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Simple Summary: The increase in the metabolic demand and the dramatically decreased feed
intake of cows around parturition often cause a negative energy balance status in cows, which can
cause metabolic disorders. Before parturition, dry matter intake of cows starts to decline, and this
decline is practically unavoidable. Therefore, increasing the energy density of the diet is extremely
important. We used untargeted metabolomics to reveal the effect of high dietary energy density
on body metabolism and explore whether it can alleviate negative energy balance. Our research
shows that feeding a high-energy diet could significantly improve antioxidant capacity, maintain
phosphatidylcholine homeostasis and reduce the negative energy balance of cows by regulating lipid
mobilization, muscle mobilization, and protein turnover.

Abstract: The diet energy level plays a vital role in the energy balance of transition cows. We
investigated the effects of high dietary energy density on body metabolism. Twenty multiparous
Angus cows were randomly assigned to two treatment groups (10 cows/treatment), one receiving
a high-energy (HE) diet (NEm = 1.67 Mcal/kg of DM) and the other administered a control (CON)
diet (NEm = 1.53 Mcal/kg of DM). The results indicated that feeding a high-energy diet resulted
in higher plasma glucose concentration and lower concentrations of plasma NEFA and BHBA on
d 14 relative to calving in the HE-fed cows compared to the CON-fed ones. The postpartum plasma
levels of T-AOC were lower in cows that received the CON diet than in cows in the HE group, while
the concentration of malondialdehyde (MDA) showed an opposite trend. Among the 51 significantly
different metabolites, the concentrations of most identified fatty acids decreased in HE cows. The
concentrations of inosine, glutamine, and citric acid were higher in HE-fed cows than in CON-fed
cows. Enrichment analysis revealed that linoleic acid metabolism, valine, leucine as well as isoleucine
biosynthesis, and glycerophospholipid metabolism were significantly enriched in the two groups.

Keywords: cow; dietary energy density; plasma; negative energy balance; metabolic profiles

1. Introduction

During the transition period, the increase in the metabolic demand and the dramat-
ically decreased feed intake of cows around parturition often cause a negative energy
balance (NEB) status in cows, which can result in the mobilization of body fat reserves [1,2].
Extensive mobilization of body fat reserves around parturition and changes in metabolism
cause metabolic disorders, such as fatty liver [3], displaced abomasum [4], and ketosis [5].

Dry matter intake (DMI) starts to decline before parturition, and this decline is practi-
cally unavoidable [6,7]. However, the energy requirement of the cow increases to support
uterus growth in late pregnancy; therefore, increasing the energy density of the diet should
facilitate the maintenance of energy intake [8,9]. Researchers have focused on alleviating
the NEB status and fetal growth by increasing dietary energy density. Dry-rolled corn

Animals 2022, 12, 1147. https://doi.org/10.3390/ani12091147 https://www.mdpi.com/journal/animals

https://doi.org/10.3390/ani12091147
https://doi.org/10.3390/ani12091147
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/animals
https://www.mdpi.com
https://doi.org/10.3390/ani12091147
https://www.mdpi.com/journal/animals
https://www.mdpi.com/article/10.3390/ani12091147?type=check_update&version=1


Animals 2022, 12, 1147 2 of 13

supplementation during late gestation could improve the energy status of the grazing
cow [10]. Another research group reached a similar conclusion when comparing dairy
cows fed a low-energy (1.58 Mcal/kg of DM) ration. Specifically, cows fed a high-energy
diet (1.7 Mcal/kg DM) exhibited lower concentrations of plasma non-esterified fatty acids
(NEFAs) on d 7 relative to calving [11,12] In recent years, studies have demonstrated that
cows fed a pre-calving high-energy diet showed decreased concentrations of NEFA and
β-hydroxybutyric acid (BHBA) in the prepartum period [13]. As the majority of the above
studies were focused on the effects of increasing prepartum dietary energy density on
the reproduction of cows, evidence is lacking assessing whether feeding high-energy diet
during the entire transition period leads to comprehensive metabolic changes in beef cows.
A growing number of studies have shown that overfeeding a high-energy diet during late
gestation could affect DMI and the energy balance of postpartum cows, improving the
health and liver function of the animals [14–16]. However, the comprehensive metabolic
changes that occur as a result of increasing dietary energy density impact physiological
and metabolic processes.

