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Background. A large number of cancer-related deaths in the world can be attributed to liver hepatocellular carcinoma (LIHC).-e
purpose of this study is to explore protein tyrosine phosphatase type IV A member 3 (PTP4A3/PRL-3) as a new and reliable
biomarker to predict the prognosis of LIHC and determine the potential therapeutic targets or drugs that can be used for treating
LIHC. Methods. We included three LIHC datasets with clinical information and expression profiles from public databases. -e
expression level of PTP4A3 was analyzed, and based on the results, the samples were divided into high- and low-expression
groups. -e Kaplan–Meier survival analysis method was used to determine the relationship between PTP4A3 and prognosis. -e
enrichment differences among the functional pathways associated with the high- and low-expression groups were determined
using the gene set enrichment analysis (GSEA) method. Five methods were used to determine the differences among the tumor
microenvironment in the low- and high-expression groups. -e sensitivity of the low- and high-expression groups toward
different drug treatment methods was predicted by analyzing the Tumor Immune Dysfunction and Exclusion (TIDE) scores and
determining the biochemical half-maximal inhibitory concentration (IC50). Results. -e expression levels of the LIHC and
adjacent samples were analyzed, and it was observed that the expression level of PTP4A3 in tumor tissue was significantly higher
than the expression level of the same gene in the adjacent samples. It was also inferred that it might be a cancer-promoting gene. It
was concluded that high-expression results in a significantly poor prognosis.-e high-expression group was significantly enriched
in the tumor-related pathways, such as the PI3K-AKTsignaling pathway. In addition, the results obtained by conducting immune
infiltration analysis revealed a significant positive correlation between some immune scores and the gene PTP4A3. -e drug
KIN001−135 and gene PTP4A3 were also found to correlate positively with each other. CP466722, Pyrimethamine, AKT inhibitor
VIII, Embelin, Cisplatin, QS11, Bexarotene, and Midostaurin negatively correlated with PTP4A3 associated with the three
datasets. Moreover, the drugs Cisplatin, QS11, Midostaurin, and CP466722 were more sensitive toward the high-expression group
than the low PTP4A3 expression group. Significant differences were observed in these cases. Conclusion. PTP4A3/PRL-3 is
potentially associated with the progression, metastasis, and invasion of LIHC. -e prognosis of LIHC patients is negatively
impacted by the high-expression levels of the gene. -e results indicate that PTP4A3/PRL-3 is an important prognostic factor for
LIHC and is a new potential prognostic detection target.-e discovery of the 8 drugs that were negatively associated with PTP4A3
provided a new direction that can be developed in the future for the treatment of LIHC.
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1. Introduction

-e most common type of primary liver cancer is liver
hepatocellular carcinoma (LIHC). -e incidence and mor-
tality rate of LIHC hold on a high level especially in ages over
than 40 [1] and are closely related to advanced liver disease
[2–5]. -is malignancy is considered the primary cause of
death in patients with liver cirrhosis. Liver cirrhosis is also an
important indicator that is used for monitoring and
screening the occurrence of LIHC [6–8]. Although immense
progress has been made in the field of surgery and medicine,
LIHC is one of the most common causes of tumor-related
deaths in the world. Most patients suffering from LIHC are
diagnosed at an advanced stage of the disease. Patients at an
advanced stage of LIHC cannot be treated following the
process of surgical resection [5]. -e survival rate recorded
for most of the patients treated surgically was found to be
poor [9–11]. It has been observed that there is a lack of useful
prognostic markers for the prognosis prediction of LIHC.
Patients who are at a similar tumor stage or are characterized
by a similar pathological structure may have a significantly
different prognosis, and this can be attributed to individual
differences [12, 13]. -erefore, it is important to explore new
and reliable biomarkers to predict the prognosis of LIHC.

Apart from the phosphorylation-related enzyme protein
tyrosine kinase [14], the phosphorylation-related enzyme
protein tyrosine phosphatase (PTP) is a suitable therapeutic
target for cancer [15]. It also significantly affects the pro-
cesses of tumorigenesis and progression [15]. It has been
widely reported that PTPs are potential therapeutic targets
[16–18]. However, the amount of data available on the role of
PTPs in LIHC is lesser than the amount of data available on
the role of protein tyrosine kinases (PTKs). Various PTK
inhibitors, such as sorafenib and regorafenib, are prescribed
to patients in their advanced stages of LIHC [19]. However,
high survival rates and satisfactory results have not been
obtained using these drugs. PTPs also regulate the process of
protein phosphorylation. An imbalance in the levels of PTKs
(or PTPs) can result in the abnormal phosphorylation of
various downstream proteins. -erefore, we focused on the
therapeutic potential of PTPs for the treatment of LIHC.

