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Abstract

The fluoropyrimidines 5-fluorouracil (5-FU) and FdUrd (5-fluorodeoxyuridine; floxuridine) are the backbone of
chemotherapy regimens for colon cancer and other tumors. Despite their widespread use, it remains unclear how these
agents kill tumor cells. Here, we have analyzed the checkpoint and DNA repair pathways that affect colon tumor responses
to 5-FU and FdUrd. These studies demonstrate that both FdUrd and 5-FU activate the ATR and ATM checkpoint signaling
pathways, indicating that they cause genotoxic damage. Notably, however, depletion of ATM or ATR does not sensitize
colon cancer cells to 5-FU, whereas these checkpoint pathways promote the survival of cells treated with FdUrd, suggesting
that FdUrd exerts cytotoxicity by disrupting DNA replication and/or inducing DNA damage, whereas 5-FU does not. We also
found that disabling the base excision (BER) repair pathway by depleting XRCC1 or APE1 sensitized colon cancer cells to
FdUrd but not 5-FU. Consistent with a role for the BER pathway, we show that small molecule poly(ADP-ribose) polymerase
1/2 (PARP) inhibitors, AZD2281 and ABT-888, remarkably sensitized both mismatch repair (MMR)-proficient and -deficient
colon cancer cell lines to FdUrd but not to 5-FU. Taken together, these studies demonstrate that the roles of genotoxin-
induced checkpoint signaling and DNA repair differ significantly for these agents and also suggest a novel approach to
colon cancer therapy in which FdUrd is combined with a small molecule PARP inhibitor.
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Introduction

5-fluorouracil has activity in multiple cancers and is one of the

most widely prescribed anticancer agents, but its most frequent use

is in colon cancer, where it is the basis for all modern colon cancer

therapies. After uptake into cells, 5-FU undergoes complex

metabolic reactions (Fig. 1A; rev. in [1]) to produce 3 known

cytotoxic metabolites: FUTP (5-fluorouridine triphosphate),

FdUMP (5-deoxyuridine monophosphate), and FdUTP (5-deox-

yuridine triphosphate). The FUTP affects RNA metabolism

following its incorporation into cellular RNA, where it disrupts

snRNA, tRNA, and rRNA processing as well as the ribonucleolytic

activity of the exosome and pseudouridylation of RNA [2–8].

In contrast, FdUMP and FdUTP disrupt DNA metabolism.

These metabolites are produced following the conversion of 5-FU to

FdUrd (5-fluorodeoxyuridine; floxuridine), which is also an FDA-

approved chemotherapy agent for the treatment of colon cancer [9]

and is often considered to have a similar mechanism of action as 5-

FU. FdUrd is then phosphorylated to FdUMP and further

phosphorylated to FdUTP [1]. The FdUMP inhibits thymidylate

synthase (TS), which prevents the conversion of dUMP to dTMP,

ultimately causing the depletion of dTTP, the accumulation of

dUTP, and the disruption of dNTP ratios. In contrast, FdUTP, as

well as the accumulated dUTP, are incorporated into DNA.

Consistent with their abilities to disrupt dNTP levels, both

FdUrd and 5-FU activate the ATR checkpoint signaling pathway

[10–17], a pathway that is triggered when DNA replication is

inhibited and that also plays critical roles in promoting survival of

cells experiencing replication stress produced by dNTP disruption

and/or DNA lesions [18]. Once activated, ATR phosphorylates

multiple substrates, including Chk1. The collective kinase activities

of ATR and Chk1 orchestrate the S phase checkpoint and regulate

DNA repair to promote cell viability and recovery [19].

Additionally, 5-FU and FdUrd also cause double strand DNA

breaks [20,21], which in turn activate the ATM checkpoint

signaling pathway. The ATM pathway also regulates cell survival

by either inducing apoptosis or preventing cell cycle progression

and activating DNA repair, both of which promote survival [22].

Notably, however, it remains unclear whether the ATR and/or

ATM checkpoint pathways play important roles in determining

the survival of human colon cancer cells, the cells that are targeted

by 5-FU and FdUrd in patients, when they are treated with these

agents.

