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Abstract: As microplastic pollution continues to increase, an emerging threat is the potential for
microplastics to act as novel substrates and/or carriers for pathogens. This is of particular concern for
aquatic product safety given the growing evidence of microplastic ingestion by aquaculture species.
However, the potential risks of pathogens associated with microplastics in mariculture remain poorly
understood. Here, an in situ incubation experiment involving three typical microplastics including
polyethylene terephthalate (PET), polyethylene (PE), and polypropylene (PP) was conducted during
the summer–autumn period in a mariculture cage. The identification of potential pathogens based
on the 16S rRNA gene amplicon sequencing and a custom-made database for pathogenic bacteria
involved in aquatic environments, was performed to assess the risks of different microplastics
attaching potential pathogens. The enrichment of pathogens was not observed in microplastic-
associated communities when compared with free-living and particle-attached communities in
surrounding seawater. Despite the lower relative abundance, pathogens showed different preferences
for three microplastic substrates, of which PET was the most favored by pathogens, especially
potentially pathogenic members of Vibrio, Tenacibaculum, and Escherichia. Moreover, the colonization
of these pathogens on microplastics was strongly affected by environmental factors (e.g., temperature,
nitrite). Our results provide insights into the ecological risks of microplastics in mariculture industry.

Keywords: microplastic pollution; pathogenic microorganism; aquaculture; risk assessment; pathogen
database; aquatic ecosystem

1. Introduction

Microplastics have emerged as a major source of anthropogenic pollution in marine
environments [1,2]. This contamination is now widespread, recalcitrant, and likely to con-
tinue unabated into the future [3]. Numerous studies have revealed that microplastics cause
adverse effects on marine organisms [4–6] and even humans [7] through direct physical
damage [8] and indirect toxicities caused by adsorbed pollutants [9] or plastic additives [10].
Besides that, the recent realization that this novel substrate in the marine environment
may colonized by microorganisms that include pathogens has intensified interest in the
microbial ecology of this biotope and its potential impact on aquatic ecosystems [2,3].
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Their hydrophobic hard surfaces, novel polymer carbon sources and long-distance
transport make microplastics a unique substrate for microbial colonization within marine
environments [11]. Once they enter aquatic environments, a biofilm will quickly develop
on the microplastic surfaces [12]. Zettler et al. first described the ‘plastisphere’ that is
taxonomically distinct from the surrounding water and proposed that some plastisphere
members may be opportunistic pathogens, such as Vibrio members that dominated a
polypropylene sample collected from the North Atlantic [13]. The presence of numerous
pathogens (for example, members of the Vibrio parahaemolyticus, Escherichia coli or Arcobacter
spp.) on microplastic surfaces from across oceanic regions has since been widely demon-
strated [14–16]. This raises the important question as to whether the increasing amount of
microplastics in global oceans provides greater opportunities for pathogens to be colonized,
transported and transmitted to potential hosts, compared to the opportunities provided by
other, natural particles.

Over the past decade, research effort has been undertaken on exploring the pathogen
risk of microplastics in various aquatic ecosystems, such as coastal water [17], bays [18],
estuaries [19], urban rivers [20]. Some studies have suggested that microplastics can serve
as vectors to increase the survival of potential pathogens, and transfer pathogens to marine
organisms or formerly unaffected ecosystems [21]. Members of the genus Vibrio were
found to be particularly enriched on microplastics in the Bay of Brest [18] and the North
and Baltic Seas [14]. Wu et al. reported the selective enrichment of pathogenic members
of Pseudomonas on microplastics in a river [22]. In several pathogen-rich environments
such as sewage [23] and landfill leachate [24], microplastics have also been observed to
selectively enrich pathogens from the surrounding environments. However, other studies
have disputed the preferential colonization of microplastics by pathogens [25,26]. The
divergence of these results may be due to the huge variety in the biochemical composition
of different plastic polymers, as well as the environmental conditions and pathogens
richness of different aquatic ecosystems. Moreover, studies to date that have discovered
pathogenic species have generally looked at one or a few specific pathotypes only and
not the whole microbial community; this does not allow for complete comparisons when
looking at the context of the plastisphere as a whole [3]. It is necessary to study in depth the
pathogen colonization on different types of microplastics exposed to different pathogen-rich
environments in the context of the overall community in terms of risk assessment.