-e protein tyrosine phosphatase 4A (PTP4A) family is
commonly known as the phosphatases of regenerating liver
(PRL). -is family consists of three members of phospha-
tases and plays an important carcinogenic role in various
human cancers. -e analysis of literature reports reveals that
multiple PRL inhibitors have been reported over the years
[20]. -erefore, it is important to understand the role of
PRLs in the incidence and progression of LIHC. Previous
studies have shown that PRL-1 is overexpressed in LIHC and
promotes LIHC cell migration and invasion through en-
dothelial mesenchymal transformation (EMT) [21]. It has
also been reported that the prognosis of patients is negatively
affected by the upregulation of PRL-3 in LIHC [22, 23].
However, comprehensive information on the molecular
mechanism associated with PRL-3 (also known as PTP4A3,
hereinafter collectively referred to as PTP4A3) that pro-
motes the development of LIHC is not yet available.

We first analyzed the expression profile and prognosis
based on the mRNA expression levels and clinical data
corresponding to patients suffering from hepatocellular
carcinoma. -e relevant data were obtained from the public
datasets. We studied the differential genes in the high- and
low-expression groups of PTP4A3 and analyzed the function
of the gene. In addition, we also compared and analyzed the
immune microenvironment of different PTP4A3 expression
levels in LIHC. -e results revealed that some immune
scores correlated positively with PTP4A3. Finally, we
identified 8 drugs that negatively correlated with PTP4A3.
-e results confirm the carcinogenic effect of PRL-3 in LIHC
and help identify new targets and treatment methods
for LIHC.

2. Methods

2.1.DataSourceandPreprocessing. -eTCGA-LIHC dataset
(hereinafter referred to as the TCGA dataset) was originally
derived from the Cancer Genome Atlas (TCGA) database. It
was downloaded from the UCSC Xena data portal. -e
database contained RNA sequencing (RNA-seq) data for
LIHC and normal samples. It also contained clinical in-
formation and somatic mutation data.

-e TCGA-LIHC dataset (hereinafter referred to as
TCGA dataset) was originally derived from -e Cancer
Genome Atlas (TCGA) database. It was downloaded from
the University of California Santa Cruz (UCSC) Xena data
portal (https://xenabrowser.net/). -e dataset contained
RNA sequencing (RNA-seq) data corresponding to LIHC
and normal samples. It also contained clinical information
and somatic mutation data. For RNA-seq data, the data in
the fragments per kilobase of transcript per million mapped
reads (FPKM) format were converted to the transcript per
million (TPM) format. Following this, log2 conversion was
realized. -e downloaded somatic mutation data contained
information on single nucleotide variations (SNVs) and
copy number variations (CNVs). -e SNV data were pro-
cessed using MuTect tool, and the CNV data were processed
using the Genomic Identification of Significant Targets in
Cancer (GISTIC) algorithm. Data on methylation was
downloaded from the LinkedOmics data portal (https://
www.linkedomics.org/login.php). Finally, 365 LIHC sam-
ples were identified from the TCGA dataset.

-e chip data (corresponding to LIHC) were obtained
from the Gene Expression Omnibus (GEO) database
(https://www.ncbi.nlm.nih.gov/geo/).-e GSE14520 dataset
was considered, which contained data associated with the
expression profile and survival rates. -e chip probe was
converted into gene symbols. -e samples lacking clinical
follow-up information, survival time, status, and expression
profile data were removed, and 221 LIHC samples were
finally included in the studies.-e LIHC expression data and
survival data for ICGC-LIRI-JP (also known as HCCDB18)
were downloaded from the HCCDB website, which was
accessed through https://lifeome.net/database/hccdb/
download.html. Finally, 203 LIHC samples were included
to conduct the studies.
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2.2. Analysis and Construction of the Survival Model. -e
TCGA dataset was considered, and the differentially
expressed genes (DEGs) in the high- and low-expression
groups of PTP4A3 were identified using the limma package
[24]. -e genes were filtered based on the threshold false
discovery rate (FDR) <0.05 and log2(fold change, FC) >1.5.
We analyzed different datasets and used survminer (R-
package; accessed through https://CRAN.R-project.org/
package�survminer) to obtain the best cut-off values for
the genes. -e samples were divided into high- and low-
expression groups based on the best cut-off values, and the
Kaplan–Meier (KM) survival curve was generated.