The uracil and 5-FU that are incorporated into the genome are

also recognized by 2 DNA repair pathways that may play roles in

the survival of cells treated with 5-FU and FdUrd. One pathway is

the base excision repair (BER) pathway [1,23]. In this pathway,

genomically incorporated uracil and 5-FU are first recognized by
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uracil glycosylases, which excise the lesion, leaving an abasic site.

The abasic site is further processed by an endonuclease (e.g.,

APE1), creating a single-stranded DNA break that is recognized by

poly(ADP-ribose) polymerase, which poly(ADPribosyl)ates itself as

well as other repair proteins, recruiting XRCC1 and other

proteins that complete repair [24]. Investigations into the role of

BER in cells treated with 5-FU or FdUrd have reached disparate

conclusions using a wide variety of model systems. Given that

these studies have shown that disabling BER protects, sensitizes, or

has no effect on the cytotoxicity induced by 5-FU and FdUrd in

these varied systems, including mouse [17,23,25–35], it remains

unclear what, if any, role BER plays in the survival of colon cancer

cells exposed to 5-FU or FdUrd.

The other implicated repair pathway is the mismatch repair

(MMR) system. In vitro studies have found that the MMR pathway

can remove 5-FU from artificial substrates containing 5-FU:G

mispairs. Notably, however, studies in cells suggest that MMR

plays only a minor role in the excision of 5-FU lesions in the

genome [35]. Analyses of the effects of the MMR pathway on cell

viability following treatment with 5-FU and FdUrd have generally

indicated that cells with defective MMR are more resistant to 5-

FU and FdUrd [10,36–38], a result consistent with the finding that

MMR-defective colon cancer patients do not benefit from 5-FU

therapy [39].

Given the multiple mechanisms of action of 5-FU and FdUrd

and the wide range of experimental systems used in these studies

(including studies in mouse cell lines and in human cell lines

derived from tumors that are not typically treated with 5-FU or

FdUrd), we have initiated studies to address the roles of individual

checkpoint signaling and DNA repair pathways in human cells

derived from human tumors. In our first analysis, we found that 5-

FU and FdUrd have very different mechanisms of action in

ovarian cancer cells [17]. Disabling ATR or BER sensitized these

cells to FdUrd, but not 5-FU, indicating that FdUrd kills cells by

causing DNA damage and that 5-FU exerts its cytotoxicity by

another mechanism, possibly by disrupting RNA metabolism.

Notably, we also found that PARP inhibitors, which have shown

unprecedented activity against ovarian tumors and other tumors

that have mutated BRCA1 and BRCA2 [40–43], remarkably

sensitized ovarian cancer cells to FdUrd but not 5-FU [17]. Given

that FdUrd is active in ovarian cancer [44,45], that defects in

BRCA1 and BRCA2 (or other genes in the homologous repair

pathway) are common in ovarian cancer [46], and that PARP

inhibitors will likely have a role in the treatment of ovarian cancers

[24], these findings suggested a novel therapeutic strategy in

ovarian cancer. Notably, however, the biology of ovarian cancer is

very different from the biology of colon cancer. The oncogenes

and tumor suppressor genes commonly mutated in colon cancers

(APC, p53, PI3K, KRAS) differ from the genes commonly mutated

in ovarian cancers (NF1, RB1, CDK12, CCNE1, NOTCH) [46,47].

Furthermore, the DNA repair pathways that are disrupted in

colon cancer cells are vastly different from those disrupted in

Figure 1. 5-FU and FdUrd activate the ATR and ATM checkpoint signaling pathways. (A) Metabolism of 5-FU and FdUrd. (B, C) HT29 (B)
and HCT-8 (C) cells were treated with 5-FU (80 mM, HT29 cells; 200 mM HCT-8 cells), FdUrd (40 mM for both cell lines), or 10 mM hydroxyurea (HU) for
the indicated times. Cell extracts were blotted for phospho-Ser317-Chk1 (P-Chk1), phospho-Thr68-Chk2 (P-Chk2), Chk1, or Chk2. TS, thymidylate
synthase; TP, thymidine phosphorylase; UP, uridine phosphorylase; UK, uridine kinase; OPRT, orotate phosphoribosyltransferase; RR, ribonucleotide
reductase; FUR, 5-fluorouridine; FUMP, 5-fluorouridine monophosphate; FUDP, 5-fluorouridine diphosphate; FUTP, 5-fluorouridine triphosphate;
FdUMP, 5-fluorodeoxyuridine monophosphate; FdUDP, 5-fluorodeoxyuridine diphosphate; FdUTP, 5-fluorodeoxyuridine triphosphate.
doi:10.1371/journal.pone.0028862.g001