Metabolomics can quantitatively measure small molecular metabolites in biological
samples using techniques such as nuclear magnetic resonance (NMR) [17], liquid chro-
matography –tandem mass spectrometry [18], and gas chromatography–mass spectrometry
(GC–MS) [19]. Metabolomic technologies have been proposed as powerful tools for the
early diagnosis of postpartum diseases, the identification of biomarkers, and metabolic
pathway characterization in cattle [20–22]. Metabolomic technologies have also been used
in transition cows to analyze the changes of metabolites in relation to nutrient levels
and rumen-protected glucose supplementation [23,24]. LC–MS has been widely used
in metabolomics studies due to its high detection sensitivity and the fact that it does re-
quire sample derivatization [25,26]. Furthermore, LC–MS is capable of detecting intact
metabolites without chemical modification [27].

Therefore, we used untargeted metabolomics to reveal the effect of high dietary energy
density on body metabolism and explore whether it can alleviate NEB. The metabolic
changes in postpartum beef cows fed a high-energy diet examined from the perspective of
small molecules were used to evaluate the effects of dietary energy.

2. Materials and Methods

The current study was performed in the Xilingol League, Inner Mongolia Autonomous
Region, China. All procedures were approved and found to meet the animal welfare
policies following the instructions of the China Council on Animal Care. The experimental
procedures used were approved by the Institutional Animal Care and Use Committee of
Inner Mongolia Agricultural University (Hohhot, China).

2.1. Animal and Experimental Design

Twenty multiparous Angus cows were selected from a larger breeding group and
were randomly allocated into two groups. From day 45 before the expected day of calving
to 35 days postpartum, each group was randomly assigned to two dietary energy levels
(10 cows/treatment), and the cows in each energy treatment were assigned randomly to
receive a high-energy (HE) diet (NEm = 1.67 Mcal/kg of DM) or a control (CON) diet
(NEm = 1.53 Mcal/kg of DM), the diets was isonitrogenous (Table 1). The cows were
offered the total mixed rations (TMR) twice daily (at 8 am and 3 pm) and given unlimited
access to fresh water.

2.2. Collection and Analysis of Plasma

Blood samples (15 mL) were collected before morning feeding via jugular venipuncture
14 days after calving and then centrifuged at 3000 r/min for 10 min to harvest plasma.
Plasma glucose, total protein, TG, insulin, leptin, and BUN concentrations were determined
using commercially available bovine ELISA kits (Baoman Biological, Shanghai, China)
according to the manufacturer’s protocols. Commercial colorimetric assay kits were used
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to measure the activities of glutathione peroxidase (GPx), superoxide dismutase (SOD),
and catalase (CAT), as well as total antioxidant capacity (T-AOC), BHBA, and NEFA
concentrations in the plasma.

Table 1. Chemical composition of the mixed diets (HE and CON) offered to the cows during the trial.

Group 1

Item HE CON

Ingredient, % of DM
Corn silage 42.0 33.0

Dry rice straw 18.0 27.0
Corn 22.8 15.6

Wheat bran 5.2 12.1
Soybean meal 2.4 2.4

Cottonseed meal 3.6 5.1
CaHPO4 0.6 0.6
NaHCO3 0.4 0.4

NaCl 0.5 0.5
Unifat 2 2.5 1.3
Premix 3 2.0 2.0

Total 100 100
Nutrient composition

CP, % of DM 11.55 11.78
ADF, % of DM 23.52 26.88
NDF, % of DM 37.51 41.62
TDN, % of DM 71.19 68.31

NEm 4, Mcal/kg DM 1.67 1.53
Calcium, % of DM 0.72 0.79

Phosphorus, % of DM 0.36 0.34
1 HE = high energy (NEm = 1.67 Mcal/kg of DM); CON = medium energy; (NEm = 1.53 Mcal/kg of DM);
2 Fractionated palm fatty acids (China Benefit Agriculture, Beijing, China). 3 Premix contained (per kg of premix):
480,000 IU of vitamin A, 90,000 IU of vitamin D3, 3500 IU of vitamin E, 2400 mg of Fe, 168 g of Ca, 38 g of P,
950 mg of Cu, 1500 mg of Mn, 3150 mg of Zn, 28 mg of I, 33 mg of Se, and 26 mg of Co. 4 NEm was calculated
based on NRC (2001).