2.3. Gene Set Enrichment Analysis (GSEA) and Functional
Annotation. We used “GSEA” [25] for pathway analysis to
study the pathways associated with different molecular
subtypes. We used the GSEA method using all candidate
gene sets in the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway provided by the MSigDB database to
conduct the studies [26]. -e input file for GSEA contains
the data on the expression profile, and the sample label
marks the sample as a high group or a low group. Further, we
used the Gene Ontology (GO) function enrichment analysis
and KEGG pathway analysis methods to study the differ-
ential genes in the LIHC groups using WebGestaltR (v0.4.2;
R software) [27]. Subsequently, the results of the “GSEA”
pathway analysis were filtered under conditions of P< 0.05
and FDR <0.25.

2.4. Analysis of Tumor Immune Microenvironment.
Convolution and deconvolution are common algorithms
in the field of deep learning. Each sample is a mixture of
multiple immune cells. -e linear regression method is
used to fit the relationship between the composition and
expression of each immune cell and the final mixture. -e
expression characteristics of each immune cell are
extracted using the deconvolution algorithm. Methods
(based on the expression characteristics) to realize the
deconvolution of the cell mixtures include the Tumor
IMmune Estimation Resource (TIMER2) [28, 29].
TIMER2 is one of the most commonly used immune
infiltration analysis methods in the field of bioinformatics
analysis. -e microenvironment cell populations-counter
(MCP-counter; R package) [30] can be used to quantify
the absolute abundance of 2 stromal cells and 8 immune
cells present in heterogeneous tissues. -e package is used
to analyze the normalized transcriptome data to arrive at
the results. -e score presents the degree of infiltration in
the immune microenvironment, and the abundance of
cells cannot be compared with each other. -e Estimation
of STromal and Immune cells in MAlignant Tumour
tissues using Expression data (ESTIMATE) [31] package
cannot be used to score specific immune cell infiltration
but can be used to only analyze the purity of the immune
cells and tumor cells and the abundance of stromal cells.
Estimating the Proportion of Immune and Cancer cells
(EPIC) [32] package can be used to analyze the levels of
infiltration of the 8 kinds of immune cells (cancer-

associated fibroblasts (CAFs), B cells, CD8 + T cells,
CD4 + T cells, natural killer (NK) cells, endothelial cells,
and macrophages) based on the expression data. -e al-
gorithm associated with EPIC uses the constrained least
square regression method to explicitly incorporate non-
negative constraints into the deconvolution problem. -e
algorithm is also used to meet the criterion that the sum of
all cell fractions in each sample should be less than one.
Under these conditions, based on the operation results, we
can directly analyze the differences among various cell
components of the sample. For example, a significant
decrease in the proportion of B cells, CD8 + T cells, and
NK cells indicates that the extent of immune response in
the tissue gets inhibited, the recruitment process of im-
mune cells gets hindered, and the tumor immunity gets
inhibited. -e increasing number of CAFs also contrib-
utes the immunosuppressive environment and the de-
velopment tumors.

Finally, we used EPIC [32], MCP-counter [30],
TIMER2 [28, 29], ESTIMATE [31], and ssGSEA [25] to
analyze the immune infiltration levels of LIHC and
evaluate the tumor immune scores of the samples. In
short, EPIC, MCP-counter, TIMER, and ssGSEA can be
used to determine the composition of different immune
cells. -e ESTIMATE package can be used to evaluate
tumor purity, stromal cell score, immune cell score, etc.,
for each sample. -e expression of a single gene can be
correlated with these immune invasion values. -is
method considers the marker genes corresponding to
different immune cells as the gene set and uses an algo-
rithm similar to GSEA to evaluate whether the highly
expressed genes in the sample are enriched in the gene set
of different immune cells.

2.5. Drug Sensitivity Analysis. -e Tumor Immune Dys-
function and Exclusion (TIDE) [33] analysis method can be
used to identify biomarkers for the prediction of the efficacy
of immune checkpoint inhibitors or drugs by comprehen-
sively analyzing hundreds of different tumor expression
profiles. -e sensitivity of immune checkpoints can be
determined by obtaining the TIDE score following the
process of TIDE analysis. In addition, to estimate the risk
score of predicting the molecular drug response, we used the
“pRRophetic” R software package [34] to evaluate half of the
maximum inhibitory concentration (IC50) values of the
drugs based on the expression profile obtained from dif-
ferent datasets. Following this, we determined the correla-
tion between these drugs and the gene (PTP4A3) in different
datasets.