With the growth of the global human population and the over-exploitation of wild
stocks, aquaculture is urgently needed to develop rapidly to meet the large demand of
seafood production and future sustainable development of fisheries [27]. The outbreak
of microbial diseases is one of the biggest issues faced by the aquaculture industry, hence
any factors that may increase disease are a particular concern [3]. Aquaculture facilities
use large amounts of plastics for floats, nets, pens, and lines, among other equipment [28].
As an important contributor to marine microplastics, these facilities might increase the
chance that potential pathogens could colonize microplastic surfaces [29,30]. Moreover,
there is a growing body of evidence that commercial seafood and aquaculture species
absorb microplastics [31]. Despite the potential threats to aquatic biosecurity and seafood
safety, little is known about the pathogen risks from microplastics in mariculture.

Here, an in situ incubation experiment involving three typical categories of microplas-
tics was conducted during the summer–autumn period, when there is a high risk of disease
outbreak, in a nearshore mariculture cage. Our work goes beyond the general characteris-
tics of bacterial community attaching onto the microplastics, focusing on the attachment
risks of potential pathogens on different microplastics in the typical fishery environment
with extensive microplastic pollutions and pathogenic risks. Moreover, a custom-made
database for pathogenic bacteria involved in aquatic environments was applied, which
would provide an effective way to identify potential pathogens in the context of the whole
community based on 16S rRNA gene amplicon sequencing. Specifically, we aim to address
three questions: (1) whether microplastics exposed to mariculture pose a risk of pathogen
enrichment; (2) does the colonization of pathogens on microplastics vary with different
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polymer types; and (3) which environmental factors in mariculture may be related to the
colonization of pathogens on microplastics?

2. Materials and Methods
2.1. Experimental Design and Data Collection

An in situ incubation experiment was performed in a large yellow croaker (Pseudosci-
aena crocea) cage in Xiangshan Harbor (121◦45′25′′ E, 29◦32′2′′ N) in the East China Sea. The
microplastic preparation, experimental design, sample collection, 16S rRNA gene sequenc-
ing, and sequence processing were described in our previous study [32]. Briefly, three types
of microplastic particles (polyethylene terephthalate, PET; high-density polyethylene, PE;
expanded polypropylene, PP) were prepared by fragmenting, sieving, ultrasonic cleaning,
and sterilizing the three typical plastic materials (PET bottles, PE film, and PP cushioning
foam) as previously described [32]. The three prepared microplastics (200 particles of
each substrate) were respectively placed in three porous hollow balls (12 cm in diameter)
wrapped with 60-mesh nylon nets. The three balls containing three different microplastics
were bundled into one group. Twenty groups of microplastic particles were hung in five
positions (as five biological replicates, four corners and the midpoint of one side) of the
squared cage and fixed at a water depth of 0.5 m (Figure S1). They were incubated for three
months (August to October) during the summer–autumn period, when the temperature
and the risk of disease outbreak were generally highest across the entire culture period. One
of four groups of microplastic particles at each position was collected at days 15 (9 August
2017), 30 (23 August), 60 (24 September), and 90 (24 October). Five replicate seawater
samples were also collected in situ at five microplastic placement points at each sampling
day. The seawater environmental factors were monitored using standard methods [33]
and the metadata of the environmental factors are provided in Dataset S1. Additionally,
approximately 1 L of seawater was filtered sequentially through 20-µm, 2-µm, and 0.2-µm
polycarbonate membranes (Millipore, Boston, MA, USA) to collect large particle-attached
(LPA, >20 µm), small particle-attached (SPA, 2–20 µm), and free-living (FL, 0.2–2 µm) plank-
tonic prokaryotes, respectively [34–37]. Total DNA on the surface of microplastics (0.5 g)
and water fraction filters was extracted using a PowerSoil® DNA Isolation Kit (MOBIO,
Carlsbad, CA, USA). The V4–V5 region of the 16S rRNA genes was amplified using the
dual-indexed bacterial–archaeal universal primer set 515FY-926R [38,39] and sequenced
as previously described [32]. The sequence data are available under accession number
DRA010047 in the Sequence Read Archive of DDBJ (https://ddbj.nig.ac.jp/DRASearch,
accessed on 3 September 2021). The sequences were processed using QIIME v1.9.1 [40] as
previously described [32].