2.3. Metabolite Extraction and LC–MS/MS Analysis

The metabolite extraction of all samples was according to Liu et al. [18]. The samples
were then centrifuged at 13,000× g for 15 min at 4 ◦C, and 200 µL of the supernatant as
transferred to a new vial for LC–MS analysis. Chromatographic separation was performed
using an ACQUITY UPLC HSS T3 (100 mm × 2.1 mm i.d., 1.8 µm; Waters, Milford, CT,
USA) preheated to 40 ◦C, as described by Gu et al. [28] and Yang et al. [29].

2.4. Statistical Analysis

Significance analyses of the body condition score (BCS), DMI, and plasma parameters
in different groups were conducted using one-way ANOVA in SPSS. Significant differences
are presented at the level of p < 0.05.

The raw data were first converted to CDF files by Thermo Scientific™ Xcalibur™, and
the positive and negative data were imported into the SIMCA-P software package [30]. The
retention time (RT) and MZ data were imported into the SIMCA-P software package for
orthogonal projections to latent structures discriminate analysis (OPLS-DA) [31]. Using
the Kyoto Encyclopedia of Genes and Genomes (KEGG, http://www.genome.jp/kegg,
accessed on 20 April 2022), metabolic pathways mapped by every differential metabolite
were acquired [30]. MetaboAnalyst (http://www.metaboanalyst.ca, accessed on 20 April
2022) was then used to analyze pathways [31], and the cutoff of the impact value from the
topology analysis was set to 0.1 [32].

http://www.genome.jp/kegg
http://www.metaboanalyst.ca
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3. Results
3.1. Plasma Parameters

The main effects of transition energy density on the plasma parameters are summa-
rized in Table 2. Our results indicated that feeding a high-energy diet resulted in higher
plasma concentrations of glucose and insulin and in lower concentrations of plasma NEFA
and BHBA on d 14 relative to calving compared with feeding the CON diet. Postpartum
plasma levels of T-AOC were lower in cows that received the CON diet than in cows in the
HE group, whereas the concentration of MDA showed an opposite trend. Furthermore,
plasma SOD activity was similar between the treatments, while the CON diet tended to
increase the GSH-PX levels.

Table 2. Effect of dietary energy level during the transition period on the concentration of serum
metabolites and the oxidative status in postpartum Angus cows.

Treatments 1

Items 2 CON HE SEM p-Value

Glucose mmol/L 5.73 b 6.21 a 0.055 0.031

Insulin mIU/L 19.02 b 28.47 a 0.398 0.002

NEFA µmol/L 612.56 a 529.77 b 30.50 0.017

BHBA µmol/L 509.62 a 398.31 b 18.69 0.026

T-AOC U/mL 2.25 b 3.63 a 0.375 <0.001

GSH-Px U/mL 136.05 102.03 16.53 0.011

SOD U/mL 15.66 17.91 0.021 0.127

MDA mmol/mL 2.33 a 1.56 b 0.76 0.018
1 HE = high energy (NEm = 1.67 Mcal/kg of DM); 2 CON = medium energy; (NEm = 1.53 Mcal/kg of DM);
a,b Means bearing different superscripts in the same row differ significantly (p < 0.05).

3.2. Plasma Metabolomics Profiling

Figure 1 shows the overlap of the total ion chromatograms of the QC sample in the
positive (Figure 1A) and negative (Figure 1B) ion modes. Score plots of the (O)PLS-DA are
shown in Figure 2A,C and were performed to verify the different metabolites identified
in the two groups. The R2Y values of the plasma (POS and NEG) were 0.993 and 0.990,
respectively.
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from the LC–MS metabolomics profiles of the plasma of Angus cows fed the high-energy diet (HE)
and the control diet (CON). (A–D) plasma samples analyzed in POS and NEG ion modes; the green
and blue colors indicate, respectively, CON and HE diets administered to beef steers (A,C). Blue
triangles represent the Q2 value, and red dots represent the R2 value from the permutation test (B,D).

The permutation test results for the Q2 intercepts were −0.37 for serum POS and
−0.43 for plasma NEG; the results are presented in Figure 2B,D. Both positive and negative
data revealed a clear separation of the CON and HE groups. The significantly different
metabolites were visualized through volcano plots (Figure 3), which clearly showed many
different metabolites distinguishing the two groups.

As displayed in Table 3, among the 51 significantly different metabolites in the plasma,
22 metabolites had higher concentrations in the CON-fed cows than in the HE-fed cows
(Table 3). Additionally, the concentrations of most identified fatty acids decreased in the
HE-fed cows, including cibaric acid, linoleic acid, pelargonic acid, hexadecanedioic acid,
heptadecanoic acid, and LysoPE (0:0/18:0). The concentrations of inosine, L-isoleucine,
alpha-methylphenylalanine, glutamine, and citric acid were higher in the HE group.