PARP Inhibitors Sensitize to Floxuridine
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ovarian cancers. For example, the genes required for mismatch

repair pathway (e.g., MLH1 and MSH2) are often mutated or

epigenetically silenced in colon cancers [39,48], whereas defects in

homologous recombination (e.g., BRCA1 and BRCA2 mutations)

occur in ovarian cancers [46,47]. Finally, ovarian and colon

tumors have very different responses to 5-FU. Whereas 5-FU has

very limited activity in ovarian cancer [49,50], 5-FU is the

cornerstone for all chemotherapy regimens used to treat colon

cancers due to its high activity in this disease [1]. Therefore, given

these biological differences between ovarian and colon cancers,

and the fact that 5-FU is universally used in colon cancer

chemotherapy regimens, we have now determined how 5-FU and

FdUrd kill colon cancer cells to gain important insights underlying

the biology of these agents and improve their use in the clinic to

treat this disease. To that end, we initiated a systematic analysis of

the roles of genotoxin-activated checkpoint signaling, the BER

pathway, and the MMR pathway by depleting key signaling

intermediates in these pathways using highly effective siRNAs.

These findings not only further illuminate our understanding of

the signaling and DNA repair pathways that are important in

these cells, they also reveal that colon tumor cells are sensitized to

FdUrd by small molecule PARP inhibitors that are currently in

clinical trials, thus suggesting a novel therapeutic approach that

combines FdUrd, a drug approved for the treatment of colon

cancer, with a PARP inhibitor, an emerging class of agents with

exciting anticancer activity.

Materials and Methods

Cell lines and culture
HT29, HCT-8, and HCT-116 cells were obtained from

American Type Culture Collection. HCT-116.ch2 and HCT-

116.ch3 [51] cells were from Scott Kaufmann (Mayo Clinic). Cells

were cultured in RPMI-1640 media (Mediatech) supplemented

with 10% fetal bovine serum (Atlanta Biologicals) at 37uC in 5%

CO2. For clonogenic assays, the medium was supplemented with

100 U/mL penicillin and 100 mg/mL streptomycin (Mediatech).

Materials
Reagents were from the following suppliers: 5-fluorouracil (APP

Pharmaceuticals), FdUrd (Bedford Laboratories), ABT-888 (Sell-

eck Chemicals and ChemieTek), AZD2281 (ChemieTek), KU-

55933 (Tocris Bioscience), gemcitabine (Eli Lilly), SuperSignal

Pico West (Thermo Scientific). All other materials were from

Sigma-Aldrich.

Antibodies were as follows: phospho-Ser317-Chk1 (R&D

Systems); phospho-Thr68-Chk2, ATR, horseradish peroxidase-

linked rabbit IgG, and horseradish peroxidase-linked mouse IgG

(Cell Signaling); Chk1 (Santa Cruz Biotechnology); Chk2 and

ATM (Epitomics); APE1 (Abcam); XRCC1 (Bethyl Laboratories);

beta-actin (Sigma-Aldrich); and HSP90, D. Toft (Mayo Clinic,

Rochester, MN).

Cell transfections and small interfering (si)RNAs
siRNAs were transfected by electroporation as described [17].

The transfected cells were cultured for 48 h before use. Sequences

of siRNAs were: ATM-1, 59-GCACCAGUCCAGUAUUGGC-39

[52]; ATR-2, 59-CCUCCGUGAUGUUGCUUGA-39 [53];

XRCC1-2, 59-CUCGACUCACUGUGCAGAA-39 [54]; APE1,

59-GGACAGAGCCAGAGGCCAA-39; MLH1, 59-GGAAGAU-

UCUGAUGUGGAA-39; MSH2, 59-GAUCCUAAUCUCAGU-

GAAU-39; and luciferase, 59-CUUACGCUGAGUACUUCGA-

39 [55].