2.2. Construction of Bacterial Pathogens Database

A database of bacterial pathogens in aquatic environments [41] constructed by col-
lecting the pathogenic species/strains information and the corresponding 16S rRNA gene
sequences was applied in this study. Six major categories of bacterial microorganisms that
are potentially pathogenic to fish, human, mammal, invertebrate, plant, and multi-hosts
(cross-host) were included in this database. The list of fish pathogens and related infor-
mation were mainly collected from the reports of Austin et al. [42] and Fang et al. [43].
Human pathogens (mainly fecal–oral transmission) were derived from the Virulence Factor
Database (VFDB, http://www.mgc.ac.cn/VFs/, accessed on 1 March 2021) [44] and a
bacterial pathogens database constructed by Chen et al. [45]. The information of other
hosts and cross-host pathogens were collected from the KEGG database of Antimicrobial
Resistance [46]. The taxonomy information of collected pathogens was calibrated by the
database of the List of Prokaryotic names with Standing in Nomenclature (LPSN) [47,48].
The 16S rRNA gene sequences of species or strains in pathogens list were extracted from
the NCBI nucleotide database (http://www.ncbi.nlm.nih.gov/, accessed on 1 March 2021).
If the pathogenic strains of a pathogenic species were undefined in references, the 16S
rRNA gene sequence of the type strain of this species was used as the reference sequence
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in the database. The database currently features information on 9070 pathogens and corre-
sponding 16S rRNA gene sequence data, including 14 phyla, 116 families, 221 genera, and
1097 species (Table S1).

2.3. Taxonomic Assignment of Bacterial Pathogens

After sequence processing using QIIME, a prokaryotic OTU table was generated
and rarefied at 25,200 reads per sample (corresponding to the smallest sequencing depth
for any of the samples). To determine the relative abundance of potential pathogens
on/in microplastics and water fractions, the representative sequence of each OTU was
aligned with the 16S rRNA full-length gene sequences in the constructed database using the
USEARCH (v11.0.667) global alignment algorithm (default settings). The hit outputs were
further filtered using the strict criteria of E-value < 1 × 10−6 and sequence identity > 99%
to taxonomically annotate the pathogenic bacteria and generate the potentially pathogenic
OTU table.

2.4. Statistical Analyses

Nonmetric multidimensional scaling (NMDS) analysis based on the Bray–Curtis dis-
similarity was performed to visualize the variations of pathogenic communities among
different sampling days and substrates using the QIIME script nmds.py. Analysis of similar-
ity (ANOSIM) and permutational multivariate analysis of variance (PERMANOVA) based
on Bray–Curtis dissimilarity were conducted using the ‘anosim’ and ‘adonis’ functions of
the R package ‘vegan’ [49], respectively, to test the significance of compositional deference
of pathogenic communities between sampling days or between substrates. Mantel tests
with 999 permutations were used to test correlations between seawater environmental fac-
tors (Euclidean distance) and β-diversities (Bray–Curtis distance) of pathogenic community.
Heatmaps showing relative abundances of dominant pathogenic OTUs (top 30 OTUs in rel-
ative abundance) and their correlations with environmental factors, were created by the R
package ‘pheatmap’ [50]. A maximum-likelihood phylogenetic tree was constructed using
MEGA 7 to present phylogenetic relationships among these dominant OTUs [51]. Ternary
plot was constructed to identify the representative pathogenic OTUs on the surfaces of PET,
PE, and PP using the R package ‘ggtern’ [52].

