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Abstract: Bacteria synthesize a wide array of unusual carbohydrate molecules, which they use in a

variety of ways. The carbohydrate L-glycero-D-manno-heptose is an important component of
lipopolysaccharide and is synthesized in a complex series of enzymatic steps. One step involves

the epimerization at the C600 position converting ADP-D-glycero-D-manno-heptose into ADP-L-

glycero-D-manno-heptose. The enzyme responsible is a member of the short chain dehydrogenase
superfamily, known as ADP-L-glycero-D-manno-heptose 6-epimerase (AGME). The structure of the

enzyme was known but the arrangement of the catalytic site with respect to the substrate is

unclear. We now report the structure of AGME bound to a substrate mimic, ADP-b-D-mannose,
which has the same stereochemical configuration as the substrate. The complex identifies the key

residues and allows mechanistic insight into this novel enzyme.
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Introduction
The family of short-chain dehydrogenases/reductases

(SDRs) was described in the early 1980s. The first

known enzymes of this protein family were an alco-

hol dehydrogenase from Drosophila and a bacterial

ribitol dehydrogenase.1,2 They are 250–350 amino

acids long, bind nicotinamide adenine dinucleotide

(NADþ) or nicotinamide adenine dinucleotide phos-

phate (NADPþ), and are defined by the catalytic

triad Ser (Thr), Tyr, and Lys.3,4 The proteins cata-

lyze an apparently diverse array of reactions. How-

ever, at the chemical centre of each reaction is the

stereochemically controlled transfer of a proton and

two electrons (hydride) between NAD(P)þ and sub-

strate. For those enzymes that oxidize carbohy-

drates, normally the Tyr abstracts the proton from a

hydroxyl group and hydride is abstracted from the

carbon bearing the hydroxyl, forming a keto group.

The process works in reverse (keto reduction to

hydroxyl) and in many enzymes both the oxidation

and reduction steps occur within the same catalytic

cycle.

ADP-L-glycero-D-manno-heptose 6-epimerase (AGME),5

is a member of the SDR superfamily and catalyzes

the interconversion of the stereoisomers ADP-D-glyc-

ero-D-manno-heptose and ADP-L-glycero-D-manno-

heptose. This is the final reaction of the biosynthetic

route6 to the precursor of L-glycero-D-manno-heptose

(L,D-heptose),7 a component8 of the core domain of li-

popolysaccharide [Fig. 1(a)].9 Since lipopolysaccharide

is involved in maintaining the integrity of the struc-

ture of the outer membrane and protecting the
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organism against destructive intruders, it has long

been a target for therapeutic intervention.

AGME preferentially utilizes NADPþ but can

use NADþ (lower activity)10 and a chemical mecha-

nism for AGME has been established, which

involves transient oxidation of either stereoisomer of

ADP-heptose at the C600 stereogenic centre to form a

600-keto intermediate11,12 [Fig. 1(a)], which can then

be reduced to either stereoisomer. The crystal struc-

ture of AGME with ADP-a-D-glucose bound identi-

fied the catalytic site and the ‘‘triad’’ Tyr140, Ser116,

and Lys144.13 The structure left important mecha-

nistic questions open as the glucose moiety of the

nucleotide sugar was not well defined in most of the

structure and exhibits different orientations. ADP-a-

D-glucose differs from the ADP-b-L-glycero-D-manno-

heptose substrate in stereochemistry at C-100 and at

C-200 [Fig. 1(b)]. Thus though ADP is properly

located, the variable sugar ring positions do not

allow correct identification of the catalytic residues.

Site-directed mutagenesis studies combined with the

enzymatic dismutation of ADP-b-D-manno-hexodial-

dose (ADP-b-D-mannose bearing an aldehyde at

C-600) strongly suggested that two acid/base residues

were required for activity, Tyr140 (from triad) and

Lys178.14 Release and rebinding of the keto interme-

diate was excluded by demonstrating that the

hydride transfer occurred in an intramolecular fash-

ion.15 In this mechanism, the first oxidation would

occur by hydride transfer to NADPþ and Tyr140

would abstract the proton from the hydroxyl. The

C¼¼O of the keto-intermediate would rotate 180�

around the C-500AC-600 bond allowing reduction from

the opposite face and inversion of stereochemistry.11

Since the oxygen atom would apparently move such

a distance, that Tyr140 may no longer function as

the acid, Lys178 was proposed donate a proton to

the rotated keto group to restore the hydroxyl.14

The use of a second acid/base residue other than

the Tyr during the hydride transfer is unprece-

dented. We chose to examine the structural basis of

this by determining the crystal structure of AGME

with a sugar nucleotide in the b-manno configura-

tion. We now report the complex of Y140F AGME to

ADP-b-D-mannose (the C7 hydroxymethyl group of

the heptose is replaced by a hydrogen) to 2.35 Å

resolution [Fig. 2(a,b)].