Table 3. Identification of different serum metabolites in cows fed the HE diet compared to cows in
the control group.

Metabolite Name VIP RT (min) Ion (m/z) Fold
Change p-Value Positive/Negative

Cibaric acid 1.2626 6.67 325.20 0.84 0.0378 pos

Linoleic acid 2.2307 7.78 485.32 0.78 <0.00001 pos

Pelargonic acid 1.6576 6.51 200.16 0.72 0.045 pos

2-Hydroxymyristic acid 1.0692 8.41 243.19 1.1034 0.0061 neg

Citric acid 1.235 0.727 191.02 1.06 0.0005 neg

Hexadecanedioic acid 1.0971 7.63 285.21 0.93 <0.00001 neg

heptadecanoic acid 1.1185 6.13 263.24 0.61 0.0015 neg

7-Ketodeoxycholic acid 1.9979 6.97 451.36 1.57 0.00018 neg

11Z-Eicosenoic acid 1.0659 9.16 355.28 1.065 0.0014 neg

Butyl salicylate 1.033 6.66 195.10 0.9458 0.02184 pos

LysoPE(0:0/22:0) 1.1191 9.34 582.37 0.94 0.0005 neg

LysoPC(20:4(5Z,8Z,11Z,14Z)) 1.2623 7.96 544.33 0.95 0.01638 pos

LysoPE (0:0/18:0) 1.1836 7.98 550.31 0.91 0.0006 neg
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Table 3. Cont.