3. Results
3.1. Overview of Potential Bacterial Pathogens

A total of 134 OTUs representing potentially pathogenic bacteria were obtained
through sequence alignment with the bacterial pathogens database in aquatic environ-
ments, including 72 fish pathogenic OTUs (53.73%), 29 human pathogenic OTUs (21.64%),
3 plant pathogenic OTUs (2.24%), 2 mammal pathogenic OTUs (1.49%), and 28 cross-host
pathogenic OTUs (20.90%, Figure S2A). Most pathogenic OTUs (65.67%) co-occurred in
water fractions and microplastics, while only 25% and 4% of pathogenic OTUs were unique
to water fractions and microplastics, respectively (Figure S2B).

3.2. Distribution of Pathogens across Different Microplastics and Water Fractions

The relative abundance of pathogens on LPA (3.09%) was significantly higher than
that on microplastics (0.81%) and on/in other water fractions (SPA, 0.87%; FL, 1.29%;
Figure 1A). Among the three types of microplastics, PET had the highest abundance of
pathogens (1.10%). The pathogenic abundance on PE (0.57%) was significantly lower than
all other substrates including microplastics and water fractions. The pathogens on/in
microplastics and water fractions were mainly affiliated with the genera Vibrio (0.72%),
Escherichia (0.23%), Tenacibaculum (0.20%), and Acinetobacter (0.16%, Figure 2A). Vibrio sp.
(0.42%), Escherichia coli (0.16%), Tenacibaculum discolor (0.10%), and Acinetobacter oleivorans
(0.10%) were the dominant pathogenic species of these genera (Figure 2B).
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Figure 1. Relative abundance and community succession of potential pathogens on/in microplastics and water fractions.
(A) Relative abundance of potential pathogens in prokaryotic communities of microplastics and waters. The different
lowercase letters indicate significant difference among various substrates (p < 0.05). PET: Polyethylene terephthalate; PE:
Polyethylene; PP: Polypropylene; LPA: Large particle-attached; SPA: Small particle-attached; FL: Free-living. (B) Non-metric
multidimensional scaling (NMDS) ordination plot based on the Bray–Curtis dissimilarity showing the temporal variation of
pathogenic community structure on/in microplastics and water fractions. (C) Differences in the pathogenic community
structures on/in different microplastic substrates and water fractions at each sampling day.

3.3. The Succession of Pathogens on/in Microplastics and Water Fractions

In general, pathogenic community structures of microplastics and water fractions were
both clustered with sampling day (Figure 1B), indicating clear succession of pathogenic
community over time. PERMANOVA results corroborated that sampling day comprised
the largest source of pathogenic community variation (23.34%, p < 0.001; Table S2). The
pathogenic communities in water fractions showed more visible succession patterns than
those on microplastics (Figure 1B) as statistically indicated by RANOSIM values (Table S3).
The pathogenic community compositions between microplastics and water fractions were
significantly different at each sampling day (Figure 1C) (all p < 0.001, Table S4).

3.4. Representative Pathogens on Three Microplastics

A total of ten dominant pathogenic genera (relative abundance > 0.1% in at least one
sample) were detected on the microplastics in this study (Figures 2 and 3). Among them,
the relative abundances of genus Tenacibaculum and Acinetobacter on PET were significantly
higher than those on PE (p < 0.05). Escherichia (p < 0.01) and Vibrio (p < 0.05) on PET were sig-
nificantly more abundant than those on both PE and PP (Figure 3A). Across sampling days,
the relative abundances of these dominant pathogenic genera (except for Stenotrophomonas,
p = 0.003) on PE had no significant fluctuations (Figure 3B). In contrast, the other two
microplastics showed temporal variations in the abundance of pathogenic genera. For
example, the abundance of Tenacibaculum (p = 0.017) and Acinetobacter (p = 0.008) on PP had
a significant increasing trend over time. On PET, the abundance of Pseudoalteromonas, Pho-
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tobacterium, and Vibrio showed a similar trend, with a peak at day 60, while the abundance
of Escherichia sharply decreased from day 30 (p = 0.002, Figure 3B).
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Figure 2. Compositions of the dominant pathogenic bacterial genera ((A) relative abundance > 0.1% in at least one sample)
and the dominant pathogenic bacterial species (B) on/in microplastics and water fractions.