Results

Overall structure
Interestingly our attempts using native protein

showed only NADPþ (or NADPH) and not ADP-b-

mannose bound to the crystals (data not shown). We

overcame this problem by cocrystallization of the

AGME mutant Y140F (0.08% epimerase activity

compared to the wild type14) with ADP-b-D-mannose.

Unsurprisingly, the mutant protein shares the same

fold as wild-type AGME and is found arranged as a

pentamer. There is no clear evidence that Cys78,

which was found to be oxidized in the previous

structure is oxidized here. Our discussion focuses on

one monomer from the high-resolution structure, as

the 10 monomers within the high-resolution crystal

form are essentially identical (average rmsd of 0.06

Å). This monomer is essentially identical to the 20

monomers in the lower resolution form <0.1 Å

rmsd), although in one of the 20 subunits (B), we

modeled only ADP. In one monomer two residues are

missing at the carboxyterminus (amino acids 309

and 310) the other nine subunits lack three residues

(amino acids 308–310). No disordered regions have

been observed in this structure and there is clear

electron density for one molecule of cofactor and one

of nucleotide sugar in each of the 10 monomers of

AGME Y140F.

The details of the NADPþ binding site are

almost unchanged from the native structure where

they were discussed in detail.13 There is one slight

change, we modeled NADPþ with the same amide

conformation as seen in other related SDR-enzymes.

Substrate-binding site
In 29 monomers of AGME Y140F, ADP-b-mannose is

bound to the active site in the same conformation

and in the one subunit with ADP bound, the common

atoms overlap. The average atomic temperature fac-

tors of ADP-b-mannose (both sugar and nucleotide)

are only slightly higher than for the NADPþ cofactor

Figure 1. Structures of the heptoses. (a) A two-base

mechanism for the interconversion of ADP-b-D-glycero-D-
manno-heptose and ADP-b-L-glycero-D-manno-heptose,

involves oxidation at C600, followed by rotation around C-500/

C-600, and then reduction at C-600. (b) ADP-b-D-mannose

(left) is a better mimic of the substrate than ADP-a-D-
glucose (right).
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and protein. The adenine moiety of ADP-b-mannose

interacts, as described previously.13 The most signifi-

cant differences between the bound nucleotide sug-

ars in this mutant ADP-b-mannose structure and

the previous wild-type ADP-a-glucose structure lie

in the sugar moieties. In ADP-b-mannose the O600 is

hydrogen bonded to the side chain of Ser116 and

through a water molecule bridge to O5 [Fig. 2(c,d)].

O400 hydrogen bonds to O2 of the ribose of NADPþ

and to the backbone carbonyl of Ser79 [Fig. 2(c,d)].

O300 hydrogen bonds to the Ser79 carbonyl and to

the side chain of Lys178. O200 hydrogen bonds to the

side chain of Lys178 and the backbone carbonyl of

Met181 [Fig. 2(c,d)]. The recognition of tethered sug-

ars is a complex balance between conformation of

the linkage and optimization of hydrogen bond net-

work.16 The C600 atom is positioned 2.9 Å from the

C4 atom of NADPþ [Fig. 2(c,d); Supporting Informa-

tion Figure 1]. Comparing the positions of mannose

from the AGME Y140F structure and glucose from

the previous structure depends on which subunit

of the glucose complex is considered. Monomer D of

Figure 2. The complex of AGME Y140F with ADP-b-D-mannose. (a) AGME is found as a pentamer and this arrangement as

well as the monomer fold is unchanged from previous descriptions. The NADPþ molecule is shown in spacefill with carbons

green, whereas ADP-b-D-mannose has carbons colored yellow; oxygen is colored red, nitrogen blue, phosphorous orange.

(b) AGME monomer A. The ligands are colored as above. (c) The active site of the AGME Y140F ADP-b-D-mannose complex.