Clonogenic assays, cell lysis, and cell irradiation
Cell cycle analyses, clonogenic assays, cell lysis, immunoblotting

and immunostaining were performed as described [56,57]. For

clonogenic assays using non-transfected cells, percent survivals of

all individual and combination treatments were normalized to cells

treated with vehicle only. For clonogenic assays using cells

transfected with siRNA, percent survivals at each drug concen-

tration were normalized to the vehicle-treated control for the given

siRNA. Cells were irradiated with a RS-2000 Biological Irradiator,

Rad Source (Suwanee, GA) 4–6 h after plating.

Results

5-FU and FdUrd activate the ATR and ATM checkpoint
signaling pathways in colon cancer cells

To assess the effects of 5-FU and FdUrd on the ATM and ATR

checkpoint signaling pathways, we compared the abilities of these

agents to activate checkpoint signaling in two colon cancer cell lines:

HT29, which have a functional MMR system, and HCT-8, which

have a mutations in MSH6 and are MMR deficient [58]. Cells were

treated with concentrations of each agent that inhibit clonogenicity

by 90% (IC90) and, as a positive control, the replication inhibitor

hydroxyurea. Activation of the ATM and ATR pathways was then

assessed by immunoblotting for phosphorylated Chk1 and Chk2,

two protein kinases that are phosphorylated and activated by ATR

and ATM [59]. These studies revealed that 5-FU and FdUrd

strongly activated Chk1 and Chk2 in HT29 cells (Fig. 1B), with 5-

FU causing even greater levels of Chk1 phosphorylation than did

FdUrd. Similarly, in HCT-8 cells, both agents induced Chk1

phosphorylation (Fig. 1C); however, in these cells 5-FU induced less

Chk1 than did FdUrd. Analyses of Chk2 phosphorylation were not

possible due to the very low levels of Chk2 in the HCT-8 cells (data

not shown). Taken together, these results demonstrate that both

agents cause genotoxic damage that activates checkpoint signaling

pathways in colon cancer cells.

ATR and ATM promote the survival of colon cancer cells
treated with FdUrd but not 5-FU

ATM and ATR are the two apical kinase regulators of

genotoxin-induced checkpoint signaling. To determine if either

ATM or ATR activate pathways that affect the survival of cells

treated with FdUrd or 5-FU, we transiently depleted ATM and

ATR using siRNAs, and then assessed the capacity of cells treated

with graded concentrations of FdUrd or 5-FU to proliferate using

clonogenic assays. Surprisingly, depletion of ATM or ATR did not

sensitize either cell line to 5-FU (Fig. 2A and 2B), even though this

agent activated these pathways (see Fig. 1B and 1C). A far different

picture emerged when the cells were treated with FdUrd.

Depletion of ATR dramatically sensitized HT29 cells to FdUrd

(Fig. 2B) and to gemcitabine (Fig. S1A), a nucleoside analog that

inhibits ribonucleotide reductase and disrupts DNA replication

when incorporated into DNA [60]. In contrast, ATM depletion

(Fig. 2A) and the ATM inhibitor KU-55933 [61] (Fig. S1C), both

of which sensitized to ionizing radiation (Fig. S1B and Fig S1D),

had minimal effects on FdUrd cytotoxicity. Similar results were

also seen in HCT-8 and HCT-116 cells, in which ATR depletion

sensitized both cell lines to FdUrd but not 5-FU (Fig. 3).