Metabolite Name VIP RT (min) Ion (m/z) Fold
Change p-Value Positive/Negative

LysoPE(0:0/22:4(7Z,10Z,13Z,16Z)) 1.3637 7.85 574.31 0.79 0.0033 neg

LysoPC(20:0) 1.3302 9.20 552.40 0.94 0.00001 pos

LysoPC(22:2(13Z,16Z)) 1.4444 9.27 620.39 0.83 0.0002 neg

LysoPC(O-18:0) 1.8298 9.35 544.36 0.67 0.0004 neg

PS(14:0/18:1(9Z)) 2.41 9.16 778.48 0.46 0.0002 neg

L-Phosphoarginine 2.3631 3.53 237.07 0.48 0.02184 pos

Alpha-methylphenylalanine 1.8553 2.15 180.10 1.74 0.022 pos

Xanthosine 1.6569 5.02 319.04 0.6661 0.03052 neg

Pilosine 1.5464 5.32 287.15 0.7331 0.024 pos

L-Pyridosine 1.85 2.74 237.12 1.91 0.011 pos

Avenanthramide L 1.9264 3.35 348.08 0.6458 0.0375 pos

Shinflavanone 1.6465 7.01 411.15 1.3989 0.00027 neg

Mytilin B 1.6406 4.11 391.10 0.7846 0.0403 pos

3-phenyllactic acid 1.540 4.14 131.05 0.8978 0.0001 pos

Threonine 1.667 5.36 310.12 1.274 0.01084 neg

6-Hydroxymelatonin 1.5301 5.42 293.11 1.4486 0.0009 neg

Inosine 1.5043 2.33 305.02 1.3865 0.02384 neg

Glutamine 1.8506 3.09 292.13 1.67 0.00157 pos

Galactose 1.1852 11.3 191.02 1.17 0.0011 neg

Butyramide 1.1267 1.56 88.07 0.8722 0.03654 pos

Physapubenolide 1.101 6.13 563.24 0.91 0.0015 neg

L-Isoleucine 1.088 5.13 132.10 1.053 0.0375 pos

L-ornithine 1.072 6.641 173.09 1.089 0.0004 neg

L-valine 1.176 5.82 165.55 0.741 0.001 neg

L-hydroxyproline 1.2108 2.71 277.12 0.847 0.0149 neg

Isopentenyladenine-9-N-
glucoside 1.0246 7.83 405.22 1.0745 0.0078 pos

Gamma-Glutamylvaline 1.7916 1.78 245.11 1.68 <0.00001 neg

Deoxycholic acid 1.74 7.79 437.28 1.12 <0.00001 neg

5′-Deoxy-5-fluorocytidine 1.60 5.07 268.0 0.72 0.008 pos

Acetoxy-8-gingerol 1.53 6.79 363.21 1.23 0.0003 neg

Gamma-Glu-Leu 1.512 2.86 259.12 1.32 0.01 neg

Oleyl alcohol 1.135 7.58 286.30 0.81 0.048 pos

4-Methoxybenzyl propanoate 1.1245 5.26 195.10 1.21 0.017 pos

Sphinganine 1.062 6.08 274.27 0.91 0.034 pos

Lucidenic acid E2 1.042 5.77 551.24 1.14 0.0039 neg

Monomenthyl succinate 1.26 4.60 301.16 1.25 0.001 neg

Cinncassiol D1 glucoside 1.23 5.74 535.25 1.22 0.006 neg

N-Decanoylglycine 1.16 6.65 228.16 1.35 0.04 neg

VIP: variable importance in projection; RT: retention time; fold change: HE group vs. CON group.
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The metabolome map revealed enriched pathways (p < 0.05) for metabolites that
were identified in plasma (Figure 4). The enrichment analysis revealed that linoleic acid
metabolism, valine, leucine, as well as isoleucine biosynthesis, and glycerophospholipid
metabolism were significantly enriched in the HE-fed and CON-fed groups (Figure 4).
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4. Discussion

Due to the decreasing DMI and rapidly increasing nutrient requirements after parturi-
tion, cows experience a period of NEB [33], which can be measured by NEFA and BHBA
concentrations in transition cows [34]. Our results showed that cows in the HE groups
exhibited higher concentrations of glucose and insulin and lower concentrations of plasma
NEFA and BHBA on d 14 relative to calving compared with cows fed the CON diet. Our
results are consistent with those of Sordillo and Raphael [35], who reported that increasing
blood glucose results in higher insulin levels. Similar to our results, previous studies found
that plasma concentrations of BHBA and NEFA in transition cows are lower when increas-
ing dietary energy density [12,13]. Our data indicated that HE cows exhibited a lower
degree of adipose tissue mobilization and that postpartum cows had a more positive energy
balance. This finding may be due to higher ruminal glucogenic VFA production following
the administration of the HE diet, which might improve hepatic glucose production and
lead to lower fat mobilization in postpartum cows.

A balance exists between the levels of reactive oxygen species and those of endoge-
nous antioxidants under normal cellular metabolism [36]. However, increased metabolic
activity and lipid peroxidation are accompanied by reactive oxygen species production,
and moreover, the overload of ROS may result in oxidative stress, which could induce
tissue injury in transition dairy cows [37–39]. Superoxide dismutase, catalase, glutathione
peroxidase, and malondialdehyde are well-known biomarkers of oxidative stress [40]. In
this study, the HE-fed cows exhibited higher levels of T-AOC and lower MDA levels than
did the CON-fed cows. This indicates that the degree of oxidative stress in the CON cows
was enhanced further by the increased plasma NEFA concentrations. A recent study deter-
mined that hydrogen peroxide is produced as an initial metabolite, which could escalate
ROS accumulation during the time of increased NEFA availability [41]. This may explain
the increase in GSH-Px activities among the CON cows. As the role of GSH-Px is to convert
hydrogen peroxide into harmless H2O, the increase in its content represents an increase
in the content of hydrogen peroxide produced [42]. Moreover, in the present study, the
reduction in BHBA levels paralleled the decrease in NEFA and MDA concentrations when
administering the HE diet. Our results agree with other studies that reported that increased
plasma markers of lipid peroxidation were correlated with NEFA concentration [43].

When nutrient intake cannot meet the energy requirements, lipids from the body
reserves are mobilized, and fatty acids are released into the blood [44]. Contreras et al. [45]
indicated that fatty acids circulate in various lipid fractions, such as NEFAs, neutral lipids,
and phospholipids. In our study, the precursors related to the above fatty acids were
downregulated by the HE diet, including LysoPE (0:0/18:0) and cibaric acid, which means
that the HE diet reduced fat mobilization and lipid metabolism. While phosphatidylcholine
plays an important role in triglyceride export by the liver [46], phosphatidylcholine is
related to metabolic disease in cows [47]. However, LysoPE (0:0/18:0), a precursor of
phosphatidylcholine, was downregulated in the HE group, which means that feeding a
high-energy diet could maintain phosphatidylcholine homeostasis.