The mannose carbohydrate makes extensive hydrogen bond interactions (shown as black dotted lines), consistent with

recognition. In the natural protein, the hydroxyl of Tyr140 would hydrogen bond with O600 of the carbohydrate. Lys178 is

located too far from the C600 atom to transfer protons. The route of hydride transfer is shown as a red dotted line. No other

residue is within hydrogen bond distance. (d) The same figures as (c) but rotated by 90�. (e) In the AGME Y140F structure,

the carbohydrate ring is oriented differently than seen in either monomer D (carbons colored grey) or monomer B (carbons

colored white) in the AGME/ADP-a-D-glucose complex. The ADP groups largely superimpose, the difference is only at the

carbohydrate. As the NADPþ groups superimpose they are not shown. [Color figure can be viewed in the online issue, which

is available at www.interscience.wiley.com.]
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the previous work is the closest, O600 and O500 are

positioned similarly and interact with Tyr(Phe)140,

Ser116, and Ala118 [Fig. 2(e)]. The other atoms of

the sugar occupy different positions [Fig. 2(e)]. The

orientation of glucose in monomers B of the ADP-a-

glucose AGME complex is completely different and

the sugar rings do not overlap [Fig. 2(e)].

Discussion

The C600 atom of mannose is positioned correctly,

both in distance and orientation, for transfer of

hydride to C4 of NADPþ. The dihedral angle minima

adopted by ADP-b-D-mannose are conserved in 29

monomers (one monomer in the lower resolution

form only has ADP modeled). This coupled to exten-

sive hydrogen bond recognition between protein and

carbohydrate suggest the interaction we observe in

the crystal is not an artefact (a known problem with

sugar nucleotide proteins17). Given the large differ-

ences with the ADP-a-glucose, we suggest that the

carbohydrate in the ADP-a-glucose/AGME complex

was not properly located at the active site residues

with respect to substrate. The multiple locations of

the glucose ring in the previous complex suggest

that the AGME active site is unusually plastic. The

new complex provides strong evidence in support of

a mechanism involving nonstereospecific oxidation/

reduction directly at C-600.12 Comparing the struc-

ture of AGME Y140F to that of the native structure

shows that the side chain of Phe140 superimposes

on Tyr140. In devising a mechanism, we made a

simple conceptual model in which Phe140 reverts

back to Tyr140 (addition of simple hydroxyl) and one

of the hydrogen attached to C600 of ADP-b-mannose is

replaced by a hydroxymethyl group (creating the

authentic substrate). Our structure indicates that

Lys178 is located too far (7.7 Å) from the O600 of man-

nose to be involved in proton transfer at O600. Rotat-

ing around the C-500AC-600 bond by 120� brings O600

closer to Lys178 but at 6.2 Å it is still too distant.

The 1000-fold reduction in activity of the K178M mu-

tant could be explained by the side chain’s hydrogen

bonds to O300 and O200 of mannose. The additional hy-

droxymethyl group on the substrate would however

clash with the presumed location of the Tyr140

hydroxyl. This clash could be alleviated by either

rotating around the C-500AC-600 bond of the substrate

by 120� (in which case forming a hydrogen bond

between O600 and Tyr140) or by rotating around the

CaACb bond of Tyr140 (which would also lead to for-

mation of a hydrogen bond between O600 and Tyr140).