Disruption of BER by depleting XRCC1 sensitizes to
FdUrd but not 5-FU

5-FU and FdUrd cause the accumulation of uracil and 5-

fluorouracil in genomic DNA [23,62]. Studies using purified uracil

glycosylases have shown that synthetic substrates bearing uracil

PARP Inhibitors Sensitize to Floxuridine
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and 5-fluorouracil substituents are substrates for the BER

machinery [35,63–70]. Furthermore, a recent report demonstrat-

ed that in intact cells, uracil glycosylases remove 5-FU from the

genomes of colon cancer cells exposed to FdUrd [35]; notably,

however, in these studies, depletion of the glycosylases did not

affect the sensitivity to FdUrd. Therefore, to examine whether

disabling BER affected the sensitivity of HT29 cells to FdUrd, we

used siRNAs to deplete XRCC1 and APE1, two downstream key

participants in the BER pathway, and examined their sensitivity to

FdUrd. Significantly, depletion of XRCC1 (Fig. 4) and APE1 (Fig.

S2) sensitized cells to FdUrd. In contrast, XRCC1 depletion did

not sensitize these cells to 5-FU (Fig. 4), thus indicating that BER

does not play a role in promoting the survival of cells treated with

5-FU and further suggesting that 5-FU exerts its cytotoxic effects

independently of DNA replication or damage.

Small molecule PARP inhibitors sensitize colon cancer
cells to FdUrd but not 5-FU

Given that XRCC1 and APE1 depletion sensitized colon cancer

cells to FdUrd, and that PARP plays a key role in BER, we

reasoned that PARP inhibitors may sensitize colon cancer cells to

FdUrd. We therefore exposed HCT-8 and HT29 cells to graded

concentrations of FdUrd or 5-FU along with 3 mM ABT-888

(veliparib [71]), a concentration that was reported previously to

sensitize multiple tumor cell lines to a variety of chemotherapy

agents [17,72]. As shown in Fig. 5, ABT-888 robustly sensitized

HCT-8 and HT29 cells to FdUrd, whereas ABT-888 did not alter

the antiproliferative effects of 5-FU. To further demonstrate that

PARP inhibitors sensitize these cells to FdUrd, we also tested the

PARP inhibitor AZD2281 (olaparib [73]), which has shown

unprecedented activity in heavily pretreated patients with

BRCA1- and BRCA2-deficient tumors [40–43]. Similar to the

results seen with ABT-888, AZD2281 robustly sensitized both cell

lines to FdUrd (Fig. 5), further supporting the idea that PARP

inhibition sensitizes colon tumor cells to FdUrd.

Small molecule PARP inhibitor sensitization to FdUrd is
independent of MMR status

Previous reports demonstrated that cells with defects in MMR

are more resistant to FdUrd [10,36–38]. Similarly, patients treated

with 5-FU do not benefit from 5-FU-based chemotherapies [39],

suggesting that an intact MMR pathway promotes killing by 5-FU.

Figure 2. Depletion of ATR sensitizes to FdUrd but not 5-FU, whereas ATM depletion does not affect sensitivity to either agent. (A,
B) HT29 cells, transfected with control (Luc), ATM (A), or ATR (B) siRNAs, were plated as single cells, exposed to the indicated concentrations of 5-FU or
FdUrd for 24 h, washed, cultured for 10 d, and stained with Coomassie Blue. Transfected cells were also sequentially immunoblotted (insets) to
detect ATM, ATR, and HSP90 (as a loading control). *, non-specific band.
doi:10.1371/journal.pone.0028862.g002

PARP Inhibitors Sensitize to Floxuridine
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Because combining FdUrd with a PARP inhibitor may be a

potential therapeutic strategy, we reasoned that it would be

important to determine whether tumor cells with defects in MMR,

which occur in 15–20% of colon cancers [39], were sensitized to

FdUrd by a PARP inhibitor. To assess how MMR status affects

the sensitivity of colon cancer cells to FdUrd alone and to the

combination of FdUrd plus AZD2281 we used two model systems.

For the first model system, we used siRNAs to deplete MSH2 and

MLH1. Both siRNAs were highly effective, causing near-complete

loss of MLH1 and MSH2 (Fig. 6A) and disrupting MNNG (N-

methyl-n9-nitro-n-nitrosoguanidine)-induced G2/M arrest (Fig.

