general intelligence (AGI) (Ullman, 2019). A critical issue is that 

current DNN models do not incorporate known brain circuitry (e.g., lateral connections 

within a neural-network layer, large-scale connectivity across layers (Ullman, 2019)), and do 

not model the interplay between spontaneous and task-induced activity. We hope that future 

advances in DNN models of neural activity during naturalistic stimulation can benefit both 

AGI and neuroscience.

3.3. Disentangling cognitive processing, autonomic responses, and physiological 
“noise”

While inter-subject analyses can help to isolate stimulus-related fMRI dynamics, a further 

challenge arises in interpreting stimulus-related signals, since naturalistic stimuli can drive 

not only multiple forms of cognition but also synchronized autonomic responses. Emotional 

scenes, for example, can elicit local neural responses from regions involved in autonomic 

nervous system (ANS) regulation (Golland et al., 2014; Napadow et al., 2008) as well as 

hemodynamic fluctuations relating to changes in systemic physiology (Wise et al., 2004; 

Murphy et al., 2013; Ozbay et al., 2018).

Therefore, stimulus-induced fMRI signals during naturalistic stimuli may contain several 

components: (a) cognitive neural activity (e.g. memory traces),(b) autonomic neural activity 

(e.g. in insula and hypothalamus, which integrate emotional or cognitive information into the 

coordination of ANS responses), and (c) systemic modulation of brain hemodynamics (e.g. 

from changes in arterial CO2 arising from changes in respiration depth/rate (Wise et al., 

2004). While the best ways of isolating these signal sources remain open questions, one 

avenue is based on continuously recording psychophysical or physiological markers 

throughout the scan, complementary to ratings of cognition. These measures may allow for 

tracking ongoing drifts in arousal (e.g., with pupil diameter) and systemic physiology (e.g. 

(Golland et al., 2014; Yellin et al., 2015; Chang et al., 2016; Falahpour et al., 2018), and Fig. 

2A,E).

One valuable use of such measures is to quantify the degree to which time courses of such 

effects differentiate from those of other cognitive/behavioral features – indicating whether 

effects (a-c) may be separated for analysis. In addition, we found that when physiological 

responses are not synchronized across subjects, explicitly filtering such effects can improve 

the signal-to-noise ratio of ISFC (Fig. 2B-D (Simony et al., 2016)).

Indeed, a second potential use of peripheral signals is for removing non-neural effects from 

fMRI data (Murphy et al., 2013). Here, we note that (b) and (c) may differ somewhat in their 

spatial and temporal dynamics. Considering respiration, the primary impact of a deep breath 

Simony and Chang Page 4

Neuroimage. Author manuscript; available in PMC 2021 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



on the BOLD signal appears to occur at least 10s after the breath itself (Birn et al., 2008; 

Chang et al., 2009), whereas neural activity causing the deep breath would elicit a BOLD 

response closer in time to the breath itself. Spatially, neural activity in (b) may localize to 

regions comprising a central autonomic network (Beissner et al., 2013), while the passive 

effects of heart rate and respiration fluctuations are more spatially widespread (Birn et al., 

2006; Shmueli et al., 2007).

Finally, physiological metrics also provide a powerful means for investigating brain-body 

interactions; recently, for example, synchronized cardiac responses during emotionally 

salient films were harnessed to inform mechanisms by which the insula may integrate 

internal and exterior percepts (Nguyen et al., 2016).

4. Conclusions

Naturalistic stimuli with fMRI present rich opportunities for understanding brain function in 

real-world contexts, and carries a number of interesting future directions for signal analysis 

and interpretation. We believe that progress in this field will be expanded by further 

development of analytic tools for mapping between fMRI signals and cognitive dynamics, 

and by recording behavioral probes of cognitive state and peripheral physiological measures 

to strengthen investigation into neural processes, such as memory and emotion, from fMRI 

signal dynamics.
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Fig. 1. Inter-subject functional correlation (ISFC) method to study brain dynamics during 
Naturalistic stimulation.
(A) During task processing, the measured BOLD signal can be decomposed into stimulus-

induced signal (blue); intrinsic neural signals (spontaneous fluctuations), and non-neuronal 

signals (red). As some non-neuronal signals are stimulus-induced, ‘N’ here refers to those 

which occur independently of the stimulus. (B) Seed-based ISFC is the Pearson correlation 

between a time course extracted from one region in subject X and all other regions in subject 

Y. (C) Reliable dynamics of the mean ISFC within the DMN network across two 

independent groups of 18 subjects. ISFC is computed using a sliding window of 45 s (30 

TRs), in steps of 1 TR. (D) Mean ISFC dynamics corresponded to behavioral/cognitive 

dynamics. Here, the mean ISFC in the DMN for each segment of the story was correlated 

with recall of that segment of the narrative (r = 0.6, q < 0.02). Panels adapted from Simony 

et al., 2016).

Simony and Chang Page 9

Neuroimage. Author manuscript; available in PMC 2021 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. Physiological measures collected during naturalistic stimulation.
(A) Cross-correlation (r~ = 0.5) between the RV and BOLD signal in the precuneus for one 

individual subject during rest. The precuneus is a major hub of the default-mode network, 

which has been a focus of recent ISC/ISFC investigations. (B) The correlation between the 

RV and BOLD signal within the brain of an individual subject during rest is high. (C) 
Respiratory variation (RV) signals were uncorrelated across the 9 subjects during both the 

rest condition (r = −0.004, p > 0.2) and the story condition (r = −0.02, p > 0.18). (D) 
Interestingly, regressing out the RV signal from the precuneus time course resulted in a 20% 
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increase in the inter-subject correlation (ISC). This suggests that when physiological effects 

are not synchronized across subjects, filtering them out during preprocessing can better 

expose stimulus-induced signal that is shared across subjects. (E) However, in some cases – 

particularly with emotional stimuli – peripheral physiological signals can be highly 

synchronized across subjects. Here, time courses of electrodermal activity (EDA; left) and 

heart rate (HR; right) were each compared across two subsamples of participants (n = 10 and 

n = 11) during free viewing of an emotional movie. Panels adapted from Simony et al., 

2016) (A,B,C,D) and Golland et al., 2014 (E).
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