2.6. Statistical Analysis. All statistical analysis and visuali-
zation methods were performed using R software (4.1.0).
Clinical features were expressed as mean± standard de-
viation or n (%).-e Benjamini–Hochberg method was used
to control the FDR value. Adjusted P values below 0.05 were
considered significant. -e Pearson correlation analysis
method was used to correlate the identified features and
clinical parameters.
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3. Results

3.1. PTP4A3 Expression Is Associated with the Overall
Survival. We first assessed the expression level of PTP4A3 in
tumor and normal (tumor-adjacent) samples. A significantly
high differential expression level was observed between the
two groups. -e PTP4A3 expression levels of the tumor
samples in all three independent datasets (TCGA,
HCCDB18, and GSE14520) were significantly high
(Figures 1(a)–1(c)), indicating that PTP4A3 could poten-
tially play an oncogenic role in LIHC. To understand
whether the level of PTP4A3 expression was associated with
overall survival, we classified LIHC samples into two groups
based on the optimal cut-off value of the PTP4A3 expression
level. -e optimal cut-off value was determined following
the KM survival analysis method. -e results revealed that
the two groups (in the three datasets) were characterized by
different overall survival rates (Figures 1(d)–1(f)). A sig-
nificant difference was observed for the TCGA and
GSE14520 datasets (P� 0.016 and P� 0.0011, respectively),
while a significant difference was not observed for the
HCCDB18 dataset (P� 0.2).

-ere were significant differences between the TCGA
and GSE14520 datasets. -e groups with high PTP4A3
expression levels exhibited poor prognoses. LIHC samples
were divided into two groups based on the optimal cut-off
for PTP4A3. -e high-expression group of PTP4A3 was
characterized by a higher risk than the low-expression
group, indicating that PTP4A3 was a risk factor for LIHC.

3.2. Relationship between the PTP4A3 Expression Level and
Mutation. We further analyzed the samples and found that
the mutation frequency of PTP4A3 in LIHC was 1%. Fol-
lowing this, we mapped the 10 genes that were characterized
by the highest mutation frequency in the low- and high-
expression groups. -e results revealed that the mutation
frequencies corresponding to TTN, TP53, CTNNB1,
MUC16, ALB, RYR2, and other genes in the high-expression
group were higher than the mutation frequencies of the
genes belonging to the low-expression group (Figure S1A). It
was also observed that PTP4A3 mutated in the high-
expression group but not in the low-expression group
(Figure S1B). Subsequently, we analyzed the differences in
the TMB associated with the low- and high-expression
groups. A significant difference was not observed
(Figure S1C).

We also analyzed the amplification and deletion pro-
cesses associated with PTP4A3 and compared the expression
levels of PTP4A3 in the different groups. It was found that
the group with amplified PTP4A3 (gain group) was char-
acterized by the highest expression level, which was sig-
nificantly higher than diploid group (Figure S1D). -e
correlation between the expression of PTP4A3 and the
degree of methylation was determined and plotted. -e
results revealed that the expression of PTP4A3 negatively
correlated with the methylation of PTP4A3 (Figure S1E),
suggesting that the higher methylation level corresponded to
lower expression level.

3.3. DEGs in Different PTP4A3 Expression Groups. -e
significantly enriched pathways in the low- and high-
expression groups were analyzed using the GSEA method.
-e results revealed that, in the TCGA dataset, angiogenesis,
EMT, hypoxia, and other pathways that were associated with
the invasion and metastasis processes were significantly
enriched in the high-expression groups. -is indicates that
the high-expression level of PTP4A3 can be potentially
associated with the processes of metastasis and invasion
(Figure 2).

For the TCGA dataset, we obtained 2212 DEGs for the
high- and low-expression groups of PTP4A3. Of these, 1831
genes were upregulated, and 381 genes were downregulated.
For the downregulated genes associated with LIHC, several
significant GO function annotation entries were identified
(FDR <0.05). Of these, 1093 items with a significant dif-
ference in biological process (BP) were annotated
(Figure S2A), 158 items with significant differences in cel-
lular component (CC) were annotated (Figure S2B), and 103
items with significant differences in molecular function
(MF) were annotated (Figure S2C). For the KEGG pathways
enriched by the downregulated expression genes (FDR
<0.05), 59 were annotated (Figure S2D). Among them, the
ECM−receptor interaction pathways, TNF signaling path-
way, pathways associated with cancer, PI3K-AKT signaling
pathway, and other tumor-related pathways were signifi-
cantly enriched.