S3), which requires a functional MMR pathway [51]. Notably,

Figure 3. ATR depletion sensitizes HCT-8 and HCT-116 to FdUrd but not 5-FU. (A, B) HCT-8 (A) or HCT-116 (B) cells transfected with control
(Luc) or ATR siRNAs were plated as single cells, exposed to the indicated concentrations of 5-FU or FdUrd for 24 h, washed, cultured for 10 d, and
stained with Coomassie Blue. Transfected cells were also sequentially immunoblotted for ATR and HSP90 (a loading control). *, non-specific band.
doi:10.1371/journal.pone.0028862.g003

Figure 4. The BER pathway protects cells from FdUrd but not 5-FU. HT29 cells transfected with control (Luc) or XRCC1 siRNA were plated as
single cells, exposed to the indicated concentrations of 5-FU or FdUrd for 24 h, washed, cultured for 10 d, and stained with Coomassie Blue.
Transfected cells were also sequentially immunoblotted for XRCC1 and beta-actin (a loading control).
doi:10.1371/journal.pone.0028862.g004

PARP Inhibitors Sensitize to Floxuridine
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HT29 cells depleted of MLH1 or MSH2 were severely sensitized

to FdUrd by AZD2281, and were modestly resistant to FdUrd

alone.

For the second model system, we employed the paired colon

cells lines, HCT-116.ch2 and HCT-116.ch3 [51]. These cell lines

were derived from parental HCT-116 cells, which have biallelic

inactivating MLH1 mutations that render them MMR-deficient

[74]. The HCT-116.ch3 cells contain an additional chromosome

3, which encodes a functional MLH1 that restores MMR. The

HCT-116.ch2 cells, which are used as a control, contain an

additional chromosome 2 and like the parental cells are MMR-

deficient. Consistent with previously published results, the MMR

deficient HCT-116.ch2 cells were modestly more resistant to

FdUrd than were the HCT-116.ch3 cells (Fig. 6B), which are

MMR proficient [75]. Notably, however, AZD2281 robustly

sensitized both cell lines to FdUrd. Taken together, these results

demonstrate that colon cancer cells with defects in the MMR

pathway can also be sensitized to FdUrd by a small molecule

PARP inhibitor.

Discussion

5-FU is among the most widely used anticancer chemotherapy

agents, and it (or the 5-FU prodrug capecitabine) is the backbone

Figure 5. Small molecule PARP inhibitors sensitize HCT-8 and HT29 cells to FdUrd but not 5-FU. HCT-8 or HT29 cells were plated as
single cells, exposed to the indicated concentrations of 5-FU or FdUrd along with 3 mM ABT-888, 300 nM AZD2281, or vehicle for 24 h. Following
washing, 3 mM ABT-888 or 300 nM AZD2281 were re-added, and the cells were cultured for 10 d and stained with Coomassie Blue.
doi:10.1371/journal.pone.0028862.g005

PARP Inhibitors Sensitize to Floxuridine

PLoS ONE | www.plosone.org 6 December 2011 | Volume 6 | Issue 12 | e28862



of all chemotherapy regimes used to treat colon cancer [1], the

third leading cause of cancer-related death in the United States

[76]. Despite its widespread use in the treatment of colon cancer, it

remains unclear how this agent kills colon tumor cells. Similarly,

FdUrd, which is often considered to have a similar mechanism of

action to 5-FU, is also used to treat colon tumors that have

metastasized to the liver. To gain insight into how these agents

affect colon cancer cells we first carried out comprehensive

analyses of the roles of the ATM and ATR checkpoint signaling

pathways in colon cancer cells exposed to 5-FU and FdUrd, and

then analyzed the role of the BER pathway, a repair pathway that

removes uracil and uracil analogs that are incorporated into the

genome. We previously compared the mechanisms by which 5-FU

and FdUrd kill ovarian cancer cells. Notably, however, 5-FU has

very limited clinical activity against ovarian cancer [49,50], and

the DNA repair pathways that are disrupted in ovarian cancer

differ from those disrupted in colon cancer. Specifically, ovarian

cancers frequently exhibit ‘‘BRCAness’’ due to defects in BRCA1

or BRCA2, or other ill-defined changes that disrupt the

homologous recombination DNA repair pathway [46]. In

contrast, in colon cancers the mismatch repair pathway is

frequently mutated or silenced [39,48], and the MMR pathway

has been reported to affect cell killing by 5-FU and FdUrd [36–

38,77,78]. Therefore, in the present report, we have performed

head-to-head comparison of these agents in MMR-proficient and -

deficient colon cancer cells that have been depleted of key

checkpoint signaling and BER pathway intermediates. Important-

ly, these mechanistic studies have uncovered novel insights into

how these agents kill colon cancer cells and identified a potential

therapeutic strategy against colon cancer.