The structure supports Tyr140 playing its con-

ventional role of proton abstraction to promote

hydride transfer, it is positioned close to the O600

atom and to Lys144 as would be expected. However,

there is no other additional residue that could readily

act as an acid/base catalyst. Although a large scale

protein conformational change cannot be excluded,

this would seem unlikely as the key requirement is

always to keep the C600 atom properly positioned rel-

ative to NADPþ. Further, since we have crystallized

a model of the ternary complex (both nucleotides

bound), the potential driving force of such a large

change is unclear. If this is so, then the simplest

explanation is that Tyr140 acts in both steps (Sup-

porting Information Figure 2a,b). In its current con-

formation (CaACb chi angle ¼ 164 �), Tyr140 would

abstract the proton from the (R) configuration at

C600 forming the keto intermediate. This keto sugar

is now free to rotate 180� around the C-500AC-600

bond. This motion would preserve the relative orien-

tations of C600 and NADP required for hydride trans-

fer and the inversion of stereochemistry. This

substrate rotation would essentially put a hydroxy-

methyl group adjacent to the hydroxyl of Tyr140. To

preserve the hydrogen bond to O600 (and to reduce

the clash with the C700 hydroxymethyl group),

Tyr140 would need to rotate by about 30� around

the CaACb bond, to a second position. In position 2

(CaACb chi angle ¼ 135�) protonated Tyr140 would

transfer its proton to O600 of the keto intermediate,

and hydride transfer would generate the (S)-config-

ured epimer (Fig. 3). The structure does not reveal

any residues which would block this movement,

although it would mean Tyr140 adopting an energet-

ically less favorable conformer. In the reverse reac-

tion, the (S)-configured substrate would initially

bind with Tyr140 in position 2, and following oxida-

tion and ketone rotation, Tyr140 would move to posi-

tion 1 to promote hydride transfer to the opposite

face. In this model we have not allowed any move-

ment of the carbohydrate ring or any change in the

protein structure (beyond a rotation of the Tyr140

side chain). There will have to be some other small

Figure 3. A one base mechanism for the interconversion of

ADP-b-D-glycero-D-manno-heptose and ADP-b-L-glycero-D-
manno-heptose, requires that Tyr140 adjusts its position in

response to rotation around the C-500AC-600 bond.
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adjustments to avoid hydrophobic clashes between

C700 of the substrate, and movement of Ser116 would

presumably accompany that of Tyr140 to maintain

its role in assisting proton abstraction.

The AGME Y140F ADP-b-mannose structure

suggests a one-base mechanism is operative for epi-

merization, consistent with the mechanism of other

members of the SDR superfamily. However, the

structure does not explain the experimental evidence

that was presented in support of a two-base mecha-

nism.11 A dismutation reaction that converts ADP-b-

D-manno-hexodialdose (ADP-b-D-mannose bearing an

aldehyde at C-600) into a mixture of ADP-b-D-man-

nose and ADP-b-D-mannosuronic acid is catalyzed by

AGME.11 When Tyr140 was mutated to Phe, the

rate of dismutation only dropped by a factor of five

essentially requiring that an alternate base was

available to promote hydride transfer.14 Lys178 was

identified as the most likely candidate. It is conceiv-

able that significant conformational changes could

occur during the lifetime of the 600-keto intermediate

and reposition the substrate and/or enzyme in an

orientation where a second base could participate.

Such a dramatic reorientation has been observed in

the closely related enzyme UDP-galactose 4-epimer-

ase where the hexose ring undergoes a 180� rotation

within the active site during catalysis.18 Initial

structural studies on this enzyme only showed the

conformation adopted by UDP-glucose,19,20 and it

was not until the structure of a double mutant bear-

ing bound UDP-galactose was solved that the con-

formational change was visualized.21 Given these

observations, and the observed ‘‘plasticity’’ of the

AGME active site seen in the wild-type ADP-a-glu-

cose structure, it would be premature to rule out the

two-base mechanism at this time.

The structure of AGME Y140F in complex with

ADP-b-mannose, a substrate mimic in the b-manno

configuration clearly suggests a one base mechanism

of AGME. Thus, we provided more insight into the

mechanism of this extended short-chain dehydrogen-

ase/reductase which could help in the design of inhib-

itors against AGME. Further work could also include

measurements of their inhibitory potencies and crys-

tal structures of AGME/inhibitor complexes could vis-

ualize interactions of inhibitors with this epimerase.

Materials and Methods

Protein expression, purification, and

cocrystallization
The E. coli strain BL21 (DE3) was transformed with

hldD-Y140F cloned into the pET-30 Xa/LIC vector

(N-terminal 6x His-tag and a Factor Xa cleavage

site) (Novagen) for overexpression of the mutated

hldD gene. The procedure used followed that previ-

ously described and employed metal affinity, hydro-

phobic affinity, and size exclusion. Analysis of

enzyme purity was carried out by sodium dodecyl

sulfate-polyacrylamide gel electrophoresis and mass

spectrometry confirmed integrity and identity. Pure

protein was concentrated to 4.1 mg mL�1 in 20 mM

Table I. X-ray Data Collection and Refinement Statistics

Data collection AGME Y140F AGME Y140F

k (Å) 0.954 1.542
Resolution 39–2.35 35–2.8
High-resolution shell (Å) (2.39–2.35) (2.85–2.8)
Space group C2 P21

Cell (Å, �) a ¼ 342.0, b ¼ 60.8, c ¼ 191.8 a ¼ 138.1, b ¼ 162.4, c ¼ 185.0
a ¼ c ¼ 90, b ¼ 91.4 a ¼ c ¼ 90, b ¼ 101.4