At the OTU level, 86.7% of the top 30 pathogenic OTUs in relative abundance on the
three microplastics belong to Gammaproteobacteria, including Vibrio (40%), Escherichia
(10%), Pseudomonas (10%), and others (Figure 4A). Vibrio OTU1 (Vibrio sp.) had an over-
whelming advantage on the surfaces of the three microplastics, but its abundance greatly
decreased at day 90. Tenacibaculum OTU2 (Tenacibaculum gallaicum), as the second most
abundant pathogenic OTU, likewise experienced a sharp decline at day 90. Instead, OTU4
(Tenacibaculum discolor) became the dominant pathogenic OTU (especially on PET and PP).
That is, species turnover occurred within the genus Tenacibaculum as the incubation of the
microplastics went on. The ternary plot showed the representative pathogenic OTUs on
each type of microplastics (Figure 5). Compared with PP and PE, six potential pathogenic
OTUs were enriched on PET, including Vibrio OTU1 (Vibrio sp.), Tenacibaculum OTU2
(Tenacibaculum gallaicum) and OTU4 (Tenacibaculum discolor), and Escherichia OTU3, OTU15,
and OTU23 (Escherichia coli). Only one potential pathogenic OTU (OTU44, Vibrio vulnificus)
was enriched on PP, while no enriched pathogenic OTU was found on PE.
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3.5. Correlation between the Microplastic-Attached Pathogens and Environmental Factors

In comparison with microplastics, the pathogenic community structures in water
fractions showed stronger correlations with environmental factors based on Mantel tests
(Table 1). LPA and SPA were significantly correlated with all environmental factors except
chemical oxygen demand (COD). For the three types of microplastics, PET showed the
strongest correlation with most environmental factors (including temperature, nitrate,
dissolved oxygen (DO), salinity, phosphate, and nitrite, all p < 0.05), followed by PP.
Among all environmental factors, temperature, nitrate and DO were the most relevant to
the pathogenic community structures on the three microplastics.

Spearman’s rank correlation analysis also showed that temperature was an important
factor affecting the colonization of the dominant pathogen OTUs (top 30 OTUs in relative
abundance) on the three microplastics (Figure 4B). In addition, nutrient-related factors also
exhibited a strong correlation with some pathogenic OTUs. For example, the relative abun-
dances of Vibrio OTU20 (Vibrio fischeri), OTU27(Vibrio splendidus), and Pseudoalteromonas
OTU21 (Pseudoalteromonas piscicida) on three microplastics were all significantly correlated
with nitrate, nitrite, and phosphate. Most members of the three most abundant pathogenic
genera (Vibrio, Tenacibaculum, and Escherichia) on microplastics were generally positively
correlated with temperature, nitrite, and salinity.
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Figure 4. The relative abundances of dominant pathogenic OTUs (top 30 OTUs in relative abundance)
and their correlations with seawater environmental factors. (A) Relative abundances of dominant
pathogenic OTUs of microplastics at different sampling days. The phylogenetic tree was constructed
using the maximum likelihood method in MEGA 7. (B) Spearman’s rank correlations between the
relative abundances of dominant pathogenic OTUs on microplastics and environmental factors of
seawater. Significant Spearman’s correlations (p < 0.05) were noted with black frames. DO, dissolved
oxygen; COD, chemical oxygen demand.