For the upregulated genes associated with LIHC, several
significant GO function annotation entries were identified
(FDR <0.05), of which 417 entries with significant differ-
ences in BP were annotated (Figure S3A), 30 entries with
significant differences in CC were annotated (Figure S3B),
and 96 entries with significant differences in MF were an-
notated (Figure S3C). -e upregulated genes associated with
LIHCwere enriched in the case of the KEGG pathways (FDR
<0.05), and 37 entries were annotated (Figure S3D). -e
pathways associated with retinol metabolism, cholesterol
metabolism, metabolism of xenobiotics (in the presence of
cytochrome P450), tryptophan metabolism, and other
metabolic events were significantly enriched.

3.4. Comparative Analysis of the Immune Microenvironment
of the Different PTP4A3 Expression Groups in LIHC. We
identified 5 types of genes from literature reports [35]. -ese
are associated with chemokine, immunostimulator,
immunoinhibitor, major histocompatibility complex
(MHC), and receptor. -e correlation between PTP4A3 and
these genes was analyzed for different datasets. -e results
revealed that PTP4A3 showed a significant positive corre-
lation with these 5 types of genes associated with the TCGA
and HCCDB18 datasets. It was also observed that there was
no significant correlation between PTP4A3 and most of
these 5 types of genes associated with the GSE14520 dataset
(Figure 3).

-e differential expression levels of the 5 types of
immune-related genes were analyzed by taking into con-
sideration the different expression groups of PTP4A3
(Figures S4A–S4E). Most of the 5 different types of genes
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exhibited significant differences, and most of them were
highly expressed in the high-expression group.

EPIC, MCP-counter, TIMER, ESTIMATE, and ssGSEA
were used to analyze the LIHC immune infiltration levels in
different datasets. Following this, the correlation between
the PTP4A3 expression levels and their scores was

determined.-e results revealed that the PTP4A3 expression
level positively correlated with the immune scores (corre-
sponding to the TCGA and HCCDB18 datasets) determined
using different software systems. Most immune scores were
not related to PTP4A3 in the GSE14520 dataset, while some
immune scores correlated positively with PTP4A3. TIMER
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was used for the evaluation of CD4 T cells and B cells, and
EPIC was used for the evaluation of the CD4 T cells. -ree
immune scores were determined using ESTIMATE, the
MCP-counter software was used for the evaluation of Tcells,
and the ssGSEA method was used for the evaluation of the
activated CD4 Tcells, regulatory Tcells, NK Tcells, activated
B cells, etc.

-e differential expression of immune scores obtained
using EPIC, MCP-counter, TIMER, ESTIMATE, and
ssGSEA for the different expression groups of PTP4A3 was
analyzed (Figures S5A–S5C). We observed that the immune
cell enrichment score corresponding to the high-expression
group was generally higher than that of the low-expression
group. -e results agreed well with the results obtained
following the correlation analysis method. We continued to
analyze the correlation between PTP4A3 and the 5 software-
derived immune scores. Significant correlations between
immune scores and PTP4A3 expression were shown in three
datasets, among which is the HCCDB18 dataset (Figure 4).

3.5. Relationship between PTP4A3 and Drug Sensitivity.
-e results reveal that the expression of PTP4A3 correlates
significantly with disease prognosis and the tumor micro-
environment. -is indicated that PTP4A3 could potentially
play an important role in the development of LIHC.
-erefore, we believe that PTP4A3 can be used as a potential
drug target. -e sensitivity of the low- and high-expression
groups toward chemotherapeutic drugs, targeted drugs, and
immunotherapeutic drugs was evaluated to validate this
hypothesis. -e correlation between the 52 drugs and
PTP4A3 for different datasets was determined. It was ob-
served that the 9 drugs correlated significantly with the
PTP4A3 expression levels recorded for the three datasets
(Figure 5(a), |R|> 0.15, P< 0.05). However, only
KIN001−135 positively correlated with PTP4A3 expression
in all three datasets (P< 0.0001). -e 8 drugs (CP466722,
Pyrimethamine, AKT inhibitor VIII, Embelin, Cisplatin,
QS11, Bexarotene, and Midostaurin) correlated negatively
with PTP4A3 in the case of all the three datasets.