Unique reflections 162,824 197,672
Average redundancy 1.9 (1.7) 3.6 (3.5)
I/r 27 (5.2) 15.3 (1.8)
Completeness (%) 99 (92) 97 (92)
Rmerge 0.044 (0.192) 0.092 (0.808)
Refinement
Rwork (%) 18.6 (23.4) 25.2 (46.7)
Rfree (%) 20.6 (27.1) 27.2 (49.7)

Number of atoms [average B value (Å2)]
Protein 24,411 (49) 48,800 (12)
Water 1546 (33) 925 (27)
NADPþ 480 (41) 960 (16)
ADP-b-mannose 380 (50) 722 (17)
ADP 0 27 (18)
Glycerol 60 (51) 0
Chloride 2 (61) 0

Average NCS deviations [rmsd (Å)] 0.07 0.08
rmsd bonds (Å)/angles (�) 0.006/1.03 0.013/1.52
Ramachandran favored/disallowed (%) 97.7/0.6 97.4/0.7
Molprobity score (centile) 1.54 (99) 1.67 (100)
PDB code 2x6t 2x86
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Tris-HCl, pH 7.5, 50 mM NaCl, 1 mM DTT and

ADP-b-D-mannose added to a final concentration of 1

mM. ADP-b-D-mannose was prepared as described

previously.14 The sample was then incubated for 2 h

at room temperature before being tested for crystal-

lization. The best crystals were obtained in 1–2

weeks by vapor diffusion of drop (1.5 ll protein þ
1.5 ll precipitant) against a reservoir containing 100

ll precipitant (2M (NH4)2SO4, 0.1M HEPES-Na, pH

7.1, 2% PEG 400).

Structure solution and refinement

Before data collection crystals were cryoprotected by

immersion in a solution containing 2M ammonium

sulfate, 0.1M HEPES-Na, pH 7.1, 2% PEG 400,

2 mM ADP-b-mannose and 15% glycerol for 5 min.

Diffraction data were collected at 100 K at a wave-

length of 0.954 Å on beamline BM14 at the ESRF,

Grenoble. Data from one crystal to 2.35 Å resolution

were collected in 0.5� oscillations with a 10 s expo-

sure. Indexing and merging of the data were per-

formed using Denzo and Scalepack in the integrated

package HKL2000.22 The structure was solved by

molecular replacement using Molrep.23 A monomer

(monomer A) of the already solved AGME structure

(PDB accession code 1EQ2) was used as a search

model, all ligands and water molecules were

removed prior to search.13 A solution was found for

10 monomers in the asymmetric unit. Solutions

were also found searching with a pentamer.

REFMAC524 was used to refine the structure and

TLS parameters, isotropic B-factors and noncrystal-

lographic symmetry (NCS) restraints were applied

throughout. TLS regions were determined using the

TLS server as a guide,25 three regions were chosen,

residues, 1–106, 107–198, and 198 to 307. NCS

restraints were applied to separately to the three

regions. These were restrained to ‘‘tight main chain

and medium side chain.’’ Manual adjustment includ-

ing adding ligands was carried out with COOT.26

Ligands were added to experimental electron density

when they were clearly visible in the Fo-Fc map

(Supporting Information Figures 3 and 4; Support-

ing Information Table 1). As each ligand was added

it was compared with the others to determine

whether the dihedral angles which determine the

orientation of the ligand in the protein adopted the

same minima. In every case it was unambiguous,

the ligands adopt the same dihedral angles. The

quality of the electron density does vary between

subunits, the Fo-Fc electron density for the nicotina-

mide and carbohydrate rings were notably weaker

than adenosine and phosphate moieties. Both

ligands were individually restrained by noncrystallo-

graphic symmetry since we decided that the differ-

ences from a common minima were unlikely to be

functionally significant. One crystallization experi-

ment yielded a different crystal form. This crystal

was frozen prior to data collection and the home

source (007HF & SATURN 944 CCD Rigaku) used to

collect data. The lower resolution form was solved

using a pentameric search model, after rigid body

refinement of the monomers, the structure was

refined in a similar manner to the high-resolution

form (using same TLS regions). Ligands were built

into difference electron density, comparing the dihe-

dral angles. In the final stages, the ‘‘local’’ option of

REFMAC5.624 was used to restrain NCS. Glycerol

molecules were modeled in the high-resolution struc-

ture but were remote from the active site. The final

models were checked and validated using MOLPRO-

BITY.27 Data and refinement statistics are shown in

Table I.
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