Table 1. Pearson’s correlation coefficients (r) between seawater environmental factors (Euclidean
distance) and β-diversities (Bray–Curtis dissimilarity) of potentially pathogenic bacterial community
of microplastics and water fractions.

Environmental Factors PET PE PP LPA SPA FL

Temperature 0.681 0.437 0.526 0.436 0.570 0.714
Nitrate 0.647 0.443 0.489 0.491 0.619 0.715

DO 0.639 0.323 0.437 0.292 0.440 0.624
Phosphate 0.359 0.211 0.254 0.601 0.622 0.614

Salinity 0.556 0.179 0.315 0.350 0.417 0.603
Nitrite 0.184 0.079 0.125 0.561 0.557 0.451

pH 0.026 0.098 −0.110 0.203 0.184 0.101
Ammonium −0.026 0.017 −0.062 0.299 0.224 0.096

Suspended particle −0.043 −0.104 −0.020 0.340 0.238 0.215
COD −0.085 −0.108 −0.130 −0.032 0.029 −0.064

r: correlation coefficients between pairwise distances of water environmental factors and pathogenic community
distances derived from Mantel testes with 999 permutations. Data in bold indicate significant correlations
(p < 0.05).
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Figure 5. Ternary plot illustrating the representative/enriched pathogenic OTUs of microplastics.
Each circle represents one OTU. The size of each circle represents its relative abundance. The position
of each circle is determined by the contribution of the indicated microplastic substrate to the total
relative abundance. Red circles and green circles mark OTUs specifically enriched on PET and PP,
respectively.

4. Discussion
4.1. Pathogenic Bacteria Were Not Be Enriched on the Microplastics Compared with the
Surrounding Environments

Organic aggregate particles in water are islands for microbial assemblages and some-
times for pathogens [53]. The pathogens could attach to particles and might further mature
into surface biofilms, thereby gaining considerable survival advantages such as abundant
nutrient assimilation and increased resistance to adverse conditions [54,55]. Thus, particles
could be a critical factor for the fate and survival of pathogens in water [56]. In this study,
the highest abundance of pathogens was found to be attached to large particles suspended
in the water of the mariculture cage, suggesting that pathogens are more likely to prefer
particle-attached lifestyle rather than free-living way in the water. Similarly, as ubiquitous
particles in seawater, microplastics represent an important environmental substrate for
the colonization of microbes from the surrounding water column [3]. Our previous report
showed that the microplastic-associated prokaryotic communities (both α- and β-diversity)
were significantly distinct from free-living (FL) and small particle-attached communities
(SPA) in the surrounding water but highly similar to the large particle-attached commu-
nities (LPA) [32]. In the present study, however, the relative abundances of potential
pathogens found on microplastics were comparable with those present in SPA and FL, and
were far from those in LPA, indicating that microplastics did not enrich the pathogens
compared with the surrounding environments in mariculture from the perspective of
relative abundance of pathogenic bacteria. Some other studies have indeed observed the
selective enrichment of several potential pathogenic species by microplastics [14,18,22],
but one recent meta-analysis across the North Sea, the Baltic Sea, and the Yangtze Estuary
supported our result, which concluded that the median relative abundances of a variety
of potential pathogens found on microplastics remained below or similar to those from
communities associated with natural control surfaces (wood, cellulose, or glass) and the
particle-attached water fractions [57]. All the above evidence revealed that microplastics
do not per se represent a higher risk of enriching marine pathogenic microorganisms when
compared with natural particles.

Although the pathogens on the microplastics appeared in lower relative abundances,
the pathogenic community succession in water fractions in this study was more visible
than that on microplastics over sampling time, illustrating that the pathogens colonized on
microplastics may maintain a more stable community than those free-living or attached to



Microorganisms 2021, 9, 1909 10 of 15

water particles. Combined with the longer residence times and transportability, microplas-
tics may enable related pathogens to travel longer distances horizontally and vertically in
the ocean, compared to many non-floating particles or particles that degraded in a shorter
time. Therefore, microplastics might not be the only or preferred habitat of potential
pathogens, but over a long term, it may become an important transmission vector as the
abundance of microplastics in the environment increases [58]. In particular, the frequent
use of plastic infrastructure in aquaculture operations could further pose biosecurity and
human health risks [28]. However, it is important to note that it still does not suggest that
microplastics act as specific vectors for pathogen dispersal [59] and this evidence from
molecular sequence data does not prove its pathogenicity or toxicity [2], but warrants
further study.