Next, the differences in the IC50 values of the 9 drugs
associated with different PTP4A3 expression groups in
different datasets were compared (student t-test,
Figures 5(b)–5(d)). -e results revealed that the drug
KIN001−135 was more sensitive toward the low-expression
group of PTP4A3 (P< 0.001). Cisplatin, QS11, midostaurin,
and CP466722 were more sensitive toward the high-
expression group of PTP4A3 associated with the three
datasets (P< 0.01).

-e differences in the effects of immunotherapy among
the different expression groups of PTP4A3 belonging to
different datasets were analyzed.-e potential clinical effects
of immunotherapy on the defined groups were assessed
using TIDE (https://tide.dfci.harvard.edu/). An increase in
the TIDE prediction score resulted in an increase in the
possibility of immune escape. -is indicated that patients
were less likely to benefit from immunotherapy under these
conditions. We determined the correlation between PTP4A3
and TIDE, dysfunction, exclusion, myeloid-derived

suppressor cells (MDSSs), CAFs, and tumor-associated
macrophage (TAM).M2 scores obtained for different
datasets (Figure 6). -e results revealed that PTP4A3
exhibited a significant positive correlation with TIDE, ex-
clusion, MDSC, and CAF when different datasets were
studied. -is indicates that an increase in the expression
level of PTP4A3 can potentially reduce the positive effects of
immunotherapy on patients.

We compared the differences in the TIDE scores of
different PTP4A3 expression groups belonging to different
datasets (Figures 7(a)–7(c)). Different datasets were studied,
and it was observed that the TIDE score corresponding to
the high-expression group was significantly higher than the
TIDE score recorded for the low-expression group. -is
indicated that the low-expression group was more re-
sponsive toward immunotherapy than the high-expression
group. In addition, the exclusion and CAF scores corre-
sponding to the low-expression group were lower than those
of the high-expression group.

4. Discussion

It has been previously reported that PTP4A3 plays a variety
of roles in the process of cancer metastasis. Cell differen-
tiation, invasion, proliferation, and metastasis are induced
by PTP4A3 when a series of intracellular signaling pathways
are activated [36–38]. Moreover, the upregulation of
PTP4A3 in LIHC exerts a negative effect on the patients’
prognosis [22, 23]. It also promotes the progress of LIHC
[39]. Comprehensive studies on PTKs that function as
biomarkers and PTPs that function as tumor markers have
not been conducted to identify potential therapeutic targets
or drugs that can be used to treat LIHC. Reports in the field
are rare, and further studies should be conducted to gain in-
depth knowledge. We used three different public datasets for
comprehensive expression and drug sensitivity analysis. -e
results obtained by conducting a comprehensive analysis
revealed that PTP4A3 was a new and reliable potential
marker that could predict the prognosis of LIHC. -e
corresponding targets and drug candidates could also be
identified.

We analyzed the TCGA, GEO, and HCCDB18 datasets
and observed that the expression levels of PTP4A3 in tumors
were significantly higher than the expression levels recorded
for the adjacent samples. -is indicated that PTP4A3 might
be a cancer-promoting gene in LIHC.-e results agreed well
with previously reported results [36]. It was also observed
that poor prognosis was associated with high-expression
levels of PTP4A3. -e results revealed that PTP4A3 dictated
patient survival and was associated with poor prognosis. It
has been previously reported [22–40] that TGFB1 can be
used as a downstream molecule of PTP4A3. In other words,
the process of TGF-β signal transduction mediates the
PTP4A3-induced FAK activation process. PI3K/AKT and
p38 pathways mediate the PTP4A3-induced TGFB1 ex-
pression and subsequent FAK activation processes, which in
turn stimulate the activation of the PI3K/AKT and p38
pathways.-is results in the generation of a PRL-3-triggered
AKT/p38/TGFB1/FAK positive feedback loop. -e results
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Figure 5: Drug sensitivity analysis of PTP4A3 for the three datasets. (a) Correlation analysis for drug sensitivity and PTP4A3. (b)
Distribution of the 9 drugs in the different expression groups of PTP4A3 in the TCGA dataset. (c) Distribution of 9 drugs in different
expression groups of PTP4A3 in the HCCDB18 dataset. (d) Distribution of 9 drugs in different expression groups of PTP4A3 in the
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agree well with the results reported herein. -e down-
regulated gene set in the TCGA dataset was significantly
enriched in pathways associated with cancer, PI3K-AKT
signaling pathway, TNF signaling pathway, and other related
pathways. -e AKT inhibitor VIII negatively correlated with
PTP4A3 in all three datasets. -is was in line with the ex-
pectations. -e results confirm and validate the reliability of
the reported method. -e results obtained by conducting
GSEA analysis revealed that the high-expression group was
significantly enriched in pathways associated with angio-
genesis, epithelial mesenchymal transition, hypoxia, in-
vasion, and metastasis, indicating that the high-expression
levels of PTP4A3 could potentially be associated with the
processes of metastasis and invasion. -e combined results
reveal that the influence of PTP4A3 may result in a poor
prognosis, and this can be attributed to the promotion of
metastasis and invasion. It has also been reported that
PTP4A3 exhibits significant positive correlation genes as-
sociated with chemokine, immunostimulator, immu-
noinhibitor, MHC, and receptor [35]. -e results from
immune infiltration analysis revealed that the expression of