First, our studies demonstrated the ATR—but not the ATM—

checkpoint signaling pathway plays a critical role facilitating the

survival of cells treated with FdUrd. Although previous studies

documented that FdUrd activates the ATM- and ATR-dependent

checkpoints [10,13,79], these studies did not compare the effects of

ATM and ATR depletions on the survival of tumor cells exposed

to both agents. Here we have addressed that question. Surpris-

ingly, we found that even though FdUrd has been reported to

cause double-stranded DNA breaks [20,21], ATM has only a

minor role in FdUrd-induced killing. In contrast, ATR depletion

severely sensitized to FdUrd, demonstrating that ATR plays a

critical role in stabilizing stalled replication forks and preventing

their collapse, thus promoting cell survival when cells are treated

with replication inhibitors such as the nucleoside analog

gemcitabine [60]. Therefore, the present studies suggest that the

disruption of DNA replication that occurs when TS is inhibited

and the subsequent disruption of dNTP levels is likely a major

mechanism by which FdUrd causes cytotoxicity.

Second, the present results help clarify the role of BER in colon

cancer cells exposed to 5-FU and FdUrd. Previous studies

examining the role of the BER pathway have found disparate

results, with increased, decreased, or unaltered sensitivity to 5-FU

or FdUrd in a variety of experimental systems [17,23,25–35]. In

contrast, the present results show that XRCC1 depletion sensitizes

to FdUrd but not 5-FU. This finding, along with our published

studies showing that an intact BER pathway protects ovarian

cancer cells treated with FdUrd [17], indicates that FdUrd inflicts

lesions that are cytotoxic to some human cancer cells. Consistent

with these findings, two potent and highly specific small molecule

inhibitors of PARP also sensitized to FdUrd. These results are

similar to what was observed in ovarian cancer cells [17].

However, given that ovarian cancer cells often exhibit BRCAness

(due to defects in homologous recombination) [46,80], a

phenotype that renders cells exquisitely sensitive to PARP

inhibitors [81], it remained an unanswered question whether

PARP inhibitors would also sensitize to FdUrd in colon cancer

cells, which do not have defects in homologous recombination. It

should be noted, however, that although our XRCC1 findings

strongly support a protective role for BER, the effects of the PARP

inhibitors may be more complicated. PARP not only plays an

important role in BER but also participates in other DNA repair

pathways and cell signaling pathways, raising the possibility that

the tremendous sensitization seen with the PARP inhibitors may

stem from effects on BER as well as other cellular pathways.

Third, the present studies show that depleting the apical

regulators of checkpoint signaling (ATR and ATM) or disabling

key BER pathway members (with XRCC1 and APE1 siRNAs or

PARP inhibitors) did not sensitize to 5-FU. Such results strongly

suggest that 5-FU is exerting its cytotoxic effects independently of

its effects on DNA replication or integrity. Notably, this result is

consistent with a number of studies showing that 5-FU mediates

cell killing by incorporating into RNA and interfering with RNA

metabolism [82–89]. In contrast, the finding that disabling the

ATR and BER pathways strongly sensitizes to FdUrd, indicates

that this agent kills colon tumor cells primarily by affecting DNA

metabolism, thus demonstrating that 5-FU and FdUrd have very

different mechanisms of action.