4.2. The Colonization and Succession of Pathogens on Microplastics Varied with
Different Substrates

In general, the exposure/sampling time, geographical location and surrounding
environmental conditions are considered to be the main drivers of biofilm formation on mi-
croplastic surface, with polymer type thought to play a less significant role [3,26,58,60,61].
As expected, sampling day in this study overwhelmed polymer type as the major determi-
nant on the community variation. Nonetheless, different types of microplastic polymers
have clearly differentiated in terms of abundance, composition, and succession of potential
pathogenic community. Among the three microplastic substrates, PET was more favored
by pathogens, followed by PP. Our previous research has demonstrated that PET had a
stronger substrate specificity than PE and PP to assemble its distinct “plastisphere” by a
stronger selection or active dispersal of species from the water microbial pool [32]. These
results may be due to the structure, surface charge, manufacturing protocol, lability of
microplastics, or some combination of variables [61]. During the 90-day incubation, the
pathogens on the PE surfaces maintained a low abundance. Hence, considering only the
colonization abundance of pathogens, the risk caused by PE would be less than the other
two, especially PET. Certainly, it is necessary to incorporate some other factors into our
further comprehensive evaluation of pathogenic risks, such as the dispersal and toxicity of
pathogens, as well as the possibility of microplastic ingestion and disease occurrence [2,3].

Members of genera Vibrio, Tenacibaculum, and Escherichia were detected as the domi-
nant potential pathogens attached to the three microplastics in this study, which were partic-
ularly abundant on PET. Among them, Vibrio appeared with the highest proportion (40%).
It is well-known that Vibrio is a ubiquitous bacterial genus with wide-ranging and vari-
able habitat preferences, encompassing free-living, host-associated and biofilm-associated
representatives [61,62]. Members of the genus detected on the surfaces of microplastics
here, including Vibrio harveyi, Vibrio vulnificus, Vibrio fischeri, Vibrio splendidus, and some
other Vibrio spp., are human and animal pathogens that have caused major pandemics and
countless epidemics across the globe [61], as well as being the most common pathogens of
fish and shellfish that have inflicted expensive losses on aquaculture enterprises [63]. Many
opportunistic pathogens for fish species are also included in the genus Tenacibaculum [64],
such as Tenacibaculum discolor and Tenacibaculum gallaicum in the present work, which were
observed as potentially pathogenic colonizers of microplastics with a clear preference for
polymer types. These two species, isolated from sole (Solea senegalensis) and turbot (Psetta
maxima) culture systems [65], have been identified as the causal agent of tenacibaculosis in
fish [64]. It is noticed that the two species showed completely opposite dynamic trends in
relative abundance throughout the incubation experiment. Although it has not been further
explored, these two Tenacibaculum species may have differing environmental requirements
and tolerances, and thus local environmental changes can modify the ratios of these two
pathogens on microplastics. In addition, microplastics (especially PET) also contained
human pathogenic and multidrug-resistant Escherichia coli [19]. Studies have demonstrated
that these pathogens may form cohesive groups within which they easily exchange genetic
elements to confer greater antibiotic resistance, as well as regulate virulence [19,61,66].
Therefore, the concern about microplastics serving as vectors of pathogens may well be



Microorganisms 2021, 9, 1909 11 of 15

compounded by the potential for dissemination of antibiotic-resistance genes associated
with the plastisphere.