PTP4A3 correlated positively with the software-derived
immune scores of some of the immune cells. It has been
reported by some researchers [38] that PTP4A3 can upre-
gulate the expression of the chemokine ligand 26 (CCL26)
and participate in cell migration. -e results from immu-
nohistochemistry (IHC) analysis revealed that the levels of
PRL-3 and CCL26 correlated positively with each other, and
the levels increased in stages III and IV of colorectal cancer.
-is could be attributed to the poor prognosis of patients
suffering from colorectal cancer. PTP4A3 can potentially
function as a potential prognostic marker in the case of
LIHC (similar to the case of colorectal cancer). It promotes
the processes of invasion and metastasis associated with
LIHC by upregulating CCL26 and inducing the process of
TAM infiltration.

-e results obtained by analyzing drug sensitivity
revealed that CP466722, pyrimethamine, AKT inhibitor
VIII, embelin, cisplatin, QS11, bexarotene, and mid-
ostaurin correlated negatively with PTP4A3 associated with
the three datasets. AKT inhibition can be considered an
attractive therapeutic intervention for LIHC. For example,
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AKT inhibitor VIII is identified as a drug, which can in-
tervene in LIHC by inhibiting the upstream kinase of AKT
signal transduction. -e LIHC cell line responds to the
AKT inhibitor via the process of apoptotic cell death. -e
process is independent of the AKT activation state [41].
Among all the drugs, Embelin is an active ingredient that is
used in the preparation of traditional herbal medicine. It is

used to treat a variety of diseases, such as cancer. It has been
reported that Embelin, as a drug delivery system in the
liver, is a new candidate drug that can be used for the
clinical treatment of advanced hepatocellular carcinoma
[42]. Cisplatin can also be used to treat LIHC [43]. -ese
results confirm the reliability of the reported analytical
method.

**** ** ****

−2

−1

0

1

2

TIDE Dysfunction Exclusion

Sc
or

e

TCGA

** **** *

−0.2

0.0

0.2

MDSC CAF TAM.M2

Sc
or

e

High

Low

TCGA
High

Low

(a)

**** * ****

−2

0

2

TIDE Dysfunction Exclusion

Sc
or

e

HCCDB18

ns **** ns

−0.2

0.0

0.2

0.4

Sc
or

e

MDSC CAF TAM.M2

High

Low

HCCDB18
High

Low

(b)

*** ns ****

−2

−1

0

1

2

TIDE Dysfunction Exclusion

Sc
or

e

** *** ns

−0.2

−0.1

0.0

0.1

0.2

0.3

Sc
or

e

GSE14520

MDSC CAF TAM.M2

High

GSE14520
High

Low Low

(c)

Figure 7: Differences in the TIDE scores associated with three different datasets for different expression groups of PTP4A3. (a) Difference in
the TIDE score associated with TCGA. (b) Difference in the TIDE score associated with HCCDB18. (c) Difference in the TIDE score
associated with GEO (∗P< 0.05, ∗∗P< 0.01, ∗∗∗P< 0.001, ∗∗∗P< 0.0001, and ns: P> 0.05).