Figure 6. PARP inhibition sensitizes MMR-deficient cells to
FdUrd. (A) HT29 cells transfected with control (Luc), MSH2, or MLH1
sRNAs were plated as single cells, exposed to the indicated
concentrations of 5-FU or FdUrd for 24 h, washed, cultured for 10 d,
and stained with Coomassie Blue. Transfected cells were also
sequentially immunoblotted for MSH2 or MLH1 and beta-actin (a
loading control). (B) HCT116.ch2 and HCT116.ch3 cells were exposed to
the indicated concentrations of FdUrd along with vehicle or 300 nM
AZD2281 for 24 h. Following washing, AZD2281 was re-added and the
cells were cultured for 8 d to allow colony formation.
doi:10.1371/journal.pone.0028862.g006
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Finally, and most importantly, these studies, which were

initiated to identify the checkpoint and DNA repair pathways

that regulate colon tumor responses to FdUrd and 5-FU,

demonstrated that BER was a critical repair pathway when these

cells were exposed to FdUrd (but not 5-FU). Based on these

findings, and the fact that PARP inhibitors disrupt BER, we then

discovered that small molecule PARP inhibitors robustly sensitized

MMR-deficient and –proficient colon cancer cells to FdUrd (but

not 5-FU). These findings may be of particular importance in

tumors with defects in MMR, which account for 15–20% of all

colon cancers [39]. Previous studies found that MMR-deficient

cell lines are less sensitive to 5-FU and FdUrd. Consistent with this

result, clinical studies have shown that 5-FU has limited activity

against MMR-deficient colon cancers compared to MMR-

proficient tumors [39]. Given that 1) FdUrd is approved for the

treatment of colon cancer; and 2) there are limited therapeutic

options for these tumors because tumors with defects in MMR are

commonly considered to be unresponsive to 5-FU-based therapies,

our finding that PARP inhibitors robustly sensitize MMR-deficient

cells to FdUrd raises the possibility that therapies that combine

FdUrd with a PARP inhibitor may have activity against these

tumors. Similarly, because PARP inhibitors also sensitize mis-

match proficient tumors to FdUrd, this drug combination may

also be useful in the treatment of these tumors. Further preclinical

and clinical development of this combination is warranted.

Supporting Information

Figure S1 Effects of ATR and ATM disruptions on
sensitivity to gemcitabine and ionizing radiation. (A)

ATR depletion sensitizes to gemcitabine. HT29 cells transfected

with control (Luc) or ATR siRNAs from experiment shown in

Fig. 2B were plated as single cells, exposed to the indicated

concentrations of gemcitabine for 24 h, washed, and cultured for

10 d to allow colony formation. (B) ATM depletions sensitize to

ionizing radiation (IR). HT29 cells transfected with control (Luc)

or ATM siRNAs from experiment shown in Fig. 2A were plated as

single cells, exposed to the indicated doses of ionizing radiation,

and cultured for 10 d to allow colony formation. (C–D) The ATM

inhibitor KU-55933 does not affect the sensitivity of HT-29 cells to

FdUrd but sensitizes to ionizing radiation (IR). HT29 cells were

plated as single cells and allowed to adhere for 4 h. For the FdUrd

experiment (C), the cells were first exposed to the indicated

concentrations of KU-55933 for 15 min and then FdUrd was

added. Cells were then incubated for 24 h, washed, and cultured

for 10 d to allow colony formation. For the IR experiment (D), the

cells were exposed to the indicated concentrations of KU-55933

for 15 min, irradiated, washed after 24 h to remove the KU-

55933, and cultured for 10 d to allow colony formation.

(TIF)

Figure S2 APE1 depletion sensitizes HT29 cells to
FdUrd. Cells were transfected with control (Luc) or APE1

siRNAs. 48 h later, the cells were plated as single cells, treated

with the indicated concentrations of FdUrd for 24 h, washed, and

cultured for 10 d to allow colony formation.

(TIF)

Figure S3 Depletion of MSH2 and MLH1 disrupts
MNNG-induced G2/M cell cycle arrest. HT29 cells

transfected with control (Luc), MSH2, or MLH1 siRNAs were

incubated with 3 mM N-methyl-N9-nitro-N-nitrosoguanidine

(MNNG) for 24 h, stained with propidium iodide and analyzed

by flow cytometry for DNA content.

(TIF)
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