4.3. High Temperature and Nitrite in Mariculture May Increase the Risk of Pathogen Attachment
on Microplastics

Microplastic-associated pathogenic populations in general, and potentially dominant
pathogenic species (such as members of Vibrio, Escherichia, Tenacibaculum) in particular,
were strongly affected by environmental conditions of the surrounding water, mostly
temperature and nutrient. Taking Vibrio as an example, we observed high occurrence of
potentially pathogenic species of this taxon in plastisphere, particularly in the summer
months (August and September), which may be due to the bloom of Vibrio in aquaculture
water in response to higher water temperatures. Some researchers identified seawater
temperature as the major factor influencing the occurrence and infection rate of pathogenic
Vibrio [67,68]. For instance, Sobrinho et al. have confirmed that Vibrio parahaemolyticus
favors warmer water temperatures [69]. And it is well documented that rising seawater
temperatures in the North Sea over the past 45 years have been correlated with higher
numbers of Vibrio species and infections from bathing in the ocean [70]. While tempera-
ture is the major factor structuring the occurrence of pathogens on microplastics and its
surrounding water, the high nutrient level caused by the accumulation of residual feed
and excrement is another inescapable pathogen-associated factor in mariculture environ-
ments, when compared with other aquatic ecosystems. Higher nutrients could improve
the survival of pathogens due to reduced competition for nutrients and lead to more
rapid reproductions of the pathogenic community [17,26]. Additionally, higher nutrients
could lead to a more rapid establishment of, and perhaps more consolidated, pathogenic
population on microplastics [17]. In summer, high temperature, low oxygen, and excessive
nitrite usually co-occur as thorny issues in mariculture [71]. In this study, we did observe
lower dissolved oxygen and higher nitrite in mariculture water during high temperature
period, which exhibited strong correlations with more colonization of pathogens on mi-
croplastics. Excessive nitrite exposure may induce immune suppression in fish, thereby
providing more opportunities for pathogen infection [72]. The different seasons covering
a broader range of temperature, as well as diverse environmental conditions, should be
considered in further work to better understand the relationships between microplastics
and microorganisms in aquatic ecosystems, and the factors that promote the colonization
of pathogens on microplastics.

5. Conclusions

In this study, the potential pathogens in prokaryotic communities associated with
different microplastics and water fractions in a mariculture cage were assessed by sequence
alignment with a custom-made database of bacterial pathogens. In terms of the overall
abundances of potential pathogen communities, PET was most favored by pathogens
among the three microplastic substrates. However, microplastics including PET did not
show a higher risk of enriching pathogens when compared with water fractions. Neverthe-
less, some properties of microplastics (e.g., long-distance transport, long-term retention)
that are distinct from natural particles may increase the potential risks of microplastics as
pathogen vectors to biosecurity and human health. Additionally, environmental conditions
also affect the colonization of pathogens on microplastics. In a mariculture environment
where both microplastics and pathogens are abundant, high temperature and nitrite may
increase the risk of pathogen attachment on microplastics. Although this study provides an
effective way to identify pathogens based on a pathogens database, it still has the following
limitations. The database cannot fully cover all potential pathogens involved in aquatic
environments, which may inevitably underestimate the overall abundance of pathogens in
this study. Additionally, the relatively short sequence length in this study can only provide
a taxonomic resolution at genus/species level. We suggest that a new methodology such
as full-length sequencing or a metagenomic approach could provide a broad and accurate
profile of microbial communities and should be used in pathogen identification in the
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future studies. Moreover, future efforts are needed to better understand the transmissibility
and pathogenicity of these potential pathogens attached to microplastics, thus provid-
ing a comprehensive assessment for the ecological risks of microplastics in the marine
environment.
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testing the effect of sampling day and substrate on composition of pathogenic community based on
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ilarity for comparison of pathogenic community compositions of microplastics or water fractions
between different sampling days, Table S4: Analysis of similarity (ANOSIM) and permutational
multivariate analysis of variance (PERMANOVA) based on Bray–Curtis dissimilarity for comparison
of pathogenic bacterial community composition between microplastics and water fractions at each
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days.
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