12 Journal of Oncology



CP466722 has been studied as an inhibitor of ataxia
telangiectasia mutated (ATM) kinase [44, 45]. Following the
inhibition of ATM, the processes of EMT and tumor me-
tastasis in drug-resistant lung cancer cells are inhibited [44].
In addition, it has also been reported that the ATM inhibitor
CP466722 strongly binds to ALK2. A new chemical type for
the discovery of drugs for the treatment of progressive
ossifying fiber dysplasia was also identified [45]. ALK2 is
a serine–threonine kinase receptor (STKR), which belongs
to the tyrosine-like kinase (TKL) family. -e PI3K-AKT
pathway associated with PTP4A3 is mediated by the pro-
cesses of serine or threonine phosphorylation associated
with a series of downstream substrates. CP466722 has not
been previously reported in liver cancer. -erefore, the
results reported herein can help provide a platform for the
development of drugs that can be used to treat liver cancer.

Further experiments should be conducted to validate the
results reported herein. -e results reveal whether PTP4A3
can function as a potential therapeutic target for liver cancer.
-e impact of the 8 drugs on the processes of tumor pro-
gression and the prognosis of patients with liver cancer have
also been reported. -e effect of immunotherapy on patients
suffering from liver cancer needs to be further studied. -e
results revealed that when different datasets were consid-
ered, the TIDE score corresponding to the-high expression
group of PTP4A3 was significantly higher than the TIDE
score corresponding to the low-expression group. -is in-
dicates that the low-expression group may be more re-
sponsive toward immunotherapy.-e results from a phase 1
trial underway in Singapore reveal that PRL3-zumab is well
tolerated by animals suffering from cancer.-e relevant data
can be obtained from https://clinicaltrials.gov/ct2/show/
NCT03191682?term�PRL-3&rank�1. -e safety of using
this drug and the preclinical efficacy of PRL3-zumab
(studied using an orthotopic tumor model) make the
PRL3-zumab-based therapeutic method a safe and effective
targeted therapy method.

PTP4A3/PRL-3 was identified as one of the molecules
that were overexpressed in LIHC tissues. PTP4A3/PRL-3 can
potentially affect the processes of invasion, progression, and
metastasis associated with LIHC. It was observed that the
high-expression levels negatively affected the prognosis of
LIHC patients. -e results indicated that PTP4A3 should be
considered as an important prognostic factor in the case of
LIHC. More attention should be paid to the abnormality of
PTP4A3 phosphorylase to gauge the progress of LIHC. It
should be considered a potential target for the treatment of
LIHC to conduct further research. -e results reported
herein can potentially help in the development of clinical
trials, exploration of treatment methods in preclassified
patient groups, and improvement in the survival rate of
patients suffering from this fatal disease.

5. Conclusion

Overall, the results reveal that the PTP enzyme significantly
affects the progression of LIHC. -e results from integrated
differential expression and correlation analysis revealed that
the high-expression levels of PTP4A3 indicate a poor

prognosis. -is suggests that the immune scores corre-
sponding to some immune cells correlate positively with the
expression of PTP4A3. -e drug sensitivity analysis method
was used to identify 9 potential liver cancer intervention
methods and treatment drugs associated with PTP4A3. In
conclusion, PTP4A3 should be considered as a potential
LIHC prognostic detection target and treatment direction.

Data Availability
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Figure S1. Mutation distribution of the low and high
PTP4A3 expression groups and the correlation between the
expression of PTP4A3 and the methylation level. A: Mu-
tation distribution of the top 10 genes characterized by the
highest mutation frequency in the PTP4A3 high-expression
group; B: Mutation distribution of the top 10 genes char-
acterized by the highest mutation frequency in the low-
expression group of PTP4A3; C: TMB distribution in dif-
ferent expression groups of PTP4A3; D: Expression of
PTP4A3 in the PTP4A3 gene amplification group; E: Cor-
relation between PTP4A3 expression and methyl-
ation.(∗P< 0.05, ∗∗P< 0.01, ∗∗∗P< 0.001, ∗∗∗∗P< 0.0001
and ns: P> 0.05). Figure S2. GO and KEGG annotation of
down-regulated DEGs. -e top 10 enriched terms were
visualized. Figure S3. GO and KEGG annotation of up-
regulated DEGs. -e top 10 enriched terms were visualized.
Figure S4. Expression of five types of immune-related genes
in different PTP4A3 expression groups in TCGA-LIHC
dataset (A–E: Immunostimulator, chemokine, receptor,
MHC, Immunoinhibitor. (∗P< 0.05, ∗∗P< 0.01, ∗∗∗P<
0.001, ∗∗∗∗P< 0.0001, and ns: P> 0.05). Figure S5. Distri-
bution of the five software scores for the PTP4A3 groups of
the three datasets. (Supplementary Materials)
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