Lipid dystrophy and abnormal lipid metabolism could lead to insulin resistance and
metabolic disorders [48]. Therefore, abnormal lipid metabolism results from lipid mediators,
such as sphingomyelin, phosphatidylethanolamine, phosphatidylcholine, etc., which can
induce oxidative stress and, in turn, trigger inflammatory reactions in lactating cows [49].
Plasma fatty acids, including linoleic acid, pelargonic acid, hexadecanoic acid, and cibaric
acid, were decreased by the HE diet. These results are in accordance with the decreased
NEFA and TG in the HE group. Some of the fatty acids detected at higher concentration
in cows fed the HE diet could be of dietary origin, because the HE diet contained more
“Unifat” and cotton seed oil, and dietary fatty acids could form part of the pool of available
lipids with other catabolic sources of fatty acids [23]. Linoleic acid is a major n-6 PUFA
that can be a substrate of phospholipaseA2 in the n-6 PUFA enzyme pathway [50]. Some
studies found that n-6 PUFAs produce 13-hydroperoxyoctadecadienoic acid (13-HPODE),
which, in turn, promotes the inflammatory response [51,52]. Furthermore, a low n-6 PUFA
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content may enhance immune functions [53], which possibly explains why the HE diet has
positive effects on immunity and antioxidative capabilities. In addition, feeding an HE diet
increased the levels of plasma inosine, which was proven to have a positive effect on the
antioxidant and immunomodulatory capacity [54].

It is further speculated that the circulating levels of gluconeogenic amino acids play
a role in the energy metabolism of beef cattle [55]. Specifically, the HE cows exhibited
higher concentrations of threonine but lower concentrations of phenylalanine than the CON
cows. In this study, despite feeding isonitrogenous diets, different feed sources were used
containing different levels and concentrations of amino acids, which may have caused the
differences in the circulating levels of gluconeogenic amino acids. While the gluconeogenic
potential might have had a moderate effect on the energy status in Angus cows, the HE cows
had greater concentrations of glutamine than the CON cows. This is relevant, as glutamine
has been related to decreased catabolism of muscle in growing ruminants, and previous
studies have indicated that glutamine could lead to protein synthesis and may act as an
anabolic mediator promoting muscle growth [56,57]. Furthermore, some gluconeogenic
amino acids were associated with residual feed intake in black Angus beef steers, which
may explain the differences in dry matter intakes between the two groups [58]. It has
also been determined that hydroxyproline arises biosynthetically from proline through an
enzymatic catalytic reaction with hydroxylase [59]. Along this line, Mata [60] indicated that
increased plasma hydroxyproline concentrations are linked to alcoholic liver cirrhosis. In
this study, the hydroxyproline concentration was lower in HE group, which could be due
to the higher gluconeogenesis and greater muscle protein catabolism in the CON cows.

Some branched-chain amino acids (BCAAs) could be used for gluconeogenesis, whereas
the presence of antagonists among BCAAs may lead to opposite changes in L-isoleucine [61,62].
However, this conjecture requires further investigation. Creatine plays a vital role in
energy metabolism [63]. For example, Luo et al. [64] found that higher concentrations of
plasma creatine were detected in dairy cows with severe NEB, while a previous study
speculated that a higher concentration of creatine may indicate extensive mobilization of
phosphocreatine in the muscle tissue to supply energy [65]. In recent years, researchers
found a negative correlation between plasma creatine and the feed efficiency of beef
steers [55,62]. Thus, the lower concentration of creatine in HE cows may be a signal of less
muscle mobilization and reduced protein turnover.

5. Conclusions

In summary, feeding an HE diet decreased the concentrations of NEFA and BHBA,
increased T-AOC concentrations, lowered the MDA levels, and lowered GSH-Px activity in
postpartum cows when compared with CON cows. Furthermore, the GC–TOF/MS analysis
of plasma indicated that feeding an HE diet reduced lipid metabolism and downregulated
various metabolites, including LysoPE (0:0/18:0), linoleic acid, and cibaric acid, which
means that feeding a high-energy diet could maintain phosphatidylcholine homeostasis.
More specifically, the HE cows exhibited higher concentrations of threonine and glutamine
but lower concentrations of phenylalanine than the CON cows. Therefore, feeding an HE
diet could reduce the NEB of cows by regulating lipid mobilization, muscle mobilization,
and protein turnover. Accordingly, these results provide deeper insight into the molecular
mechanism by which an HE diet may influence the energy status of cows.
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